
Boolean Logic

Lecture Notes

Gert Smolka

Saarland University

November 22, 2016

Abstract. We study satisfiability and equivalence of boolean expressions. We show

that prime trees (reduced and ordered decision trees) are a unique normal form for

boolean expressions. We verify a SAT solver and a prime tree normaliser. We show

that assignment equivalence agrees with the equivalence obtained from the axioms

of boolean algebra.

The material is presented using type-theoretic language. There is an accompa-

nying Coq development complementing the mathematical presentation given in the

notes.

The notes also serve as introduction to formal syntax. Expressions are modelled

with an inductive type and recursive functions and inductive predicates on expres-

sions are studied. This includes notions like substitution and equational deduction.

Advice to the student. To master the material, you want to understand both the

notes and the accompanying Coq development. It is important that you can switch

between the informal mathematical presentation of the notes and the formal de-

velopment in Coq. You may think of the notes as the design of the theory and the

Coq development as the implementation of the theory. The goal is to understand

both the design and the implementation of the theory. The notes occasionally omit

details that are spelled out in the Coq development (e.g., the precise definition of

substitution). Make sure you can fill in the missing details.

Contents

1 Boolean Operations . 3

2 SAT Solver . 4

3 Equivalence of Boolean Expressions . 7

4 Shallow and Deep Embedding . 9

5 Decision Trees . 12

6 Prime Tree Normal Form . 12

7 Significant Variables . 16

8 Boolean Algebra . 16

9 Axiomatic Equivalence . 18

10 Soundness of Axiomatic Equivalence . 22

11 Completeness of Axiomatic Equivalence . 23

12 Substitutivity . 24

13 Generalised Assignment Equivalence . 25

14 Ideas for Next Version . 26

2

1 Boolean Operations

We start with an inductive type B := > | ⊥ with two elements > and ⊥ (read bool,

true and false). The native operation on B is the boolean match

match s0 with > =⇒ s1 | ⊥ =⇒ s2
which may be written with the if-then-else notation:

if s0 then s1 else s2

We assume that a, b, c are variables ranging over B and define the following boolean

operations:

Cabc := if a then b else c conditional

a∧ b := Cab⊥ conjunction

a∨ b := Ca>b disjunction

a→ b := Cab> implication

¬a := Ca⊥> negation

Observe that the boolean conditional Cs0s1s3 is weaker than the boolean match

since s2 and s3 must have type B. Also note that the boolean conditional can express

all other boolean operations (together with ⊥ and >).

Conjunction and negation can express disjunction:

a∨ b = ¬(¬a∧¬b)

Since we have

Cabc = a∧ b ∨¬a∧ c

conjunction and negation can express the boolean conditional. Similarly, disjunc-

tion and negation can express the boolean conditional. Moreover, implication and

false can express the boolean conditional.

Exercise 1 Carry out the above definitions in Coq and prove the claimed equations.

Boolean case analysis and definitional equality suffice for the proofs.

Exercise 2

a) Show that conjunction and negation can express ⊥ and >.

b) Show that disjunction and negation can express the boolean conditional.

c) Show that implication a→ b and ⊥ can express the boolean conditional.

d) Show that the operation a ∧̄ b := ¬(a ∧ b) (nand) can express the boolean

conditional and also ⊥ and >.

3

2 SAT Solver

The boolean satisfiability problem (SAT) asks whether the values of the variables of

a given boolean expression can be chosen such that the formula evaluates to true.

For instance, the expression x ∧¬y evaluates to true with x = true and y = false.

In contrast, the expression x ∧¬x evaluates to false no matter how the value of x
is chosen.

An assignment is a function that assigns a boolean (i.e., true or false) to every

variable. An assignment satisfies a boolean expression if the expression evaluates

to true under the assignment, and an expression is satisfiable if it has a satisfying

assignment.

A SAT solver is a procedure that decides whether a given boolean expression is

satisfiable and returns a satisfying assignment in the positive case. We will design

and verify a simple SAT solver.

A SAT solver requires a representation of boolean expressions as data. We rep-

resent boolean expressions as the values of an inductive type Exp providing con-

structors for >, ⊥, variables, and the boolean conditional. Variables are represented

as numbers.

An expression not containing variables is called ground. The evaluation of a

ground expression does not depend on the assignment. We have

ground s → αs = βs (1)

for all assignments α and β. We write αs for the boolean to which the expression s
evaluates under the assignment α. Evaluation is defined by recursion on expres-

sions. We also have

ground s → sat s ↔ αs = > (2)

A SAT solver for ground expressions is now straightforward. It evaluates a given

expression s with some assignment, say τ = λx.>. If τs = >, it returns the satisfy-

ing assignment τ . Otherwise, the expression is unsatisfiable and the solver returns

the negative answer.

For expressions containing variables we will employ a variable elimination tech-

nique based on the fact that an expression s is satisfiable if and only if one of the

two instantiations sx> and sx⊥ is satisfiable:

sat s ↔ sat sx> ∨ sat sx⊥ (3)

The expressions sx> and sx⊥ are obtained from the expression s by replacing the

variable x with the expressions > and ⊥, respectively. One speaks of substitution.

4

Given a satisfying assignment for one of the instantiations sx> and sx⊥, we can get

a satisfying assignment for s:

α(sx>) = > → αx>(s) = > (4)

α(sx⊥) = > → αx⊥(s) = > (5)

We write αxb for the assignment obtained from α by mapping x to the boolean b.

The two implications are consequences of a more general fact we call shift:

α(sxt) = αxαt(s) (6)

Shift can be shown by induction on s.
We need a function V s that for an expression s yields a list containing exactly

the variables occurring in s. The solver will recurse on the list V s and eliminate the

variables occurring in s one after the other.

Given a type X, we write X∗ for the type of lists over X and X⊥ for the type of

options over X. We realize the SAT solver with a function

solve : Var∗ → Exp→ Assn⊥

satisfying the specification

V s ⊆ A → match solve A s with bαc =⇒ αs = > | ⊥ =⇒ ¬sat s (7)

Make sure that you understand the outlined design of the SAT solver. It is now

routine to write the function solve:

solve A s := match A with

| nil =⇒ if τs then bτc else ⊥
| x :: A =⇒ match solve A (sx>), solve A (sx⊥) with

| bαc, _ =⇒ bαx>c
| _, bαc =⇒ bαx⊥c
| ⊥, ⊥ =⇒ ⊥

With the given facts it is straightforward to verify that the function solve satisfies its

specification (7). The proof is by induction on A. To apply the inductive hypothesis

to the recursive calls of solve, we need an additional fact for substitutions

ground t → V s ⊆ x :: A→ V (sxt) ⊆ A (8)

which follows by induction on s (s and t are expressions).

5

Coincidence and Expansion

If you try to prove (3) in Coq, you will discover a difficulty with the direction from

left to right. The problem is that Coq doesn’t assume functional extensionality and

so cannot prove α = αxαx . The problem can be bypassed by making use of a fact

known as coincidence:

(∀x ∈ V s. αs = βs)→ αs = βs (9)

Coincidence says that the evaluation of an expression s under two assignments α
and β agrees if α and β agree on all variables in s. Coincidence formalizes the fact

that the evaluation of an expression depends only on the variables occurring in the

expression. Note that coincidence generalizes Fact (1).

With shift and coincidence we can show a fact called expansion:

αs = if αx then α(sx>) else α(sx⊥) (10)

We summarise the main results of this section with a couple of formal state-

ments.

Fact 3 (Coincidence) (∀x ∈ V s. αs = βs)→ αs = βs.

Fact 4 (Shift) α(sxt) = αxαt(s).

Fact 5 (Expansion) αs = if αx then α(sx>) else α(sx⊥).

Theorem 6 (SAT Solver) There is a function ∀s. {α | αs = >} + {¬sat s}.

Corollary 7 (Decidability) Satisfiability of boolean expressions is decidable.

Exercise 8 Formalize the SAT solver in Coq. Proceed as follows.

a) Define the types for variables and assignments: Var := N and Assn := Var→ B.

b) Define an inductive type of Exp of boolean expressions. Make sure you have

constructors for variables and booleans.

c) Define an evaluation function eva : Assn→ Exp→ B.

d) Define a substitution function subst : Exp→ Var→ Exp→ Exp.

e) Define a function V : Exp→ Var∗.

f) Define the assignment τ and a function update : Assn→ Var→ B→ Var→ B.

g) Define the function solve : Var∗ → Exp→ Assn⊥.

h) Define the predicates sat and ground.

i) Prove the shift law: α(sxt) = αxαt(s).
j) Prove the coincidence law: (∀x ∈ V s. αs = βs)→ αs = βs.

6

k) Prove: αxαx(z) = αz.

l) Prove the expansion law: αs = if αx then α(sx>) else α(sx⊥).

m) Prove: ground t → V s ⊆ x :: A→ V (sxt) ⊆ A.

n) Prove that solve is correct (i.e., Statement (7)).

o) Prove that satisfiability of expressions is decidable.

Exercise 9 Prove that sxt = s if x ∉ V s.

Exercise 10 (Assignments as lists) A list A of variables represents an assignment

αA(x) := if x ∈ A then > else ⊥

a) Give an assignment that cannot be represented as a list.

b) Show that an expression s is satisfiable if and only if there is a list A ⊆ V s such

that the corresponding assignment αA satisfies s.

c) There is the possibility of defining satisfiability based on list assignments. Con-

struct a SAT solver not using substitution making use of this idea. Hint: The

power list of V s provides a finite and complete candidate set for satisfying as-

signments.

Exercise 11 Equality of expressions is decidable. Make sure you know the proof.

Prove the fact in Coq using the automation tactic decide equality.

3 Equivalence of Boolean Expressions

We assume that we have boolean expressions as follows:

s, t,u ::= > | ⊥ | x | Cstu (x : N)

Further operation may be defined as abbreviations. We define negation as

¬s := Cs⊥>

Two expressions are equivalent if they evaluate to the same boolean under every

assignment:

s ≈ t := ∀α. αs = αt

Fact 12 Equivalence of expressions is an equivalence relation.

Fact 13 (Ground Evaluation) ground s → s ≈ if αs then > else ⊥.

Proof Case analysis on αs and coincidence. �

7

Fact 14 ground s → s ≈ >∨ s ≈ ⊥.

Equivalence reduces to unsatisfiability.

Fact 15 s ≈ t ↔ ¬sat(Cs(¬t)t).

Fact 16 Equivalence of expressions is decidable.

An assignment α separates two expressions s and t if αs ≠ αt.

Fact 17 An assignment α separates two expressions s and t if it satisfies Cs(¬t)t.
Hence separability is decidable.

Fact 18 Two expressions are separable iff they are not equivalent.

Proof The direction from right to left is interesting since we must show an existen-

tial claim from a negated universal quantification. This is possible constructively

since separability is decidable and thus the proof can be done by contradiction. �

Exercise 19 Prove the following equivalences:

a) > ≈ s ∨¬s and ⊥ ≈ s ∧¬s
b) ¬¬s ≈ s
c) Cstt ≈ t (reduction)

d) ¬Cstu ≈ Cs(¬t)(¬u)
e) Cst1u1 ∧ Cst2u2 ≈ Cs(t1 ∧ t2)(u1 ∧u2)

f) s ≈ Cx(sx>)(sx⊥) (expansion)

Exercise 20 Prove that satisfiability reduces to disequivalence: sat s ↔ s 6≈ ⊥.

Exercise 21 Give a function f : N→ Exp such that fm and fn are separable when-

ever m and n are different.

Exercise 22 (Compatibility) Prove the following compatibility properties:

a) If s ≈ s′, t ≈ t′, and u ≈ u′, then Cstu ≈ Cs′t′u′.
b) If s ≈ s′, then ¬s ≈ ¬s′.
c) If s ≈ s′, then s is satisfiable iff s′ is satisfiable.

Exercise 23 (Replacement) Prove that s ≈ t implies sxu ≈ txu.

Exercise 24 (Checking equivalence) Write a function that checks whether two ex-

pressions are equivalent. Prove the correctness of your function. Exploit a SAT

solver and Fact 15.

8

Exercise 25 (Computing separating assignments) Write a function that for two ex-

pressions yields a separating assignment if there is one. Prove the correctness of

your function. Exploit a SAT solver and Fact 17.

Exercise 26 (Validity) An expression is called valid if it evaluates to true with every

assignment. Prove the following:

a) s valid iff s ≈ >.

b) s valid iff ¬s is unsatisfiable.

c) s is satisfiable iff ¬s is not valid.

d) Validity of boolean expressions is decidable.

4 Shallow and Deep Embedding

Many problems can be represented as boolean expressions such that the solutions

of the problem appear as the solutions of the expression. Equivalence of boolean

expressions is defined such that equivalent expressions represent the same prob-

lem. One often works with different but equivalent representations of a problem.

One representation may describe the problem as it naturally appears while another

representation may describe the problem such that the solution can be seen easily.

The situation is familiar from equations over numbers, which are routinely used

with technical and financial problems.

An important application of boolean logic is hardware design. There boolean

expressions are used to describe boolean functions that are to be implemented

with hardware. The idea is that a boolean expression describes a function that for

the inputs identified by the variables occurring in the expression yields an output.

For instance, x ∧ y describes a boolean function that yields true if and only if

both inputs x and y are true. The way a boolean function is described in a design

may be rather different from the way it is implemented with hardware. It is the

notion of equivalence that connects the description of a boolean function with its

implementation.

We illustrate the use of boolean expressions and the notion of equivalence with

a puzzlelike example. On a TV show a centenarian is asked for the secret of his long

life. Oh, he says, my long life is due to a special diet that I started 60 years ago and

follow by every day. The presenter gets all excited and asks for the diet. Oh, that’s

easy, the old gentleman says, there are three rules you have to follow:

1. If you don’t take beer, you must have fish.

2. If you have both beer and fish, don’t have ice cream.

3. If you have ice cream or don’t have beer, then don’t have fish.

9

Obviously, the diet is only concerned with three boolean properties of a meal:

having beer, having fish, and having ice cream. We can model these properties with

three boolean variables b, f , i and describe each diet rule with a boolean expression.

The conjunction of the expressions describing the rules

(¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f) (11)

yields a description of the diet. The boolean expression describing the diet evaluates

to true if and only if the diet is observed by a meal. We can say that the expresion

describes a boolean function that for the inputs b, f , i determines whether the diet

is observed.

The expression (11) is only one possible description of the diet. Every equivalent

boolean expression describes the diet as well, possibly in a way that is more enlight-

ening than the rules given by the old gentleman. One possibility is the expression

b ∧¬(f ∧ i) (12)

which says that a meal must come with beer but must avoid the combination of

fish and ice cream. It is not difficult to verify that the expressions (11) and (12) are

equivalent and hence describe the same boolean function.

We can check the equivalence of (11) and (12) with Coq. There are two different

methods for doing so known as shallow and deep embedding.

With shallow embedding, the expressions (11) and (12) are represented as

boolean Coq expressions and the equivalence is modelled as a universally quan-

tified equality:

∀ b f i : B. ((¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f)) = (b ∧¬(f ∧ i))

The proof proceeds by case analysis on the boolean variables b, f , and i, which

yields 8 boolean equations that hold by definitional equivalence. The boolean con-

nectives may be defined as shown in Section 1.

With deep embedding, the expressions (11) and (12) are represented with values

of an inductive type Exp and the equivalence is modelled as boolean equivalence:

((¬b → f) ∧ (b ∧ f → ¬i) ∧ (i∨¬b → ¬f)) ≈ (b ∧¬(f ∧ i))

This time the variables are not quantified since they are represented as concrete

numbers (e.g., as 0, 1, 2). The connectives are represented as abbreviations for

conditionals. The proof now proceeds by introducing the universally quantified

assignment α from the definition of s ≈ t, simplification, and case analysis over the

boolean expressions αb, αf , and αi, which eliminates the remaining occurrences

of the assignment α.

10

If we consider the diet problem and the goal is just to establish the equivalence

of the expressions (11) and (12), shallow embedding is the method of choice. Every-

thing is clear and elegant. In this situation, deep embedding would just introduce

unnecessary bureaucratic overhead.

If, on the other hand, we want to verify something like a SAT solver, deep em-

bedding is a must since boolean expressions must be represented as data. It is

important to understand how the transition from shallow embedding to deep em-

bedding is done. Quantification over the boolean Coq variables b, g, and i in the diet

example is replaced by quantification over a single assignment α, and the problem

variables b, g, and i are represented as numbers.

Exercise 27 Show the equivalence of the expressions (11) and (12) in Coq. Explore

both shallow and deep embedding and make sure you understand the many details

and the relationship between the two approaches.

Exercise 28 Four girls agree on some rules for a party:

i) Whoever dances which Richard must also dance with Peter and Michael.

ii) Whoever does not dance with Richard not allowed to dance with Peter and must

dance with Chris.

iii) Whoever does not dance with Peter is not allowed to dance with Chris.

Describe each rule with a boolean expression. Use the variables c (Chris), p (Peter),

m (Michael), and r (Richard). Find a simple expression that is equivalent to the

conjunction of the rules.

Remarks

1. Equivalence of boolean expressions may be seen as an abstract equality for ex-

pressions that is compatible with the syntactic structure of expressions (Exer-

cise 22). Technically, equivalence of boolean expressions is obtained as univer-

sally quantified boolean equality (see the definition of equivalence). Coq sup-

ports abstract equalities with setoid rewriting (see Coq development).

2. Boolean expressions carry information. For many applications, only the infor-

mation preserved by equivalence is relevant. The information represented by

an expression and preserved by equivalence may be thought of as the set of as-

signments satisfying the expression, or as the boolean function described by the

expression.

3. Treating syntax as data is standard in Computer Science. Accommodating syn-

tax as data is a prerequisite for the investigation of proof systems. It is also

the prerequisite for the theory of computation that originated with Gödel and

Turing.

11

5 Decision Trees

A decision tree is a binary tree whose inner nodes are labelled with variables and

whose leaves are labelled with ⊥ or >. Decision trees can be seen as boolean expres-

sions. For this a compound tree T is represented as an expression Cxuv where x is

the root variable of T , u represents the left subtree of T , and v represents the right

subtree of T . We will identify decision trees with their representation as boolean

expressions.

Here are two decision trees:

x

y

> ⊥

>

y

x

> ⊥

>

Both trees are equivalent to the expression x ∧ y . Note that an assignment α
satisfies a decision tree if it validates a path leading from the root to a leaf labelled

with >. At a node labelled with x, the path validated by α goes to the left if αx = >,

and to the right if αx = ⊥.

Here are two decision trees that are equivalent to the expression b ∧ ¬(f ∧ i)
from the diet example:

b

f

i

⊥ >

>

⊥

f

b

i

⊥ >

⊥

b

> ⊥

A decision tree is called

• consistent if no variable appears twice on a path from the root to a leaf.

• ordered if the variables on every path from the root to a leaf appear in strictly

ascending order (recall that the variables are numbers).

• reduced if for no inner node the left and the right subtree are identical.

• prime if it is reduced and ordered.

All trees shown above are consistent and reduced. Note that every ordered tree is

consistent. If we assume x < y and b < f < i, two of the four decision trees shown

above are prime.

6 Prime Tree Normal Form

It turns out that every boolean expression is equivalent to a prime tree, and that two

prime trees are equivalent if and only if they are identical. Thus prime trees provide

12

a unique normal for boolean expressions. We will exploit this fact and construct a

function η that maps every expression to an equivalent prime tree. Since the prime

tree normal form is unique, we will have s ≈ t ↔ ηs = ηt for all expressions s
and t.1

We define a class of prime expressions inductively:

1. ⊥ and > are prime expressions.

2. Cxst is a prime expressions if s and t are different prime expressions and x is a

variable smaller than every variable y occurring in s or t (i.e., x < y).

The definition of prime expressions agrees with the informal definition of prime

trees. For proofs, the inductive definition of prime expressions will be used since it

provides a helpful induction principle. The informal definition of prime trees was

given so that we can use the language and intuitions coming with the tree metaphor.

Theorem 29 (Separation) Different prime trees are separable.

Proof Let s and t be prime trees. We construct a separating assignment by nested

induction on the primeness of s and t. Case analysis.

1. The prime trees > and ⊥ are separated by every assignment.

2. Consider two prime trees Cxst and u where x does not occur in u. We have

either s ≠ u or t ≠ u. We assume s ≠ u without loss of generality. The inductive

hypothesis gives us an assignment α separating s and u. The claim follows since

αx> separates Cxst and u.

3. Consider two different prime trees Cxst and Cxuv . We have either s ≠ u or

t ≠ v . We assume s ≠ u without loss of generality. The inductive hypothesis

gives us an assignment α separating s and u. The claim follows since αx> sepa-

rates Cxst and Cxuv . �

Corollary 30 Prime expressions are equivalent if and only if they are identical.

The proof of the separation theorem omits details that need to be filled in a

formal development. Some of the details are spelled out by the following facts.

Fact 31 Let Cxst and Cyuv be prime expressions. Then either x ∉ V (Cyuv) or

x = y or y ∉ V (Cxst).

Fact 32

1. αx> separates Cxst and u if α separates s and u and x ∉ V s ++Vu.

2. αx⊥ separates Cxst and u if α separates t and u and x ∉ V t ++Vu.

1Since equality of expressions is decidable, the equivalence s ≈ t ↔ ηs = ηt provides a second proof
for the decidability of s ≈ t.

13

3. αx> separates Cxst and Cxuv if α separates s and u and x ∉ V s ++Vu.

4. αx⊥ separates Cxst and Cxuv if α separates t and v and x ∉ V t ++Vv .

We now construct a function η that maps every boolean expression to an equiva-

lent prime tree. It turns out that the function solve we developed for the SAT solver

can be modified such that it returns a prime tree. We start with the function

η′ A s := match A with

| nil =⇒ if τs then > else ⊥
| x :: A =⇒ let u := η′A(sx>), v := η′A(sx⊥) in

if u = v then u else Cxuv

By construction, η′ yields a reduced decision tree. Moreover, if V s ⊆ A, then η′As
yields a decision tree equivalent to s due to the following facts:

1. If s is ground, then s ≈ > if αs = > and s ≈ ⊥ if αs = ⊥.

2. s ≈ Cx(sx>)(sx⊥) (expansion)

3. Cxuu ≈ u (reduction)

It is easy to see that η′ yields an ordered decision trees if A is a strictly sorted list

of variables. Thus

ηs := η′ (sort (V s)) s

provides the normalisation function we are looking for.

Lemma 33 η′As ≈ s if V s ⊆ A.

Lemma 34 V (η′As) ⊆ A.

Lemma 35 η′As is prime if A is strictly sorted.

Theorem 36 (Correctness) ηs is prime, ηs ≈ s, and V (ηs) ⊆ V s.

The following facts follow from the correctness theorem and Corollary 30.

Corollary 37 s ≈ t ↔ ηs = ηt.

Corollary 38 s is prime iff ηs = s.

Corollary 39 (Idempotence) η(ηs) = ηs

Corollary 40 If s ≈ t and t is prime, then ηs = t.

The following facts follow from the two theorems of this section without making

use of the facts from Sections 2 and 3.

14

Corollary 41 s is unsatisfiable if and only if ηs = ⊥.

Corollary 42 Satisfiability of boolean expressions is decidable.

Corollary 43 s is satisfiable iff ηs ≠ ⊥.

Exercise 44 Prove the following identities: η⊥ = ⊥, η> = >, ηx = Cx>⊥, and

η(¬x) = Cx⊥>.

Exercise 45 Prove Corollaries 41, 42, and 43 without making use of the results from

Sections 2 and 3.

Exercise 46 (SAT Solver) Construct a function that for every prime tree s ≠ ⊥
yields a satisfying assignment. Combine this function with η to obtain a SAT solver.

Prove the correctness of your constructions.

Exercise 47 (Validity) Prove that η is valid iff ηs = >. Take the definition of validity

from Exercise 26 but otherwise do not make use of the results from Sections 2 and 3.

Exercise 48 (Strictly Sorted Lists) Recall that two lists are equivalent if they con-

tain the same elements. There is an interesting parallel between prime trees and

strictly sorted lists of numbers: Every list of numbers is equivalent to exactly one

strictly sorted list. A strict sorting function is thus a function that computes for

every list the unique strictly sorted normal form.

a) Define a predicate strictly sorted for lists of numbers.

b) Define a function sort that yields for every list of numbers a strictly sorted list

that is equivalent.

c) Prove that different strictly sorted lists are not equivalent. Hint: Prove the more

informative claim that there is a separating element that is one of the lists but

not in the other.

Remarks

1. Prime trees are the tree version of a unique normal form Bryant [3] devised for

BDDs (binary decision diagrams). BDDs are a graph representation of decision

trees where identical subtrees can be represented with a single subgraph.

2. We can see the prime tree for an expression s as the semantic object denoted

by s. Under this view, boolean equivalence is denotational in that two expres-

sions are equivalent if and only if they denote the same prime tree.

15

7 Significant Variables

A variable x is significant for an expression s if sx> and sx⊥ are separable. We will

show that a variable is significant for an expression s if and only if it occurs in the

prime tree of the expression.

As an example consider the expression x ∨ (y ∧¬y). While x is significant for

the expression, y is not. In fact, no variable but x is significant for the expression.

Fact 49 Every significant variable of an expression occurs in the expression.

Fact 50 Significant variables are stable under semantic equivalence.

Fact 51 Every variable that occurs in a prime tree is significant for the expression.

Proof Let s be a prime tree and x ∈ V s. We construct by induction on the prime-

ness of s an assignment α separating sx> and sx⊥. We have s = Cyuv since x ∈ V s.
Case analysis.

x = y . Since u and v are different prime trees, we have a separating assignment

α for u and v by the separation theorem. Since x occurs neither in u nor in v , we

have α(ux>) ≠ α(vx>). The claim follows since α separates sx> and sx⊥.

x ≠ y . We assume x ∈ Vu without loss of generality. By the inductive hypoth-

esis we have a separating assignment α for ux> and ux⊥. The claim follows since αy>
separates sx> and sx⊥. �

Fact 52 The significant variables of an expression are exactly the variables that

appear in the prime tree of the expression.

Exercise 53 Write a function that for an expression yields a list containing exactly

the significant variables of the expression. Prove the correctness of the function.

8 Boolean Algebra

Boolean algebra is a mathematical theory centered around the notion of a boolean

algebra. A boolean algebra consists of a set X and five operations > : X, ⊥ : X,

¬ : X → X, ∧ : X → X → X, and ∨ : X → X → X satisfying the axioms shown in

Figure 1. The set X is called the carrier of the algebra. By convention, the constants

> and ⊥ are referred to as operations although they don’t take arguments.

The standard example of a boolean algebra is the two-valued boolean algebra

obtained with the type B and the operations introduced in Section 1.

An important class of boolean algebras are the power set algebras. The power

set algebra PX for a set X takes the power set PX as carrier, � as ⊥, X as >, set

16

x ∧y = y ∧ x x ∨y = y ∨ x
x ∧> = x x ∨⊥ = x
x ∧¬x = ⊥ x ∨¬x = >

x ∧ (y ∨ z) = (x ∧y)∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨y)∧ (x ∨ z)

Axioms are referred to as commutativity, identity, negation, and distribution.

Figure 1: Axioms for boolean algebras

complement as ¬, set intersection as ∧, and set union as ∨. It is straightforward to

verify that the axioms for boolean algebras are satisfied by every power set algebra.

More generally, any subsystem of a power set algebra containing the empty set

and being closed under complement, intersection, and union yields a boolean alge-

bra. It is known that every boolean algebra is isomorphic to a subalgebra of a power

set algebra (Stone’s representation theorem).

A main interest in boolean algebra is to understand which equations one can

prove or disprove for every boolean algebra. For instance, one can prove that con-

junction and disjunction are associative and satisfy the de Morgan laws (¬(x∧y) =
¬x ∨¬y and ¬(x ∨y) = ¬x ∧¬y). One can also prove that > and ⊥ are different

if the algebra has at least two elements. As it turns out, the proofs of associativity

and de Morgan are very tricky.

To prove equations in boolean algebra, one may assume a type X, the operations

>, ⊥, ¬, ∧, and ∨, and the 8 equational axioms. This amounts to a shallow embed-

ding of boolean algebra in type theory. Try to prove ¬> = ⊥ and > ≠ ⊥ if you are

looking for a challenge (we will give away the tricks in the next section). To prove

> ≠ ⊥ you need to assume that X has at least two different elements.

There is a striking symmetry present in the axioms of boolean algebra known as

duality. In Figure 1, the axioms on the right can be obtained from the axioms on

the left by swapping > and ⊥ and ∧ and ∨. Swapping also produces the axioms on

the left from the axioms on the right. One speaks of dualisation. An important fact

about boolean algebra says that an equation holds in a boolean algebra if and only

if the equation obtained by dualisation holds in the boolean algebra. A rigorous

proof of this fact requires a deep embedding where expressions appear as data.

There are different axiomatizations of boolean algebras in the literature [5]. Our

axiomatization is a variant of the axiomatization used in Whitesitt’s [6] textbook,

which in turn is a variant of an axiomatization devised by Huntington [4]. Hunt-

ington [4] discovered that associativity, which until then appeared as an axiom, can

be derived from the other axioms. Boolean algebra originated from the work of

Boole [2]. Boole thought of conjunction as class intersection and of disjunction as

17

s ∧ t ≡ t ∧ s s ∨ t ≡ t ∨ s
s ∧> ≡ s s ∨⊥ ≡ s
s ∧¬s ≡ ⊥ s ∨¬s ≡ >

s ∧ (t ∨u) ≡ (s ∧ t)∨ (s ∧u) s ∨ (t ∧u) ≡ (s ∨ t)∧ (s ∨u)

s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

s ≡ s′

¬s ≡ ¬s′
s ≡ s′

s ∧ t ≡ s′ ∧ t
s ≡ s′

s ∨ t ≡ s′ ∨ t

Figure 2: Axiomatic equivalence of boolean expressions

union of disjoint classes [1].

9 Axiomatic Equivalence

We shall show that an equation holds in a boolean algebra if and only if it holds

in the two-valued boolean algebra. This remarkable result makes it possible to

transfer the methods for two-valued boolean logic to general boolean algebras. To

show this result, we need a deep embedding of boolean algebra into type theory

where expressions appear as data.

We start with an inductive type Exp providing boolean expressions

s, t,u ::= > | ⊥ | x | ¬s | s ∧ t | s ∨ t (x : N)

obtained with >, ⊥, variables, negation, conjunction, and disjunction. We model

the axioms of boolean algebra and the rules of equational reasoning with an in-

ductive predicate s ≡ t called axiomatic equivalence. The definition of axiomatic

equivalence appears in Figure 2. Here are some explanations and remarks:

1. The axioms for boolean algebras are expressed with premise-free rules (written

without a line). The rules quantify over expressions s, t, and u. In contrast, the

axioms quantify over values of the boolean algebra in the shallow embedding.

2. The rules providing for equational reasoning are symmetry, transitivity, and

compatibility with ¬, ∧, and ∨. The rule for reflexivity is omitted since it can be

derived with the other rules. The compatibility rules providing for rewriting of

the right argument of conjunctions and disjunctions are omitted since they can

be derived with the commutativity axioms.

3. Rewriting is the basic mode of equational reasoning. In Coq, the rules providing

equational reasoning for s ≡ t may be registered with setoid rewriting so that

one can rewrite with equivalences.

18

4. The fact that a boolean algebra has at least two elements is not expressed in the

definition of axiomatic equivalence. It will be rarely needed.

5. The inductive definition of s ≡ t should be seen as a proof system for judge-

ments s ≡ t. Only very few proofs will be carried out in the basic proof system.

Most proofs will make use of setoid rewriting and derived rules.

6. Some important proofs will use induction on the inductive predicate s ≡ t. These

inductions have to consider one proof obligation for every rule defining s ≡ t.
For this reason it is convenient to have as few defining rules as possible. This is

the main argument for not having reflexivity as a defining rule.

Fact 54 (Reflexivity) s ≡ s.

Proof With identity and symmetry we have s∧> ≡ s and s ≡ s∧>. Thus s ≡ s with

transitivity. �

We now prove the dualisation theorem for boolean algebra. The proof is not

difficult. We start with the definition of a dualizing function ŝ that maps a boolean

expression to a boolean expression called its dual.

>̂ := ⊥ x̂ := x Ås ∧ t := ŝ ∨ t̂
⊥̂ := > ¬̂s := ¬ŝ Ås ∨ t := ŝ ∧ t̂

The dualizing function ŝ is self-inverting.

Fact 55 (Involution) ̂̂s = s.
Theorem 56 (Duality) s ≡ t if and only if ŝ ≡ t̂.

Proof Let s ≡ t. We show ŝ ≡ t̂ by induction on the derivation of s ≡ t. The proof

is straightforward. The direction from right to left follows with involution and the

direction already shown. �

The duality theorem tells us that the rule

ŝ ≡ t̂
s ≡ t

duality

is admissible. Admissibility of a rule means that there is a function that constructs

a derivation of the conclusion given derivations for the premises. Such a function

is constructed in the proof of the duality theorem. The duality rule will be very

helpful in the following proofs.

Constructing proofs in a formal proof system becomes much easier once the

right admissible rules are established. In general, one wants to define a proof sys-

tem with as few rules as possible so that the accompanying induction principle has

19

few cases. Given that when constructing proofs we can use admissible rules as if

they were defining rules, working with few defining rules does not result in a loss

of convenience.

Fact 57 (Evaluation Laws)

¬> ≡ ⊥ ¬⊥ ≡ > constant negation

s ∧> ≡ s s ∨⊥ ≡ s identity

s ∧⊥ ≡ ⊥ s ∨> ≡ > annulation

Proof By duality it suffices to show the equivalences on the left. The identity law is

an axiom. Here is the proof of constant negation.

¬> ≡ ¬>∧> identity

≡ >∧¬> commutativity

≡ ⊥ negation

Note that the rules for symmetry and transitivity are used tacitly. In Coq one can

do the above proof with setoid rewriting. The proof for annulation starts with

⊥ ≡ s ∧¬s ≡ s ∧ (¬s ∨⊥). �

Fact 58 (Exfalso) If > ≡ ⊥, then s ≡ t for all expressions s and t.

Proof Follows with identity and annulation. �

Fact 59

s ∧ s ≡ s s ∨ s ≡ s idempotence

s ∧ (s ∨ t) ≡ s s ∨ (s ∧ t) ≡ s absorption

Proof By duality it suffices to show the equivalences on the left. The proofs are

straightforward if one knows the trick. Here is the proof of idempotence.

s ≡ s ∧> identity

≡ s ∧ (s ∨¬s) negation

≡ s ∧ s ∨ s ∧¬s distribution

≡ s ∧ s ∨⊥ negation

≡ s ∧ s identity

Note that the rules for symmetry, congruence, reflexivity, and transitivity are used

tacitly. In Coq one can do the above proof with setoid rewriting. �

20

Fact 60 (Expansion) s ≡ (t ∨ s)∧ (¬t ∨ s) and s ≡ (t ∧ s)∨ (¬t ∧ s).

Fact 61 (Expansion) The following rule is admissible.

u∨ s ≡ u∨ t ¬u∨ s ≡ ¬u∨ t
s ≡ t

Fact 62 (Associativity) s ∧ (t ∧u) ≡ (s ∧ t)∧u and s ∨ (t ∨u) ≡ (s ∨ t)∨u.

Proof By duality it suffices to show the left equivalence. By expansion it suffices to

show the following equivalences:

s ∨ s ∧ (t ∧u) ≡ s ∨ (s ∧ t)∧u
¬s ∨ s ∧ (t ∧u) ≡ ¬s ∨ (s ∧ t)∧u

The first equivalence follows with absorption and distributivity (both sides reduce

to s). The second equivalence follows with distributivity, negation, and identity

(both sides reduce to (¬s ∨ t)∧ (¬s ∨u)). �

Fact 63 (Reduction to ⊥) s ≡ t iff s ∧¬t ∨¬s ∧ t ≡ ⊥.

Fact 64 (Uniqueness of Complements) The following rule is admissible.

s ∧ t ≡ ⊥ s ∨ t ≡ >
¬s ≡ t

Proof Let s∧t ≡ ⊥ and s∨t ≡ >. We have ¬s ≡ ¬s∧(s∨t) ≡ ¬s∧s∨¬s∧t ≡ ¬s ∧ t
and t ≡ t ∧ (s ∨¬s) ≡ t ∧ s ∨ t ∧¬s ≡ t ∧¬s. �

Fact 65 (Double Negation) ¬¬s ≡ s.

Proof Follows with uniqueness of complements, commutativity, and negation. �

Fact 66 (De Morgan) ¬(s ∧ t) ≡ ¬s ∨¬t and ¬(s ∨ t) ≡ ¬s ∧¬t.

Proof The first equivalence follows with uniqueness of complements and associa-

tivity. The second equivalence follows with duality. �

Exercise 67 Derive the compatibility rules for the right arguments of conjunctions

and disjunctions:

t ≡ t′

s ∧ t ≡ s ∧ t′
t ≡ t′

s ∨ t ≡ s ∨ t′

21

Exercise 68 Prove that s ≡ t iff ¬s ≡ ¬t.

Exercise 69 Our axioms for boolean algebras (see Figure 1) are not independent. In

November 2014 Fabian Kunze discovered that either of the two identity axioms can

be derived from the other axioms.

a) Prove the annulation law s ∨ > ≡ > with the commutativity and identity axiom

for conjunctions and the negation and distributivity axiom for disjunctions.

b) Prove the identity law s ∨⊥ ≡ s with the annulation law for disjunctions shown

in (a), the identity, negation, and distributivity axiom for conjunctions, and the

commutativity axiom for disjunctions.

10 Soundness of Axiomatic Equivalence

As before, an assignment α is a function mapping variables to booleans. Given

an assignment α, we can evaluate an expression s to a boolean αs. Evaluation of

negations, conjunctions, and disjunctions follows their standard boolean semantics

(Section 1). We now define assignment equivalence for the expressions of boolean

algebra following the scheme we know from boolean expressions (Section 3):

s ≈ t := ∀α. αs = αt

We can now prove that axiomatic equivalence entails assignment equivalence.

Fact 70 (Soundness) If s ≡ t, then s ≈ t.

Proof By induction on s ≡ t. �

The proof is straightforward. Intuitively, soundness holds since assignment

equivalence satisfies the axioms of boolean algebra. That assignment equivalence

satisfies symmetry, transitivity, and the compatibility rules certifies its design as an

abstract equality.

Corollary 71 (Consistency) > 6≡ ⊥.

Proof Follows from soundness since α> ≠ α⊥ for every assignment α. �

Theorem 72 (Ground Evaluation) Let s be a ground expression and α be an assign-

ment. Then s ≡ > if αs = > and s ≡ ⊥ if αs = ⊥.

Proof By induction on s using the evaluation laws (Fact 57). �

Corollary 73 If s is ground, then s ≡ > or s ≡ ⊥.

22

As before, we call two expressions s and t separable if there exists an assign-

ment α such that αs ≠ αt.

Exercise 74 Prove x 6≡ y and s 6≡ ¬s.

Exercise 75 Prove or disprove the following propositions:

a) ∀st. s ∨ t ≡ ⊥ ↔ s ≡ ⊥∧ t ≡ ⊥
b) ∀st. s ≡ t ↔ s ∧¬t ∨¬s ∧ t ≡ ⊥
c) ∀s. s ≡ > ↔ ¬s ≡ ⊥
d) ∀st. s ∨ t ≡ ⊥ ↔ s ≡ ⊥∨ t ≡ ⊥
e) ∀st. ¬(s ≡ t)↔ s ≡ ¬t

11 Completeness of Axiomatic Equivalence

We will now show that assignment equivalence entails axiomatic equivalence. We re-

fer to this result as completeness. Together with soundness (Fact 70), completeness

says that axiomatic equivalence agrees with assignment equivalence. The following

lemma formulates the idea for the completeness proof.

Lemma 76

Suppose there is a function ∀s. {α | αs = >} + {s ≡ ⊥}. Then s ≡ t if s ≈ t.

Proof Let s ≈ t. By the assumption the expression u := s ∧ ¬t ∨ ¬s ∧ t is either

satisfiable or equivalent to ⊥. Satisfiability of u contradicts the assumption s ≈ t.
If u ≡ ⊥, then s ≡ t follows with Fact 63. �

The SAT solver from Section 2 gives us a function ∀s. {α | αs = >} + {¬sat s}
(Theorem 6). We can obtain a function as required by Lemma 76 by adapting the

solver to the expressions of boolean algebra and by strengthening the correctness

proof to s ≡ ⊥. For the strengthening of the correctness proof we need an expansion

theorem for axiomatic equivalence. The definition of the substitution operation sxt
needed for the formulation of the expansion property is routine.

Theorem 77 (Expansion)

1. x ∧ s ≡ x ∧ sx>
2. ¬x ∧ s ≡ ¬x ∧ sx⊥
3. s ≡ x ∧ sx> ∨¬x ∧ sx⊥

Proof The first two claims are lemmas needed for the proof of the third claim,

which formulates the expansion property.

The first claim follows by induction on s. The base case for variables follows

with x ∧ x ≡ x ∧>. The inductive cases follow by rewriting with the equivalences

23

• x ∧¬s ≡ x ∧¬(x ∧ s)
• x ∧ (s ∧ t) ≡ (x ∧ s)∧ (x ∧ t)
• x ∧ (s ∨ t) ≡ (x ∧ s)∨ (x ∧ t)
One first rewrites with the appropriate equivalence to push x below the opera-

tion, then rewrites with the inductive hypotheses, and finally pushes x up again by

rewriting with the first equivalence in reverse direction. Here is the rewrite chain

for negation: x ∧¬s ≡ x ∧¬(x ∧ s) ≡ x ∧¬(x ∧ sx>) ≡ x ∧¬(sx>) ≡ x ∧ (¬s)x>.

The proof of the second claim is analogous to the proof of the first claim.

The third claim is a straightforward consequence of the first and second claim:

s ≡ s ∧ (x ∨¬x) ≡ x ∧ s ∨¬x ∧ s ≡ x ∧ sx> ∨¬x ∧ sx⊥. �

Lemma 78 There is a function ∀s. {α | αs = >} + {s ≡ ⊥}.

Proof By strengthening the correctness proof of the SAT solver from Section 2. For

this ground evaluation (Theorem 72) and expansion (Theorem 77) are essential. �

Theorem 79 (Agreement) s ≡ t ↔ s ≈ t.

Proof Follows with Fact 70 and Lemmas 76 and 78. �

Theorem 80 (Decidability) Axiomatic equivalence s ≡ t is decidable.

Proof Follows with Facts 63, 70, and Lemma 78. �

Exercise 81 (Coq project) Define and verify a prime tree normaliser for axiomatic

equivalence. Use the notation Cxst := x ∧ s ∨¬x ∧ t for conditionals. First define

prime trees and show the separation theorem. Then define a normaliser η and verify

ηs ≡ s and ηs is prime.

12 Substitutivity

There is a standard rule for equational deduction called substitutivity we have not

mentioned so far. Substitutivity says that from an equivalence s ∼ t one can derive

every instance of s ∼ t, where an instance is obtained by instantiating the variables

with terms. We now show that axiomatic equivalence satisfies substitutivity.

A substitution is a function θ from variables to expressions. We define a substi-

tution operation θ̃s that, given a substitution, maps boolean expressions to boolean

expressions.

θ̃> := > θ̃x := θx θ̃(s ∧ t) := θ̃s ∧ θ̃t

θ̃⊥ := ⊥ θ̃(¬s) := ¬(θ̃s) θ̃(s ∨ t) := θ̃s ∨ θ̃t

24

Fact 82 (Substitutivity) If s ≡ t, then θ̃s ≡ θ̃t.

Proof By induction on the derivation of s ≡ t. The proof is straightforward since

the rules of the proof system are closed under substitution. �

Since axiomatic equivalence agrees with assignment equivalence, substitutivity

also holds for assignment equivalence.

Fact 83 (Substitutivity) If s ≈ t, then θ̃s ≈ θ̃t.

Theorem 84 (Negative Completeness)

s 6≡ t ↔ ∃θ. θ̃s ≡ >∧ θ̃t ≡ ⊥∨ θ̃s ≡ ⊥∧ θ̃t ≡ >.

Proof The direction from right to left follows with substitutivity and consistency

(Corollary 71). For the other direction assume s 6≡ t. Then s 6≈ t by agreement

(Theorem 79). By Fact 18 there is an assignment α such that αs ≠ αt. The claim

follows by taking for θ the substitution corresponding to α. �

13 Generalised Assignment Equivalence

Let X be the carrier of a boolean algebra. We can consider a generalised assignment

α : Var → X and evaluate an expression s into an element of X. This gives us a

generalised notion of assignment equivalence s ≈X t. We may ask whether assign-

ment equivalence s ≈X t agrees with axiomatic equivalence s ≡ t. The soundness

direction is as easy as in the boolean case.

Fact 85 (Soundness) If s ≡ s, then s ≈X t.

The completeness direction only holds if X has at least two elements. If X has

two elements, we can show that > and ⊥ are different in X. This means that a

boolean assignment separating s and t yields an assignment into X separating s
and t in X. This is all we need for the completeness direction.

Theorem 86 (Generalised Agreement) Let X be a boolean algebra with at least two

elements. Then s ≡ t if s ≈X t.

Exercise 87 (Independence of consistency axiom) Give an algebra satisfying all

axioms for boolean algebras but > ≠ ⊥.

Exercise 88 (Independence of negation axioms) Show that the negation axiom for

conjunctions s ∧ ¬s ≡ ⊥ cannot be derived from the other axioms. To do so, con-

struct an algebra that dissatisfies the negation axiom for conjunctions but satisfies

all other axioms for boolean algebras. Hint: A two-valued algebra where only nega-

tion deviates from the standard definition suffices.

25

Exercise 89 (Independence of distributivity axioms) Show that the distributivity

axiom for conjunctions s ∧ (t ∨u) ≡ s ∧ t ∨ s ∧u cannot be derived from the other

axioms. To do so, construct a two-valued algebra that dissatisfies the distributivity

axiom for conjunctions but satisfies all other axioms for boolean algebras. Hint: A

two-valued algebra where only conjunction deviates from the standard definition

suffices.

Exercise 90 Prove that assignment equivalence satisfies substitutivity without us-

ing axiomatic equivalence.

14 Ideas for Next Version

• Move the diet example to Section 1. One can show the equivalence of different

boolean codings of the diet without explicit syntax. Use the idea of a tool that

simplifies expressions to motivate explicit syntax and assignment equivalence.

• Define expressions and assignment equivalence before developing the SAT

solver. Equivalence checking and computation of separating assignments reduce

to SAT solving, which is the basic operational service.

• Present tableau decomposition (lists of signed formulas, no substitution) as

a second technique for SAT solving. The tableau method may simplify the

completeness proof for axiomatic equivalence since axiomatic expansion is not

needed.

• Make more explicit that SAT solving and prime normalisation work for differ-

ent syntactic systems (outlined in Exercise 2). The system with just variables

and nand works with tableau decomposition but does not work with variable

elimination (add > or ⊥).

• Maybe do a few proofs for an assumed boolean algebra do see the difference to

axiomatic equivalence.

References

[1] Janet Heine Barnett. Applications of boolean algebra: Claude Shannon and cir-

cuit design. Internet, 2011.

[2] George Boole. An Investigation of the Laws of Thought. Reprinted by Merchant

Books, 2010. Walton, London, 1847.

[3] Randal E. Bryant. Graph-based algorithms for boolean function manipulation.

IEEE Trans. Computers, 35(8):677–691, 1986.

26

[4] Edward V. Huntington. Sets of independent postulates for the algebra of logic.

Transactions of the American Mathematical Society, 5(3):288–309, 1904.

[5] Edward V. Huntington. New sets of independent postulates for the algebra of

logic, with special reference to Whitehead and Russell’s Principia Mathematica.

Trans. Amer. Math. Soc., 35:274–304, 1933.

[6] John Eldon Whitesitt. Boolean Algebra and Its Applications. Reprinted by Dover,

2010. Addison-Wesley, 1961.

27

	Boolean Operations
	SAT Solver
	Equivalence of Boolean Expressions
	Shallow and Deep Embedding
	Decision Trees
	Prime Tree Normal Form
	Significant Variables
	Boolean Algebra
	Axiomatic Equivalence
	Soundness of Axiomatic Equivalence
	Completeness of Axiomatic Equivalence
	Substitutivity
	Generalised Assignment Equivalence
	Ideas for Next Version

