
Computation Theory

Lecture Notes

Gert Smolka

Saarland University

January 28, 2015

1 Introduction

We study the expressivity of a minimal functional programming language L in

constructive type theory.1 On the positive side we show that L can compute with

numbers and programs and can express a self-interpreter. On the negative side

we show that most program properties cannot be decided with L. L is Turing-

complete in that it can express an interpreter for Turing machines.

The main goal of our study is a formal and purely constructive development

of a basic theory of computation. We will write actual programs and prove that

they meet their specifications. This is in sharp contrast to the usual treatment of

computation theory in textbooks, where the existence of complex programs like

self-interpreters is claimed without mathematical proof and without giving the

program.

For a formal study of computation the choice of the underlying program-

ming language is crucial. Turing machines are a bad choice since writing and

verifying Turing machines is difficult and cannot build on common practice in

programming. We use a minimal functional language L where programming and

verification can follow common practice.

We refer the reader to Yannick’s Forsters Bachelor’s thesis [4], which presents

a formal and constructive development of basic computation theory carried out

in Coq. The language L used in our notes is a minor variant of the language L

used in Forster’s development.

2 Programming Language L

We will work with a functional programming language L where all data objects

(e.g., booleans, numbers, programs) are represented as functions. L is a much

1 We do not assume excluded middle in this note.

1

simplified version of Church’s untyped lambda calculus [1]. Technically speak-

ing, L is a weak call-by-value lambda calculus based on capturing substitution. A

variant of L is investigated by Dal Lago and Martini [6] who show that programs

in L can simulate Turing machines with polynomial overhead.

Lambda calculus existed before Turing conceived his machines. Turing [9, 8]

himself showed that computability in the lambda calculus agrees with com-

putability based on Turing machines. The first undecidability result ever was

obtained by Church [2] based on the lambda calculus.

The syntax of L consists of variables (x, y , z) and terms (s, t, u) defined as

follows:

s, t,u ::= x | λx.s | st (x ∈ N)

Terms of the form λx.s are called abstractions, and terms of the form st are

called applications. The syntax of L is familiar from functional programming

and type theory and we adopt the conventions used there.

A variable x is free in a term s if it has an occurrence in s that is not in the

scope of an abstraction λx.t. A term is closed if it has no free variable. For

instance, the term λxy.zxy has a single free variable, which is z. Here are

examples of closed terms that we will use in the following.

I := λx.x K := λxy.x ω := λx.xx Ω :=ωω

A term is open if it is not closed. A procedure is a closed abstraction, and

a program is a closed term. The terms I, K, and ω are typical examples of

procedures, and Iω and Ω are examples of programs.

A substitution szu yields the term obtained from s by replacing every free

occurrence of z with the term u. For instance, (λx.xy)yyx = λx.x(yx). Note

that we use capturing substitution (e.g., in the previous example the outer x is

captured by the abstraction λx.x(yx)). Capturing is not admissible when sub-

stitution is used logically. It can always be avoided by renaming local variables

(i.e., λx1.x1(yx) in our example). Capturing can only occur with a substitution

szu where u is an open term. Capturing is not a problem for L since when it

matters u will always be a closed term.

We define substitution by structural recursion on terms:

xzu := if x=z then u else x

(λx.s)zu := if x=z then λx.s else λx. szu
(st)zu := (szu)(tzu)

Fact 1 A term s is closed if and only if szu = s for every z and u.

2

Reduction is a binary predicate s � t on terms describing single computation

steps. We define reduction inductively using substitution.

(λx.s)(λy.t) � sxλy.t

s � s′

st � s′t
t � t′

st � st′

The first rule provides a restricted form of β-reduction, and the other two rules

make it possible to descent into applications. Note that there is no descent rule

for abstractions. This means that abstractions are irreducible.

Fact 2 Reduction preserves closedness.

Fact 3 A closed term is irreducible if and only if it is an abstraction.

We define the predicates s �n t and s . t as follows:

s �0 s

s � u u �n t
s �n+1 t

s . t := ∃n. s �n t

Note that s �n t says that t can be obtained with n reduction steps from s, and

that s . t is the reflexive and transitive closure of s � t.
Our definition of reduction is indeterministic in that a term may reduce to

different terms is one step. For instance, (II)(II) � I(II) and (II)(II) � (II)I.
It turns out that this indeterminism neither affects termination nor the final

outcome of a reduction.

Fact 4 (Diamond Property) If s � t1 and s � t2, then either t1 = t2 or there

exists a term u such that t1 � u and t2 � u.

Proof By induction on s. �

Fact 5 (Uniform Confluence) If s �m t1 and s �n t2, then there exist numbers k
and l and a term u such that t1 �k u and t2 �l u and m+ k = n+ l.

Proof One first shows the claim for n = 1 by induction onm using the diamond

property. With this special case the claim follows by induction on n. �

Fact 6

1. s . t is reflexive and transitive.

2. If s . s′, then st . s′t.

3. If t . t′, then st . st′.

3

4. If s � t, then s . t.

We say that s evaluates to t and write s ⇓ t if s.t and t is irreducible. We say

that a term terminates if it evaluates to some term. We say that a term diverges

if it does not terminate. The term Ω diverges since Ω � Ω. If s ⇓ t, we say that t
is the normal form of s.

Fact 7

1. If s . t, then s ⇓ u if and only if t ⇓ u.

2. If s ⇓ t1 and s ⇓ t2, then t1 = t2.

3. If s . t, then s terminates if and only if t terminates.

4. If s . t, then s diverges if and only if t diverges.

Fact 8

1. If st terminates,then both s and t terminate.

2. If s or t diverges, then st diverges.

Exercise 9 Give a formal definition of free variables.

Exercise 10 Prove the facts stated in this section.

3 Booleans, Numbers, and Recursion

We can say that L computes with procedures and that all values in L are proce-

dures. If the application of a procedure to a procedure terminates, it terminates

with a procedure. Thus a procedure can be applied to as many procedures as

one likes. The first such purely functional programming language was Church’s

untyped lambda calculus. L is a much simplified version of the untyped lambda

calculus.

We represent the booleans with the following procedures:2

true := λxy.x

false := λxy.y

A conditional (if s then t else u) can be expressed as stu. This form of condi-

tional is strict in that it evaluates both t and u. A usual non-strict conditional

can be expressed as s(λx.t)(λx.u)I where x is not free in t or u. For instance,

true true Ω diverges while true (λx.true) (λx.Ω) I evaluates to true.

2 When we define concrete terms, x stands for 0, y for 1, z for 2, f for 3, and g for 4. Note that

with this convention the terms λx.x and λy.y are different.

4

We represent the naturals numbers as follows:

0 := λxy.x

n+ 1 := λxy.y n

A match (match s with 0 ⇒ t | Sz ⇒ u) can now be represented as s t (λz.u).
This representation of a match is strict for its first argument. A non-strict match

can be obtained with s (λx.t) (λx.zu) I where x occurs neither in t nor u. We

define the successor function as follows:

succ := λzxy.yz

Fact 11 succ n . n+ 1.

The procedural encoding of numbers shown above relies on a scheme devised

by Scott that works for all constructor types. Scott’s encoding of the numbers ap-

pears in [3, 11]. Church devised a different encoding for numbers incorporating

primitive recursion (so-called Church numerals [1]).

For the definition of addition we need recursion. L can express recursion with

a recursion operator ρ that given a procedure s yields a procedure sρ such that

(sρ)t . s(sρ)t

for every procedure t. Now an addition procedure can be obtained from a non-

recursive addition procedure

Add := λfxy. xy(λz. succ (fzy))

taking the recursive procedure as first argument. Given the characteristic prop-

erty of ρ stated above, it is easy to verify that the procedure Addρ satisfies the

reductions

Addρ 0 n . n

Addρ m+ 1 n . succ (Addρ m n)

We define the recursion operator ρ as follows:

A := λzg. g(λx.zzgx)

sρ := λx. AAsx

Fact 12 (sρ)t . s(sρ)t if s is a procedure and t is an abstraction.

We now define a procedure for addition:

Add := λfxy. xy(λz. succ (fzy))

add := Addρ

5

Fact 13

1. add 0 n . n

2. add m+ 1 n . succ (add m n)

3. add m n . m+n

Proof Claim (3) follows by induction on m from claims (2) and (1). Claims (1)

and (2) are easily verified. Here is the verification for Claim (2).

add m+ 1 n . Add add m+ 1 n Fact 12

. m+ 1 n (λz. succ (add z n))

. (λz. succ (add z n)) m

. succ (add m n) �

Note that the recursion operator ρ obtains recursion by means of self appli-

cation. The technique is well-known from untyped lambda calculus, where recur-

sive functions can be obtained as fixed points of the base function. A recursion

operator for untyped lambda calculus was first given by Turing [10].

We now know that L can express datatypes, matches, and recursion. This

is enough to write an interpreter for Turing machines. We conclude that L is

Turing-complete.

Programming in L is functional programming: We represent data with con-

structor types and define functions that recurse over constructor types. By con-

struction functions on constructor types satisfy basic characteristic reductions,

from which by induction we can obtain the reduction expressing the correct-

ness of the function. Fact 13 states the basic characteristic reductions and the

reduction expressing correctness for the addition function add.

In functional programming one usually speaks of equations where we speak

of reductions. Reductions can be seen as directed equations. One suitable equal-

ity relation for L would be the least equivalence relation on terms containg re-

duction.

Programming in L is more powerful than programming in constructive type

theory in that we can use general recursion rather than structural recursion. As

a result we can write functions that may not terminate for certain arguments.

Exercise 14 Let s be a closed term. Give a closed term t such that t . st.

Exercise 15 Write and verify a multiplication procedure.

Exercise 16 Devise a procedural representation for lists and verify procedures

for cons and append.

6

4 Procedural Term Representation and L-Decidability

Terms are formalized as an inductive type with three constructors in type theory.

This yields the following procedural representation:3

[n\ := λxyz. x n

[λn.s\ := λxyz. y n [s\

[st\ := λxyz. z [s\ [t\

Exercise 17 Write procedures satisfying the following specifications.

a) var n . [n\

b) lam n [s\ . [λn.s\

c) app [s\ [t\ . [st\

d) Q [s\ . [[s\\

Terms are a versatile universal data structure subsuming numbers, trees, and

programs. With the procedural representation of terms we can write programs

that operate on programs.

We shall study predicates on terms that can be decided by procedures in L. We

write T for the type of terms and consider predicates p : T→ Prop. A procedure u
is an L-decider for a predicate p if

∀s. (ps ∧u[s\. true) ∨ (¬ps ∧u[s\. false)

A predicate is L-decidable if it has an L-decider.

To prove that a predicate p is L-decidable we have to provide a procedure u
and a proof showing that the procedure u decides p.

We now show that termination of terms is an undecidable problem.

Fact 18 If p is L-decidable, then p is propositionally decidable (i.e., ps∨¬ps for

every term s).

Fact 19 The class of decidable predicates is closed under negation, conjunction,

and disjunction.

We define reducibility and termination of terms as follows:

red s := ∃t. s � t s reduces

ter s := ∃t. s . t ∧¬red s s terminates

Lemma 20 λs. ter (s[s\) is not L-decidable.

3 A procedural term representation using Scott’s encoding was used first by Mogensen [7].

7

Proof Let u be an L-decider for λs. ter (s[s\). Let v := λx. ux(λx.Ω)II. We

consider u[v\.

1. ter (v[v\) and u[v\. true. We have v[v\.u[v\(λx.Ω)II . true (λx.Ω)II .
(λx.Ω)I .Ω. Contradiction since Ω diverges.

2. ¬ter (v[v\) andu[v\.false. We have v[v\.u[v\(λx.Ω)II.false (λx.Ω)II.
II . I. Contradiction since I terminates. �

Theorem 21 Termination of terms is not L-decidable.

Proof Follows from Lemma 20. �

Exercise 22 Show that termination of procedures is not L-decidable. Hint: Prove

Lemma 20 for procedures.

5 Scott’s Theorem

We now show that nontrivial extensional program properties are not L-decidable.

This result is known as Rice’s Theorem in conventional computation theory [5]

and as Scott’s Theorem in the literature on untyped lambda calculus [1]. Scott’s

theorem rests on a fact that it sometimes referred to as second fixed point theo-

rem.

Fact 23 For every program s there exists a program t such that t . s[t\.

Proof We use the procedures from Exercise 17. Let A := λx. s (app x (Qx)) and

t := A[A\. We have t . s (app [A\ (Q[A\)) . s [A[A\\ = s[t\. �

Theorem 24 (Scott) No nontrivial extensional class of programs is L-decidable.

Proof Let p be a predicate T→ Prop as follows:

1. If s is a program such that s . t, then ps if and only if pt.

2. There are programms t1 and t2 such that pt1 and ¬pt2.

3. u is an L-decider for p.

We show that the assumptions are contradictory. Let

v := λx. ux(λx.t2)(λx.t1)I

By Fact 23 we have a program t such that t.v[t\. Thus t.u[t\(λx.t2)(λx.t1)I.
Case analysis on the fact that u L-decides p.

1. pt and u[t\. true. Then t . t2. Contradiction since ¬pt2.

8

2. ¬pt and u[t\. false. Then t . t1. Contradiction since pt1. �

Exercise 25 Let s and t be procedures. Show that the class of programs u such

that us . t is not L-decidable.

Exercise 26 Show that there exists a program t that computes its procedural

representation [t\, that is, t . [t\. Hint: Use Fact 23.

6 Step-Indexed Evaluation

We have defined an evaluation predicate s ⇓ t for L and shown that it is func-

tional. Since there are nonterminating programs, the evaluation predicate is not

total. Given that the evaluation predicate corresponds to a Turing-complete pro-

gramming system, we cannot expect that it can be captured in constructive type

theory with a total function T → T⊥ where T⊥ is the option type over T (recall

that T is the type of terms). However, if we add a resource bound as additional

argument, we can capture evaluation in L with a function

eva : N→ T→ T⊥

satisfying the properties stated in Fact 27. We will call a function a step-indexed

interpreter if it satisfies the specification for eva. Step-indexed interpreters may

differ in how they use the bound given as argument. We will use a step-indexed

interpreter where the bound is taken as a bound on the recursion depth.

Here is the definition of the function eva we will use. Note that eva is defined

by structural recursion on its first argument n.

eva : N→ T→ T⊥

eva n x = ⊥
eva n (λx.s) = bλx.sc

eva 0 (st) = ⊥
eva (Sn) (st) = match eva n s, eva n t with

| bλx.sc, btc ⇒ eva n sxt
| _ _ ⇒ ⊥

Fact 27 Let s be a program. Then:

1. s ⇓ t if and only if eva n s = btc for some n.

2. If eva n s = btc, then eva (Sn) s = btc.

9

7 L-Decidability versus C-Decidability

We call a predicate p : T → Prop C-decidable if there exists a boolean function

f : T→ B for which we can prove ∀s. ps ↔ fs = true.

Theorem 28 Every L-decidable predicate is C-decidable.

Proof Let u be an L-decider for p. By Fact 27 we know that for every term s there

exists a number n such that

eva n (u[s\) = btruec ∨ eva n (u[s\) = bfalsec

Since equality on T⊥ is decidable, constructive choice for N gives us a function σ
such that

eva (σs) (u[s\) = btruec ∨ eva (σs) (u[s\) = bfalsec

for every term s. We now obtain a boolean decision function f for p as follows:

fs = match eva (σs) (u[s\) with

| btruec ⇒ true

| bfalsec ⇒ false

| ⊥ ⇒ false �

At first, Theorem 28 seems to be in conflict with conventional computation

theory since it seems to say that every predicate decidable in a Turing-complete

system is decidable in the terminating system of Coq’s constructive type the-

ory. The conflict is resolved by the observation that the theorem assumes a cor-

rectness proof for the L-decider. Thus the mathematical result that a terminat-

ing programming system always misses total functions expressible in a Turing-

complete system implies that there are total Turing-computable functions whose

correctness cannot be shown in a consistent extension of constructive type the-

ory.

Fact 29 Together, the following assumptions are inconsistent.

1. Every predicate T→ Prop is C-decidable.

2. Every C-decidable predicate is L-decidable.

Proof Follows from the fact that there are predicates that are not L-decidable

(Lemma 20). �

It is common belief that Coq’s type theory is consistent with the assumption

that every predicate is C-decidable. A proof in Coq that C-decidability implies

L-decidability would falsify this belief.

Exercise 30 Show that excluded middle follows from the assumtion that every

predicate T→ Prop is C-decidable.

10

8 Self-Interpretation

The step-indexed interpreter for L (a function in type theory) can be internalized

as a procedure in L. This way we can obtain a self-interpreter for L which gives

us the equivalent of a universal Turing machine.

Theorem 31

1. There is a procedure u such that u n [s\. [eva n s\ for every number n and

every term s. The procedural representation for elements of T⊥ is defined as

follows: [bsc\ := λxy.x[s\ and [⊥\ := λxy.y .

2. There is a procedure u such that for all programs s and t the following holds:

a) u[s\. [t\ if and only if s ⇓ t.
b) u[s\ terminates if and only if s terminates.

3. There is a procedure u such that for all programs s and t the following holds:

a) If s or t terminates, then u[s\[t\ terminates.

b) If u[s\[t\ terminates, then either u[s\[t\ . true and s terminates or

u[s\[t\. false and t terminates.

References

[1] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 2nd revised edition, 1984.

[2] Alonzo Church. An unsolvable problem of elementary number theory.

American journal of mathematics, pages 345–363, 1936.

[3] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory

Logic: Volume II. North-Holland Publishing Company, 1972.

[4] Yannick Forster. A formal and constructive theory of computation.

Bachelor’s thesis, Saarland University, www.ps.uni-saarland.de/~forster/

bachelor.php, 2014.

[5] Dexter C. Kozen. Automata and Computability. Undergraduate Texts in

Computer Science. Springer-Verlag, 1997.

[6] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable

machine. Theor. Comput. Sci., 398(1-3):32–50, 2008.

[7] Torben Æ. Mogensen. Efficient self-interpretations in lambda calculus. J.

Funct. Program., 2(3):345–363, 1992.

11

www.ps.uni-saarland.de/~forster/bachelor.php
www.ps.uni-saarland.de/~forster/bachelor.php

[8] A. M. Turing. Computability and λ-definability. The Journal of Symbolic

Logic, 2:153–163, 1937.

[9] Alan M. Turing. The þ-function in λ-K-conversion. The Journal of Symbolic

Logic, 2(04):164–164, 1937.

[10] Alan M. Turing. On computable numbers, with an application to the

Entscheidungsproblem. Proceedings of the London Mathematical Society,

s2-42(1):230–265, 1937.

[11] Christopher Wadsworth. Some unusual λ-calculus numeral systems. In

Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin, editors, To H. B.

Curry: Essays on combinatory logic, lambda calculus and formalism, pages

215–230. Academic Press, 1980.

12

	Introduction
	Programming Language L
	Booleans, Numbers, and Recursion
	Procedural Term Representation and L-Decidability
	Scott's Theorem
	Step-Indexed Evaluation
	L-Decidability versus C-Decidability
	Self-Interpretation

