
Remember from last lecture combinatorial structure, combinatorial problem;

constraint satisfaction problem, solution to a CSP; constraint store, propagator,

branching, search tree; branch and bound search

A useful metaphor Propagation and branching is like proving a theorem:

Propagation means applying proof rules. Branching is like doing case distinctions.

Case distinctions are only heuristics, but good case distinctions pay off.

This lecture In this lecture, I want to give you an idea how to model CSPs on

finite-domain integer variables using Alice and GeCoDE. To this end, I will present a

number of constraint satisfaction problems, show how to model them in Alice, and

point out important aspects that you often will encounter when modelling CSPs:

local versus global constraints, defined constraints, symmetries and how to

eliminate them, modelling languages, redundant constraints.

Send More Money State the problem and write down the constraint program.

import structure FD from "x-alice:/lib/gecode/FD"

import structure Linear from "x-alice:/lib/gecode/Linear"

open Linear

fun smm space =

let

val letters as #[s, e, n, d, m, o, r, y] = fdtermVec (space, 8, [0‘#9])

in

distinct (space, letters, FD.BND);

post (space, s ‘<> ‘0, FD.BND);

post (space, m ‘<> ‘0, FD.BND);

post (space, ‘1000‘*s ‘+ ‘100‘*e ‘+ ‘10‘*n ‘+ d

‘+ ‘1000‘*m ‘+ ‘100‘*o ‘+ ‘10‘*r ‘+ e

‘= ‘10000‘*m ‘+ ‘1000‘*o ‘+ ‘100‘*n ‘+ ‘10‘*e ‘+ y, FD.BND);

branch (space, letters, FD.B_SIZE_MIN, FD.B_MIN);

{s, e, n, d, m, o, r, y}

end

Note to self: Explain the individual parts: first the modelling itself, then the

implementation in Alice/GeCoDE. Import the modules. Open Linear to get the

identifiers available at top-level. Type of a constraint script (space → α). Notion of

interface. Individual constraints. Forward pointer to explanation of FD.BND in

1

coming lectures. Specification of branching strategies (which variable to pick, how to

split the domain; see documentation for available strategies).

Send Most Money

Note to self: Start with the Send More Money problem.

For best-solution search, the type of the script changes to

space × (space × space → unit). Our task is to implement the betterness

constraint. We want to write something like

fun better (current, lastSolution) =

post (current, {MONEY in current} ‘> {MONEY in lastSolution}, FD.BND)

Because we post this in the current constraint, the value of MONEY in current

simply is MONEY itself:

fun better (current, lastSolution) =

post (current, MONEY ‘> {MONEY in lastSolution}, FD.BND)

For the value of MONEY in lastSolution, we need to use reflection:

fun better (current, lastSolution) =

post (current, MONEY ‘> ‘(FD.Reflect.value(lastSolution, MONEY)), FD.BND)

But what is MONEY, really?

val money’ = FD.range (space, (10234, 98765))

val moneyTerm = FD(money’)

post (space, moneyTerm ‘= ‘10000‘*m’ ‘+ ‘1000‘*o’ ‘+ ‘100‘*n’ ‘+ ‘10‘*e’ ‘+ y’, FD.BND)

Thus we finally get

fun better (current, lastSolution) =

post (current, moneyTerm ‘> ‘(FD.Reflect.value(lastSolution, money’)), FD.BND)

2

Some Background What about those backticks? Alice provides two structures

(‘modules’) for writing constraint scripts on finite-domain variables: FD and

Linear. The functions in FD are directly connected to the functions in the GeCoDE

library; in this sense, FD is quite low-level. The Linear structure adds a more

high-level view for a particularly frequent class of constraints: linear equations,

inequations and disequations. These constraints have the following form, where ∼
is a simple relation such as equality, greater-than, not equal:∑

1≤i≤n
ci · xi ∼ c

This constraint can be enforced using FD.linear, which takes as its inputs a

space, a vector of coefficient-variable pairs, a relation, a constant, and a consistency

level. (Forget about the consistency level at the moment.) For example, the

constraint 5x + 42 = y can be enforced in space by the constraint

FD.linear (space, #[(5, x), (~1, y)], FD.EQ, ~42, FD.BND)

However, it is more convenient to import Linear, open it (such that all functions

and operators become available at top-level) and write

post (space, ‘5‘*x ‘+ ‘42 ‘= ‘y, FD.BND)

All constraints we have encountered in Send More (Most) Money have this form, so

therefore we used the Linear module.

3

Global constraints – Queens Problem specification: place 8 queens on an 8× 8

chess board such that no two queens attack each other.

Note to self: Show a solution for the 8 queens problem. Show where the constraints

come from. Show the sample solution. Iteration is an important ingredient in

successful modelling.

fun loop i n f = if i >= n then nil else f i :: loop (i + 1) n f

fun upperTriangle n =

List.concat (loop 0 n (fn i => loop (i + 1) n (fn j => (i, j))))

fun queens n space =

let

val row = Linear.fdtermVec (space, n, [0‘#(n - 1)])

in

Linear.distinct (space, row, FD.BND);

List.app (fn (i, j) =>

let

val rowi = Vector.sub (row, i)

val rowj = Vector.sub (row, j)

in

post (space, rowi ‘+ (‘j ‘- ‘i) ‘<> rowj, FD.BND);

post (space, rowi ‘- (‘j ‘- ‘i) ‘<> rowj, FD.BND)

end) (upperTriangle n);

Linear.branch (space, row, FD.B_SIZE_MIN, FD.B_MED);

row

end

Note to self: Show how to parametrise the problem over n. Iteration is even more

important now.

When problem sizes get big, the modelling that we have chosen turns out to be

bad: we post a quadratic number of constraints on the problem variables, which

leads to a quadratic number of propagators. Better solution: distinctOffset.

FD.distinctOffset (space, [(c1, x1), ..., (cn, xn)])

forces the sums xi + ci to be pairwise distinct.

4

fun queens n space =

let

val row = FD.rangeVec (space, n, (0, n - 1))

val add = Vector.tabulate (n, fn i => 0 + i)

val sub = Vector.tabulate (n, fn i => 0 - i)

in

FD.distinct (space, row, FD.BND);

FD.distinctOffset (space, VectorPair.zip (add, row), FD.BND);

FD.distinctOffset (space, VectorPair.zip (sub, row), FD.BND);

FD.branch (space, row, FD.B_SIZE_MIN, FD.B_MED);

row

end

Defined constraints Modelling often involves composing several primitive

constraints from the library into more high-level constraints better suited to the

problem. In Alice, we do not have to go far.

• We want to define n-ary sum constraints in terms of primitive constraints

from the FD library:
∑

1≤k≤n xk ∼ y and
∑

1≤k≤n xk ∼ c. This is

straightforward; reduce to FD.linear.

• Constraints for n-ary products are more complicated:
∏

1≤k≤n xk = y and∏
1≤k≤n xk = c. The problem is that FD only supports (binary) FD.mult, so we

need to create a new variable for each individual product and constrain it

appropriately. Propagation will be quite inefficient because of that. (Compare

that to distinctOffset in the Queens example.)

Custom constraint languages and symmetries – Grocery When we model a

problem using primitive constraints and defined constraints, we effectively define a

custom constraint language: to model this problem, we need these and those

constraints. Making this language explicit sometimes helps to better understand

the problem domain, and to modularise the problem solving. I will illustrate that

using a very simple example.

Problem specification: A kid enters a grocery store and buys four items. The

cashier charges $7.11, the kid pays and is about to leave when the cashier calls the

kid back, and says “Hold on, I multiplied the four items instead of adding them; I’ll

try again—hah, with adding them, the price still comes to $7.11”. What were the

prices of the four items?

5

Two constraints: sum and product (we can use the defined constraints from the

previous example).

Note to self: Define constraint language. Define evaluation function. Show the

modelling.

Unfortunately, when feeding this, it will take hours. The problem is that the prices

can be ordered in any possible permutation, so we get a factorial blow-up. We need

to eliminate those symmetries.

Note to self: Extend the proof metaphor: symmetry elimination is like ‘without loss of

generality’.

Redundant constraints If time permits: the Pythagoras example. How many

triples (a, b, c) exist such that a2 + b2 = c2 and a ≤ b ≤ c? The script creates a

propagator for a redundant constraint, which will not affect the size of the search

tree, but reduce the time for propagation. (Unfortunately, this cannot currently be

measured using the tools we have.)

6

