
Spaces and Search
Marco Kuhlmann & Guido Tack

Lecture 6

The story so far

• modelling constraint satisfaction problems using Gecode/J

• formal model for solving constraint satisfaction problems

• implementation of propagators

Today

• an architecture for search

• writing simple search engines

• limited discrepancy search

• branch & bound search

• recomputation

Search trees

Search tree

Search tree

indeterministic
choice

• How to branch?

• branching strategy (naive, first-fail, …)

• determines the shape of the search tree

• How to make the choice operation deterministic?

• search strategy (depth-first, branch & bound, …)

• determines the computation order

Two questions

• How to branch?

• branching strategy (naive, first-fail, …)

• determines the shape of the search tree

• How to make the choice operation deterministic?

• search strategy (depth-first, branch & bound, …)

• determines the computation order

Two questions
simplification:

binary branching

Backtracking

• no way to predict whether a choice is good

• consequence: choices need to be undone

• choice may not have lead to any solution

• choice may not have yielded all solutions

• backtracking = undoing choices

Backtracking

Backtracking

Backtracking

Backtracking

Backtracking

backtrack!

Backtracking

Backtracking

Backtracking

backtrack!

Backtracking

Backtracking

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

Terminology

• search strategy:
how to explore the search tree

• search engine:
implements a search strategy,
may provide additional functionality
(one or all solutions, user interaction, …)

An architecture for search

Design decisions

• Prolog

• first system to do computation by search

• one single opaque search strategy

• Mozart/Oz and Gecode

• more than one search strategy

• architecture for writing new search engines

Depth-First Exploration

Depth-First Exploration

Operations on spaces

• SpaceStatus status()

determines the status of a space (failed, solved, branch)

• Space cloneSpace()

returns a backup clone of a space

• void commit(long alternative)

commit a space to one of its alternatives

preliminary definitions

Status messages

• failed –
the variable domains are inconsistent

• solved –
the variable domains form an assignment

• branch –
the variable domains require branching

Status messages

Status messages
branch

failed

solved

Implementing DFS

public static Space dfs(Space space) {
 switch (space.status()) {
 case SS_FAILED: return null;
 case SS_SOLVED: return space;
 case SS_BRANCH:
 Space c = space.cloneSpace();
 space.commit(0);
 Space s = dfs(space);
 if (s != null) {
 return s;
 } else {
 c.commit(1);
 return dfs(c);
 }}}

Explicit agenda (1)

private Stack<Space> agenda;

public DepthFirstSearch(Space s) {
 this.agenda = new Stack<Space>();
 agenda.push(s);
}

Explicit agenda (2)

public Space next() {
 if (agenda.empty()) return null;
 Space s = agenda.pop();
 switch (s.status()) {
 case SS_FAILED: return next();
 case SS_SOLVED: return s;
 case SS_BRANCH:
 Space c = s.cloneSpace();
 c.commit(1); agenda.push(c);
 s.commit(0); agenda.push(s);
 return next();
 }}

Generic search

• depth-first search:
agenda is a stack

• breadth-first depth:
agenda is a queue

• best-first search:
agenda is a priority queue

Limited Discrepancy Search

Motivation

• Branching strategies are often designed
to put good alternatives first.

• But sometimes violating this heuristic pays off.

• Limited discrepancy search
is a search strategy that allows a limited number of violations
(discrepancies) of the heuristic.

Example

Example

Example

Example

discrepancy

Probing

0 discrepancies 1 discrepancy

public static Space lds(Space space, int d) {
 switch (space.status()) {
 case SS_FAILED: return null;
 case SS_SOLVED: return space;
 case SS_BRANCH:
 Space c = space.cloneSpace();
 space.commit(0);
 Space s = lds(space, d);
 if (s != null || d < 1) {
 return s;
 } else {
 c.commit(1);
 return dfs(c, d-1);
 }}}

Limited Discrepancy Search

LDS as best-solution search

• For some problems, it holds that
the less discrepancies, the better the solution.

• LDS finds solutions with fewer discrepancies first:
best solution search

• Example: allocating students to tutorials

Branch & Bound Search

Motivation

• optimization problems are ubiquitous

• not feasible to explore the complete tree
and look for an optimal solution

• idea: use previously found solutions to prune the search tree

Remember: Send Most Money

/**
 * Ensure that subsequent solutions
 * are better than best.
 */

public void constrain(Space best) {
 rel(this, money, IRT_GR, best.money.val());
}

Remember: Send Most Money

needs to be a solution

/**
 * Ensure that subsequent solutions
 * are better than best.
 */

public void constrain(Space best) {
 rel(this, money, IRT_GR, best.money.val());
}

Branch & Bound Search

public static Space bbs(Space space, Space best) {
 switch (space.status()) {
 case SS_FAILED: return best;
 case SS_SOLVED: return space;
 case SS_BRANCH:
 Space c = space.cloneSpace();
 space.commit(0);
 Space better = bbs(space, best);
 c.commit(1);
 if (better != null) c.constrain(better);
 return bbs(c, better);
 }}

Recomputation

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

Copying

Copying

Copying

Copying

Copying

Copying

Copying

Copying

Copying

Disadvantages of copying

• contents of a space

• variables and their current domains

• propagator queue, modified variables

• memory consumption

• not unusual: 1000 variables, 10,000 propagators

• several MB per space!

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

Backtracking strategies

• copying:
backup the state of the system
before making a choice

• trailing:
remember an undo action for the choice

• recomputation:
recompute the state of the system
before the choice was made

trade space
for time

Full recomputation

Full recomputation

Full recomputation

Full recomputation

Full recomputation

Full recomputation

Full recomputation

DFS + Recomputation (1)

public Space recompute(Path path) {
 Space result = cloneSpace(this);
 for Long i in path {
 result.commit(i);
 }
 return result;
}

DFS + Recomputation (2)

public static Space dfs(Space space, Space root, Path path) {
 switch (space.status()) {
 case SS_FAILED: return null;
 case SS_SOLVED: return space;
 case SS_BRANCH:
 Path pc = new Path(path); pc.add(1);
 space.commit(0); path.add(0);
 Space s = dfs(space, root, path);
 if (s != null) {
 return s;
 } else {
 Space c = root.recompute(pc);
 return dfs(c, root, pc);
 }}}

Recomputation strategies

• full recomputation
no copying at all

• fixed recomputation
keep a copy every n nodes

• adaptive recomputation
during recomputation, place a copy
on the middle of the path to the last copy

Batch Recomputation

• Before we commit to an alternative in a branching,
we need to compute the fixed point.

• Therefore, recomputation of a node on a path of length n
computes n fixed points.

• Idea behind batch recomputation:
record what propagators are used along a path, and
compute only one fixed point per recomputation

Operations on spaces

• SpaceStatus status()

• BranchingDesc description()

get a description of the constraints added by status()

• Space cloneSpace()

• void commit(BranchingDesc d, long alternative)

post the constraints described by d, and
then commit to one of the alternatives

final definitions

DFS + Batch Recomputation (1)

public Space recompute(Path path) {
 Space result = cloneSpace(this);
 for Pair<BranchingDesc,Long> item in path {
 BranchingDesc d = item.getFirst();
 Long i = item.getSecond();
 result.commit(d, i);
 }
 return result;
}

DFS + Batch Recomputation (2)
public static Space dfs(Space space, Space root, Path path) {
 switch (space.status()) {
 case SS_FAILED: return null;
 case SS_SOLVED: return space;
 case SS_BRANCH:
 BranchingDesc d = space.description();
 Path pc = new Path(path); pc.add(d, 1);
 space.commit(d, 0); path.add(d, 0);
 Space s = dfs(space, root, path);
 if (s != null) {
 return s;
 } else {
 Space c = root.recompute(pc);
 return dfs(c, root, pc);
 }}}

Summary

• separate propagation and branching from search

• components of the architecture interact

• spaces provide an architecture for writing search engines

• simple primitives, complex search engines

