
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Constraint Programming: Assignment no. 7/8

Marco Kuhlmann, M.Sc., Dipl.-Inform. Guido Tack

http://www.ps.uni-sb.de/courses/cp-ss07/

This week’s assignment is about scheduling, rostering (using the regular constraint),

and SAT solving.

Exercise 7/8.1 (Nurse rostering)

In Lecture 6, you have seen how to use the regular constraint for rostering applica-

tions. The Gecode/J library provides a class for specifying regular expressions, and a

propagator for the regular constraint.

a) Implement a script that constrains an array of 7 variables with the regular expres-

sion mm∗eee∗(ffm+mff) (similar to the expression from the lecture).

b) The solutions you get are not cyclic. For instance, eeeffmmm is not a valid

solution. Use the propagator for regular to implement a cyclic roster. Hint:

post the constraint on an array of size 14. The regular expression needs slight

modification, too.

c) Explain why the search does not produce any failures in exercise a), and why b)

cannot be solved without failures.

d) Implement a roster for four nurses. All individual rosters should satisfy the

constraint from b) (i.e., he cyclic version). Each day, at least one nurse is required

for the morning shift and exactly one for the evening shift, and at least one nurse

should have a day off. Hint: have a look at the count constraints.

Exercise 7/8.2 (Propagating regular)

Consider a model with an array of 5 variables and a regular constraint with the

following regular expression: ((12)∗ + (31)∗)44∗(1+ (24)∗)∗.

a) Give a DFA for the regular expression.

b) Draw the layered graph for the following variable domains: x[i] = {0,1,2,3,4,5}
for 0 ≤ i ≤ 4.

c) Simulate propagation using pencil and paper. In particular, draw the layered graph

after propagation is complete, and give the resulting variable domains.

d) How can you use propagation to optimize the DFA?

2007–06–11 17:50



(2, 1) (0, 3) (1, 6) (3, 7) (5, 3) (4, 6)
(1, 8) (2, 5) (4,10) (5,10) (0,10) (3, 4)
(2, 5) (3, 4) (5, 8) (0, 9) (1, 1) (4, 7)
(1, 5) (0, 5) (2, 5) (3, 3) (4, 8) (5, 9)
(2, 9) (1, 3) (4, 5) (5, 4) (0, 3) (3, 1)
(1, 3) (3, 3) (5, 9) (0,10) (4, 4) (2, 1)

Table 1: A 6× 6 job-shop problem

Exercise 7/8.3 (Job-shop)

A job-shop problem of size m × n is a set of m jobs, with each job consisting of

n tasks with fixed duration. All tasks in one job must be performed in the given

order. All tasks in one job are performed on different machines. No two tasks from

different jobs, which require the same machine, can run in parallel. Find a minimal

completion time for the whole job-shop, i.e. minimize the maximum of the end times

of the individual jobs.

Table 1 shows a specification for a 6× 6 job-shop problem. Each row represents one

job. Each task in a job is encoded as a pair (machine,duration). Write a script using

Gecode/J that computes the minimal completion time.

Exercise 7/8.4 (A clause propagator for Gecode)

Write a propagator in Gecode/J that implements a Boolean clause. The propagator

should be posted with an array of BoolVars v and an array of booleans p (of the

same size as v). For v[i], the boolean p[i] determines the polarity of the literal.

For example, given BoolVars x,y, z, you could post the clause x ∨¬y ∨¬z as

VarArray<BoolVar> bs = new VarArray<BoolVar>(x,y,z);

boolean ps[] = {true, false, false};

Clause.post(this, bs, ps);

a) Implement a simple version of the propagator which subscribes to all variables.

b) Implement the propagator using watched literals: at every time, only subscribe to

two variables.

Note that the watched literals we implement here are different from what you saw

in the lecture, as they do not survive a backtrack. Still, it is beneficial to implement

Boolean propagators like this.

2007–06–11 17:50



BoolVar is a subclass of IntVar, so you can just use IntVarViews in your propaga-

tor. The variables follow the usual convention that 0=false and 1=true.

Exercise 7/8.5 (Conflict clause learning)

We want to decide satisfiability of the following set of clauses:

ω1 = x4 ∨ x5 ∨ x7

ω2 = x5 ∨ x6

ω3 = ¬x7 ∨ x8

ω4 = ¬x6 ∨ x8

ω5 = ¬x8 ∨ x1 ∨ x10

ω6 = ¬x8 ∨ x2 ∨ x9

ω7 = x3 ∨¬x9 ∨¬x10

ω8 = x6 ∨ x8

a) Perform search up to the first conflict with pencil and paper, using the following

variable order: x1, x2, x3, x4, x5, x6, x7, x8, x9, x10 (always pick false first, then

true).

b) Draw the implication graph for the first conflict. (The first conflict happens after

assigning x5 to false.)

c) Determine the first unique implication point (1UIP) and the corresponding learned

clause.

d) Backtrack and perform propagation again. Your conflict clause from exercise c)

should cause failure immediately. Determine the new conflict clause. How far can

you backjump according to the new conflict clause?

2007–06–11 17:50


