Lemma 2.2.1 (Generalized Cut) If $A \Rightarrow s$ and $B \Rightarrow u$, then $A + (B \setminus s) \Rightarrow u$.

Proof If we try an induction on $A \Rightarrow s$, all cases go through but the case for the right implication rule. The problem can be fixed by adding an outermost induction on *s*, which gives us strong inductive hypotheses for the case $s = (s_1 \rightarrow s_2)$.

For each case of the inner inductions on $A \Rightarrow s$ we have the assumption $B \Rightarrow u$ and the claim $A + (B \setminus s) \Rightarrow u$.

Let $A \Rightarrow s$ be obtained with the variable rule. Then $s = x \in A$. Hence $B \subseteq A + (B \setminus s)$ and the claim follows by weakening from $B \Rightarrow u$.

Let $A \Rightarrow s$ be obtained with the falsity rule. Then $\bot \in A + (B \setminus s)$ and the claim follows with the falsity rule.

Let $A \Rightarrow s$ be obtained with the left implication rule. Then $t_1 \rightarrow t_2 \in A$, $A \Rightarrow t_1$, and $A, t_2 \Rightarrow s$. The inductive hypothesis for $A, t_2 \Rightarrow s$ is $A, t_2 + (B \setminus s) \Rightarrow u$. We obtain the claim with the left implication rule for $t_1 \rightarrow t_2$, which leaves us with the proof obligations $A + (B \setminus s) \Rightarrow t_1$ and $A + (B \setminus s), t_2 \Rightarrow u$. The obligations are easily obtained with weakening.

Let $A \Rightarrow s$ be obtained with the right implication rule. We have $s = (s_1 \rightarrow s_2)$ and $A, s_1 \Rightarrow s_2$. The inductive hypothesis for $A, s_1 \Rightarrow s_2$ will not be used. The inductive hypotheses for s_1 and s_2 are as follows:

- For all *A*, *B* and *u*, if $A \Rightarrow s_1$ and $B \Rightarrow u$, then $A + B \setminus s_1 \Rightarrow u$.
- For all *A*, *B* and *u*, if $A \Rightarrow s_2$ and $B \Rightarrow u$, then $A + B \setminus s_2 \Rightarrow u$.

We prove the claim $A + B \setminus s \Rightarrow u$ by induction on $B \Rightarrow u$. This is the final induction.

We consider the case for the left implication rule, the other cases are straightforward. We have $t_1 \rightarrow t_2 \in B$, $B \Rightarrow t_1$, and $B, t_2 \Rightarrow u$. The inductive hypotheses for $B \Rightarrow t_1$ and $B, t_2 \Rightarrow u$ are as follows:

- · IH1: $A + B \setminus s \Rightarrow t_1$
- IH2: $A + (B, t_2) \setminus s \Rightarrow u$

We prove the claim $A + B \setminus s \Rightarrow u$ by case analysis.

1. Let $s_1 = t_1$ and $s_2 = t_2$. The application of the inductive hypothesis for s_1 to IH1 and $A, s_1 \Rightarrow s_2$ yields

$$A + B \setminus s + (A, s_1) \setminus s_1 \Rightarrow s_2$$

The application of the inductive hypothesis for s_2 to the above statement and IH2 yields

$$A + B \setminus s + (A, s_1) \setminus s_1 + (A + (B, s_2) \setminus s) \setminus s_2 \Rightarrow u$$

The claim now follows with weakening.

2. Let $s \neq (t_1 \rightarrow t_2)$. Then $(t_1 \rightarrow t_2) \in A + B \setminus s$. We obtain the claim with the left implication rule. This leaves us with the proof obligations $A + B \setminus s \Rightarrow t_1$ and $A + B \setminus s, t_2 \Rightarrow u$, which follow with IH1, IH2, and weakening.