
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Constraint Programming: Assignment no. 9

Marco Kuhlmann, M.Sc., Dipl.-Inform. Guido Tack

http://www.ps.uni-sb.de/courses/cp-ss07/

This is the fourth and final graded assignment. The submission deadline is Wednes-

day, June 27th, 23:59 CEST. Please submit solutions for the individual exercises as

source code, packed into a tar.gz or zip archive, to tack@ps.uni-sb.de.

This week’s assignment is about modeling using finite set constraints.

Exercise 9.1 (The social golfers problem)

The social golfers problem is to schedule g · s golfers into g groups of s players

over w weeks such that no golfer plays in the same group with any other golfer more

than once.

Your task in this exercise is to implement the constraint model for the social golfers

problem that was given in the lecture. (Recall that this model uses a list of set

variables Sj , one for each of thew ·g groups.) The instances that you should evaluate

your implementation on are those that have 1 ≤ w ≤ 10, g = 8, s = 4.

a) Implement the constraint model using Gecode/J. For the branching strategy,

use SETBVAR_NONE and SETBVAL_MIN. What is the largest value of w for which

you still find a solution in reasonable time?

b) Implement a different branching strategy as follows: Choose the first player i
and the first set variable Sj for which it is not yet decided whether i plays in

group Sj or not. Then, assign i to Sj in the left branch, and exclude i from Sj
in the right branch. What is the largest value of w for which you still find a

solution now? (There is a branching strategy in Gecode/J that implements this

semantics.)

Exercise 9.2 (Binary relations)

In the lecture, you have seen how to implement binary relation variables on top of

finite set variables. In this exercise you are going to build an actual implementation

using Gecode/J.

We will need the following constraints on binary relations:

2007–06–19 12:09



a) reflexivity (∀x.Rxx)

b) transitivity (∀x,y, z.Rxy ∧ Ryz ⇒ Rxz)

c) anti-symmetry (∀x,y.Rxy ∧ Ryx ⇒ y = x)

d) converse (∀x,y.Rxy ⇒ R′yx)

You find a definition of transitivity on the slides for Lecture 9. It uses selection

constraints, which are available as selectUnion and selectInterIn in Gecode/J.

Anti-symmetry and the converse relation can be defined in a similar way. Here, we

show you the bigger part of how to derive an implementation in terms of selection

constraints from the definition:

R anti-symmetric a ∀x.∀y.Rxy ∧ Ryx ⇒ x = y
a ∀x.∀y ∈ Rx.x ≠ y ⇒ ¬Ryx
a ∀x.∀y ∈ Rx \ {x}.¬Ryx
a ∀x.∀y ∈ Rx \ {x}.x ∉ Ry

R converse of R′a ∀x.∀y.Rxy ↔ R′yx

⇒ ∀x.∀y ∈ Rx.R′yx
a ∀x.∀y ∈ Rx.x ∈ R′y

Note that for the converse, we only show one direction here. The other direction is

completely symmetric. For both examples, the last step is missing: transforming part

of the formula into selection constraints.

Attention: The indices used by the selection constraints start at 0!

a) Complete the definitions above using selection constraints. Follow the transitivity

example from the slides. The goal is to have only one universal quantifier left,

which can then be implemented by iteration.

2007–06–19 12:09



b) Implement the constraints in Gecode/J using the skeleton we provide. All the

places where you should add code are marked with a comment.

Exercise 9.3 (Enumerating trees)

In this exercise, you will define a binary relation R that is constrained to have tree-

shape. Think of R as the reachability relation in the tree. Each value stands for a node.

For two nodes x and y , we have Rxy if and only if y is (reflexively, transitively)

reachable from x.

More formally, a binary relation R is a tree if and only if it has the following three

properties:

a) It is a partially ordered set, i.e., it is reflexive, transitive, and anti-symmetric.

b) For each value x, {y|Ryx} is totally ordered.

c) There is exactly one value x such that for all y , Rxy .

You should have no difficulty implementing property a). For property b), first

implement a method public void total(Space home, SetVar s) that posts the

constraint that R is total on the set S, i.e., ∀x,y : x ∈ S ∧ y ∈ S ∧ ¬Rxy ⇒ Ryx
(use reification to achieve this). Now define the converse relation R−1, and post the

constraint that R must be total for each R−1x.

For part c), use reification to implement ∀x : Rx = U a x ∈ root for some set

variable root. Constrain the result to have exactly one element.

You can use the branching method we provide in RelVar.java.

Use your program to find out how many trees of size 1 to 5 (according to this

axiomatization) there are, and compare your result with the corresponding entry in

the Database of Integer Sequences:

http://www.research.att.com/˜njas/sequences/.

2007–06–19 12:09


