
Moscow ML Owner’s Manual
Version 1.44 of August 1999

Sergei Romanenko Peter Sestoft
Russian Academy of Sciences Royal Veterinary and Agricultural University

Moscow, Russia Copenhagen, Denmark

Moscow ML implements the Core language of Standard ML (SML), as defined in the 1997Definition of
Standard ML, and supports most required parts of the new SML Basis Library. Moscow ML also provides
a simple subset of the Standard ML Modules language, restricted to signatures and non-nested structures.
It supports separate compilation and the generation of stand-alone executables.

This document explains how to use the Moscow ML system. A companion document, theMoscow ML
Language Overview, summarizes Moscow ML syntax and some built-in functions [7].

Acknowledgements:The Caml Light system was instrumental in creating Moscow ML, which uses
its runtime system and essentially the same bytecode generator. Many other aspects of the design were
derived from Caml Light, developed by Xavier Leroy and Damien Doligez at INRIA, France [3, 4]. The
ML Kit helped solving problems of parsing, infix resolution, and type inference [1].

The Moscow ML home page ishttp://www.dina.kvl.dk/~sestoft/mosml.html

Contents

1 Getting started 3
1.1 Installation 3
1.2 The interactive system 3
1.3 The batch compiler and linker 3
1.4 A simple module system 3
1.5 What is new in release 1.44 3

2 Core language and libraries 4
2.1 The Standard ML Basis Library 4

3 The interactive system 4
3.1 On-line help 4
3.2 Editing and running ML programs 5
3.3 Command-line options 5
3.4 Non-standard primitives in the interactive system 6

4 Modules and compilation units 8
4.1 Basic concepts 8
4.2 Units without explicit signature 8
4.3 Units with explicit signature 9
4.4 Syntax of unit signatures 9
4.5 Syntax of unit bodies 10
4.6 An example program consisting of three units 10
4.7 Compiling, linking, and loading units 11
4.8 Organizing programs for compatibility with SML Modules 12
4.9 Matching a unit body against a signature 12

1

5 The batch compiler 13
5.1 Overview 13
5.2 Command-line options 14

6 Recompilation management 15
6.1 Using ‘make’ to manage recompilation 15
6.2 An example Makefile for Unix 16
6.3 An example Makefile for MS DOS 16
6.4 Unit names and DOS file names 17

7 Value polymorphism 18

8 Weak pointers 19

9 Dynamic linking of foreign functions 19

10 Using GNU gdbm persistent hash tables 19

11 Using POSIX regular expressions 20

12 Using the PostgreSQL relational database server 20

13 Using the MySQL relational database server 20

14 Using the GIF image library 20

15 Using the Socket interface 20

16 Quotations and antiquotations 21

17 A lexer generator 22
17.1 Overview 22
17.2 Hints on usingmosmllex 22
17.3 Syntax of lexer definitions 22

17.3.1 Header 23
17.3.2 Entry points 23
17.3.3 Regular expressions 23
17.3.4 Actions 24
17.3.5 Character constants 24
17.3.6 String constants 24

18 A parser generator 25
18.1 Overview 25
18.2 The format of grammar definitions 25

18.2.1 Header and trailer 25
18.2.2 Declarations 25
18.2.3 The format of grammar rules 26

18.3 Command-line options ofmosmlyac 26
18.4 Reporting lexer and parser errors 26

19 Copyright and credits 27

20 How to get Moscow ML 27

21 Books and other materials on Standard ML 28

2

1 Getting started

1.1 Installation

Get a copy of the Moscow ML system executables (see Section 20 for instructions) and unpack them in your
home directory (under Unix) or in directoryC:\ (under MS Windows and DOS). This creates a directory
mosml. Read the filemosml/install.txt . This manual, and theMoscow ML Language Overview, are in
directorymosml/doc .

1.2 The interactive system

The interactive system is invoked by typingmosml at the shell prompt. It allows you to enter declarations
and evaluate expressions:

$ mosml
Moscow ML version 1.44 (August 1999)
Enter ‘quit();’ to quit.
- fun fac n = if n = 0 then 1 else n * fac (n-1);
> val fac = fn : int -> int
- fac 10;
> val it = 3628800 : int
-

You can quit the interactive session by typing ‘quit(); ’ or control-D (under Unix) or control-Z followed
by newline (under MS Windows and DOS). Typehelp "lib"; for an overview of built-in function
libraries, and e.g.help "Array" for help onArray operations. See Section 3 for further information on
mosml.

1.3 The batch compiler and linker

The batch compiler and linker is invoked by typingmosmlc at the shell prompt. It can compile ML source
files separately (mosmlc -c) and link them to obtain executables (mosmlc -o), in a manner similar to C
compilers. See Section 5 for further information onmosmlc .

1.4 A simple module system

Moscow ML provides a simple subset of the Standard ML Modules language, restricted to signatures and
non-nested structures. A Moscow ML program consists of one or more units. A unit U has a signature
(or interface) in file U.sig and a body (or implementation) in file U.sml. The unit signature corresponds
to a Standard ML signature, and the unit body corresponds to a Standard ML structure. Moscow ML
supports type-safe separate compilation and linking. Section 4 gives the syntax and an informal semantics
of compilation units. Section 6 explains automatic recompilation management.

1.5 What is new in release 1.44

• Added interface to the PostgreSQL and MySQL database servers (structurePostgres andMysql);
see Sections 12 and 13. RequiresDynlib .

• Added interface to POSIX 1003.2 regular expressions (structureRegex); see Section 11. Requires
Dynlib .

• Added interface to Thomas Boutell’s gd library for creating GIF images (structureGdimage); see
Section 14. RequiresDynlib .

• Added interface to Internet and file sockets (structureSocket); see Section 15. RequiresDynlib .
• Added registration of ML values, including functions, for access from C code (structureCallback).
• Faster bytecode execution, especially on RISC CPUs.
• A list of the loaded structures is accessible asMeta.loaded() .
• For other minor changes and fixes, see file mosml/doc/releases.txt.

3

2 Core language and libraries

Moscow ML implements the Core language of Standard ML as revised in 1997 [6, 5], and much of the
Standard ML Basis Library [2], the most important omission being the functional stream input-output
operations. The second edition of Paulson’s textbookML for the Working Programmeruses the revised
Core language and the new SML Basis Library.

2.1 The Standard ML Basis Library

The Standard ML Basis Library is a joint effort of the Standard ML of New Jersey, MLWorks, and Moscow
ML developers1 to enhance the portability of Standard ML programs.

TheMoscow ML Language Overview[7] lists the library structures implemented by Moscow ML, and
contains an index to all the identifiers they define. The same information is available also frommosml’s
on-line help (Section 3.1) and as hypertext from Moscow ML’s homepage.

For a comprehensive description of the libraries, see the Basis Library documentation [2], which will
become available from a commercial publisher. Currently it must be obtained from the Internet; see Sec-
tion 21.

The Basis Library and the revised Standard ML language are slightly incompatible with both the 1990
Definition of Standard MLand with SML/NJ version 0.93. Invoking Moscow ML with ‘mosml -P sml90 ’
gives a top-level environment compatible with the 1990 Definition. Invoking Moscow ML with option
‘mosml -P nj93 ’, gives a top-level environment compatible with the old SML/NJ version 0.93. See Sec-
tion 3.3 for more information on command-line options. An important change in SML’1997 is the adoption
of value polymorphism; see Section 7.

3 The interactive system

The interactive systemmosml is invoked simply by typingmosml at the command line:

$ mosml
Moscow ML version 1.44 (August 1999)
Enter ‘quit();’ to quit.
-

The interactive system can be terminated by typingquit(); and newline, or control-D (under Unix) or
control-Z and newline (under MS Windows and DOS). Type ‘help ""; ’ for help on built-in functions.

Invoking the interactive system with command line arguments

mosml file 1 ... file n

is equivalent to invokingmosml and, when Moscow ML has started, entering

(use "file 1"; ...; use "file n");

3.1 On-line help

In a mosml session, you may typehelp "lib"; for an overview of built-in function libraries. To get help
on a particular identifier, such asfromString , type

help "fromstring";

This will produce a menu of all library structures which contain the identifierfromstring (disregarding
the lowercase/uppercase distinction):

1The Basis Library authors are Andrew Appel (Princeton, USA); Emden Gansner (AT&T Research, USA); John Reppy, Lal
George, Lorenz Huelsbergen, Dave MacQueen (Bell Laboratories, USA); Matthew Arcus, Dave Berry, Richard Brooksby, Nick
Barnes, Brian Monahan, Jon Thackray (Harlequin Ltd., Cambridge, England); Carsten Müller (Berlin, Germany); and Peter Sestoft
(Royal Veterinary and Agricultural University, Denmark).

4

1	val Bool.fromString
2	val Char.fromString
3	val Date.fromString
4	val Int.fromString
5	val Path.fromString
6	val Real.fromString
7	val String.fromString
8	val Time.fromString
9	val Word.fromString
10	val Word8.fromString

Choosing a number from this menu will invoke the help browser on the desired structure, e.g.Int . The
help browser is primitive but easy to use. It works best with a window size of 24 lines.

The texts accessed byhelp are found in directorymosml/lib . For instance, allList functions are
described in filemosml/lib/List.sig .

3.2 Editing and running ML programs

Unix and Emacs You may runmosml as a subshell under Emacs. You should use themosml-version of
the SML mode for Emacs; see filemosml/utility/emacs for instructions. In case of errors, Emacs
can interpretmosml’s error messages and jump to the offending piece of source code. This is very
convenient.

Window systems In a window-oriented system, such as MacOS, MS Windows, or the X window system,
you may runmosml in one window and edit source code in another. After (re-)editing the source file,
you must issue ause command in themosml window.

MS DOS You may use the simpleedit script to invoke an editor from inside amosml session; see file
mosml\utility\dosedit for instructions. You will not need to quit themosml session to edit a
source file, and the script will automatically reload the newly edited file.

3.3 Command-line options

-I directory
Specifies directories to be searched for interface files, bytecode files, and source files. A call touse ,
load or loadOne will first search the current directory, then all directories specified by option ‘-I ’ in
order of appearance from left to right, and finally the standard library directory. (This option affects
the variableMeta.loadPath ; see Section 3.4).

-valuepoly
Specifies that the type checker should use ‘value polymorphism’; see Section 7. Default.

-imptypes
Specifies that the type checker should distinguish between imperative and applicative type vari-
ables, generalize all applicative type variables, and generalize imperative type variables only in
non-expansive expressions. See Section 7.

-quietdec
Turns off the interactive system’s prompt and responses, except for the two-line start-up message,
warnings, and error messages. Useful for writing scripts in SML. SetsMeta.quietdec to true ; see
Section 3.4.

-P unit-set
Determines which library units will be included and open at compile-time. Any library unit in the
load path can be used by thecompile function for type checking purposes. Thus regardless of the
-P option, thecompile function knows the type of library functions such asArray.foldl .

-P default This provides an initial environment for the new Basis Library. The unitsArray , Char ,
List , String , andVector will be loaded, and unitsChar , List , andString will be partially
opened. This is the default.

5

-P sml90 This provides an initial environment which is upwards compatible with that of the 1990
Definition of Standard MLand with pre-1.30 releases of Moscow ML. In particular, the
functionschr , explode , implode , andord work on strings, not characters. The new ver-
sions of these functions are still available asChar.chr , Char.ord , String.explode , and
String.implode . The math functions and input-output facilities required by the 1990 Defini-
tion [5, Appendix C and D] are available at top-level. In addition the same (new) libraries are
loaded as with-P default .

-P nj93 This provides a top-level environment which is mostly compatible with that of SML/NJ
0.93. The functionsapp , ceiling , chr , dec , explode , fold , hd, implode , inc , max, min ,
nth , nthtail , ord , ordof , revapp , revfold , substring , tl , andtruncate have the same
type and meaning as in SML/NJ 0.93. Note that this is incompatible with SML/NJ version 110.
The math functions and input-output facilities required by the 1990 Definition [5, Appendix C
and D] are available at top-level. In addition the same (new) libraries are loaded as with-P
default . This option doesnot imply -imptypes .

-P full This loads all the libraries markedF in the library list (see [7]), and partially opens the
Char , List , andString units.

-P none No library units are loaded or opened initially.

Additional library units can loaded into the interactive system by using theload function; see Sec-
tion 3.4 below.

-stdlib stdlib-directory
Specify the standard library directory to be stdlib-directory. The default standard library is usually
mosml/lib under Unix andc:\mosml\lib under MS Windows and DOS.

3.4 Non-standard primitives in the interactive system

The following non-standard primitives are defined in unitMeta , loaded (and open by default) only in the
interactive system. Hence these primitives cannot be used from source files which are compiled separately.
The functionscompile andload deal with Moscow ML compilation units; see Section 4.

compile : string -> unit
Evaluatingcompile " U.sig" will compile and elaborate the unit signature in file U.sig, producing
a compiled signature file U.ui. During compilation, the compiled signatures of other units will be
accessed if they are mentioned in U.sig.
Evaluatingcompile " U.sml" will elaborate and compile the unit body in file U.sml, producing a
bytecode file U.uo. If there is an explicit signature U.sig, then file U.ui must exist, and the unit body
must match the signature. If there is no U.sig, then an inferred signature file U.ui will be produced
also. No evaluation takes place. During compilation, the compiled signatures of other units will be
accessed if they are mentioned in U.sml.
The declared identifiers will be reported ifverbose is true (see below); otherwise compilation
will be silent. In any case, compilation warnings are reported, and compilation errors abort the
compilation and raise the exceptionFail with a string argument.

exnName : exn -> string
Returns a name for the exception constructor in the exception. Never raises an exception itself.
The name returned may be that of any exception constructor aliasing with exn. For instance,let
exception E1; exception E2 = E1 in exnName E2 end may evaluate to"E1" or "E2" .

exnMessage : exn -> string
Formats and returns a message corresponding to the exception. For the exceptions defined in the
SML Basis Library, the message will include the argument carried by the exception.

installPP : (ppstream -> ’a -> unit) -> unit
EvaluatinginstallPP pp installs the prettyprinterpp at typety , providedpp has typeppstream
-> ty -> unit . The typety must be a nullary (parameter-less) type constructor, either built-in
(such asint or bool) or user-defined. Whenever a value of typety is about to be printed by the
interactive system, and whenever functionprintVal is invoked on an argument of typety , the
prettyprinterppwill be invoked to print it. See the example inmosml/examples/pretty .

6

load : string -> unit
Evaluatingload " U" will load and evaluate the compiled unit body from file U.uo. The resulting
values are not reported, but exceptions are reported, and cause evaluation and loading to stop. If U is
already loaded, thenload " U" has no effect. If any other unit is mentioned by U but not yet loaded,
then it will be loaded automatically before U. The loaded unit(s) must be in the current directory or
in a directory on theloadPath list (see below).
After loading a unit, it can be opened withopen U. Opening it at top-level will list the identifiers
declared in the unit.
When loading U, it is checked that the signatures of units mentioned by U agree with the signatures
used when compiling U, and it is checked that the signature of U has not been modified since U was
compiled; these checks are necessary for type safety. The exceptionFail is raised if the signature
checks fail, or if the file containing U or a unit mentioned by U is not found.

loaded : unit -> string list
Evaluatingloaded () will return a list of the names of loaded units in some order (not including
the preloaded unitsMeta andGeneral).

loadOne : string -> unit
EvaluatingloadOne " U" is similar to load " U" , but raises exceptionFail if U is already loaded
or if some unit mentioned by U is not yet loaded. That is, it does not automatically load any units
mentioned by U. It performs the same signature checks asload .

loadPath : string list ref
This variable determines the load path: which directories will be searched for interface files (.ui
files), bytecode files (.uo files), and source files (.sml files). This variable affects theload , loadOne ,
and use functions. The current directory is always searched first, followed by the directories in
loadPath , in order. By default, only the standard library directory is in the list, but if additional
directories are specified using option-I , then these directories are prepended toMeta.loadPath .

printVal : ’a -> ’a
This is a polymorphic function provided as a quick debugging aid. It is an identity function, which
as a side-effect prints its argument to standard output exactly as it would be printed at top-level.
Output is flushed immediately. For printing strings, the functionprint is probably more useful than
printVal .

printDepth : int ref
This variable determines the depth (in terms of nested constructors, records, tuples, lists, and vectors)
to which values are printed by the top-level value printer and the functionprintVal . The compo-
nents of the value whose depth is greater thanprintDepth are printed as ‘#’. The initial value of
printDepth is 20.

printLength : int ref
This variable determines the way in which list values are printed by the top-level value printer and the
functionprintVal . If the length of a list is greater thanprintLength , only the firstprintLength el-
ements are printed, and the remaining elements are printed as ‘. . . ’. The initial value ofprintLength
is 200.

quietdec : bool ref
This variable, whentrue , turns off the interactive system’s prompt and responses, except warnings
and error messages. Useful for writing scripts in SML. The default value isfalse ; it can be set to
true with the-quietdec command line option; see Section 3.3.

quit : unit -> unit
Evaluatingquit() quits Moscow ML immediately.

quotation : bool ref
Determines whether quotations and antiquotations are permitted in declarations entered at top-level
and in files compiled withcompile ; see Section 16. Whenquotation is false (the default), the
backquote character is an ordinary symbol which can be used in ML symbolic identifiers. When
quotation is true , the backquote character is illegal in symbolic identifiers, and a quotation‘a b
c‘ will be evaluated to an object of type’a frag list .

7

system : string -> int
Evaluatingsystem " com" causes the commandcom to be executed by the operating system. If a
non-zero integer is returned, this must indicate that the operating system has failed to execute the
command. Under MS DOS, the integer returned always equals 0.

use : string -> unit
Evaluatinguse " f " causes ML declarations to be read from filef as if they were entered from the
console. The file must be in the current directory or in a directory on theloadPath list. A file loaded
by use may, in turn, evaluate calls touse . For best results, useuse only at top level, or at top level
within a use ’d file.

valuepoly : bool ref
Determines whether the type checker should use ‘value polymorphism’; see Section 7. Command-
line option -valuepoly setsvaluepoly to true (the default), whereas option-imptypes sets
valuepoly to false ; see Sections 3.3 and 5.2.

verbose : bool ref
Determines whether the signature inferred by a call tocompile will be printed. The printed signature
follows the syntax of Moscow ML signatures, so the output ofcompile " U.sml" can be edited to
subsequently create file U.sig. The default value isfalse .

4 Modules and compilation units

4.1 Basic concepts

A Moscow ML program can consist of one or morecompilation units, orunitsfor short. A compilation unit
consists of an optionalunit signatureand aunit body. The unit signature specifies the contents of the unit;
it is an interface to the unit. The unit body declares the contents of the unit; it provides an implementation
of the unit. The following analogies may be helpful:

Moscow ML unit signature unit body
Standard ML signature structure
Caml Light module interface module implementation
Modula-2 interface module implementation module

The unit body is always present, whereas the signature can be omitted. When the unit signature is present,
it is called theexplicit signatureto distinguish it from the signature inferred when elaborating the unit body.
When present, the explicit signature must be matched by the body, and only those identifiers specified in
the signature are visible outside the unit. If no signature is given, all identifiers visible at the end of the unit
body are visible outside the unit.

Units are closely associated with files, as in Modula-2. The body of the unit called ‘U’ is defined in a
file called ‘U.sml’, and its explicit signature (if any) in file ‘U.sig’.

Files containing program text:
U.sig unit signature, specifications
U.sml unit body, declarations

Files created by the compiler:
U.ui compiled unit signature
U.uo compiled unit body, bytecode

4.2 Units without explicit signature

A unit U without an explicit signature consists of a file U.sml containing

structure U = struct . . . declarations . . .end

This is the same as a simple SML structure declaration. There must be no corresponding explicit signature
file U.sig.

8

4.3 Units with explicit signature

A unit U with an explicit signature consists of a signature file U.sig containing

signature U = sig . . . specifications . . .end

and a file U.sml, containing

structure U :> U = struct . . . declarations . . .end

This is the same as a SML structure declaration with an opaque signature constraint. Note that the file
name, signature name, and structure name must be the same. The notation ‘U :> U ’ is an opaque signature
constraint, meaning that other units have no access to the internals of U.sml, only to the signature U.sig.

To illustrate the difference between transparent and opaque signature constraints, consider the Standard
ML (not Moscow ML) declarations:

signature SIG = sig structure S: SIG = struct
type t type t = int
val x: t val x = 17

end; end

Given these declarations, the expressionS.x+33 will typecheck. Although the signatureSIG just says that
there exists a typet , constrainingS with SIG does not hide the fact thatS.x is actually an integer.

On the other hand, an opaque signature constraint, as in Moscow ML units,doeshide the true nature
of t andx :

structure M :> SIG = struct
type t = int
val x = 17

end

After this declaration,M.x+33 would fail to typecheck: the type checker cannot see thatM.t is int and
M.x is an integer. Often such hiding is just what is needed for software engineering purposes.

4.4 Syntax of unit signatures

Moscow ML unit signatures are very similar to Standard ML signatures as defined in [6]; the differences
are explained below. A unit signature (in file U.sig) has the form:

unitsig ::= signature unitid = sig uspecend named signature
uspec signature (old syntax)

uspec ::= val valdesc value specification
type typdesc abstract type
type typbind type abbreviation
eqtype typdesc abstract equality type
datatype datbind datatype
datatype datbindwithtype typbind datatype with typbind
exception exdesc exception
local lspecin uspecend local specifications

empty
uspec〈;〉 uspec sequential

lspec ::= open unitid1 · · · unitidn open other units
type typbind type abbreviation
local lspecin lspecend local specifications

empty
lspec〈;〉 lspec sequential

Note:

9

1. Type abbreviationstype typbindare permitted in signatures.
2. There are no structure specifications and no sharing specifications.
3. No type, value, or exception may be specified twice at top-level.
4. A local specification can be used only to restrict the scope ofopen specifications and type abbrevi-

ations.
5. An open specification can appear only insidelocal .
6. The ‘signature unitid = sig ’ and ‘end ’ parts may be left out, although this is not recommended.

Restriction (2) is the most significant one. Restriction (3), and restrictions similar to (4) and (5), are
imposed by the Standard ML of New Jersey implementation also.

4.5 Syntax of unit bodies

A unit body (in file U.sml) has the form:

unitbody ::= structure unitid = struct dec end structure
structure unitid :> unitid = struct dec end structure with signature
dec structure (old syntax)

A long identifier can refer to entities declared in other units. In Moscow ML, the syntax of long identifiers
is:

longid ::= id identifier
unitid.id qualified identifier

whereunitid andid are arbitrary SML identifiers (either symbolic or alphanumeric).
A qualified identifierunitid.id denotes an entityid declared in the compilation unitunitid. A qualified

identifier can denote either a value variable, a value constructor, an exception constructor, or a type con-
structor. As in Standard ML, alongid appearing in a defining position, such as a value variable in a pattern,
cannot have a qualifier: the identifier being defined will always belong to the current unit.

An open declaration has the form

open U1 · · · Un

where U1 · · · Un are names of units. The units are opened from left to right, in the order U1 · · · Un. The text
following anopen U declaration can reference identifiers declared in U without explicitly specifying the
name of the unit, subject to the usual scope rules of Standard ML. That is, one can useid instead of U.id.

In the interactive system, a unit must be loaded before it can be opened. In the batch compilation
system, the linker links in (only) the needed declarations from opened units.

A unit body U.sml must elaborate to a structure S. If there is an explicit signature U.sig corresponding
to U.sml, then the resulting structure must match the explicit signature. As in Standard ML (but in contrast
to Caml Light), no reference is made to the signature while elaborating the unit body.

4.6 An example program consisting of three units

To illustrate the module system, we present a tiny program working with arithmetic expressions. It consists
of three unitsExpr , Reduce , andEvaluate . This example is inmosml/examples/manual .

File Expr.sml below contains structureExpr , which defines a datatypeexpr for representing expres-
sions and a functionshow to display them. It has no signature constraint and therefore exports both the
datatype and the function:

structure Expr = struct
datatype expr = Cst of int | Neg of expr | Plus of expr * expr

fun show (Cst n) = makestring n
| show (Neg e) = "(-" ^ show e ^ ")"
| show (Plus (e1, e2)) = "(" ^ show e1 ^ "+" ^ show e2 ^ ")"

end

10

File Reduce.sig below contains the signatureReduce , which specifies a function for reducing expressions.
It mentions the typeExpr.expr from Expr :

signature Reduce = sig
val reduce : Expr.expr -> Expr.expr

end

File Reduce.sml below contains the structureReduce , which has a signature constraint, and therefore
exports only the functionreduce specified in the signature:

structure Reduce :> Reduce = struct
local open Expr
in

fun negate (Neg e) = e
| negate e = Neg e

fun reduce (Neg (Neg e)) = e
| reduce (Neg e) = negate (reduce e)
| reduce (Plus (Cst 0, e2)) = reduce e2
| reduce (Plus (e1, Cst 0)) = reduce e1
| reduce (Plus (e1, e2)) = Plus (reduce e1, reduce e2)
| reduce e = e

end
end

File Evaluate.sig below contains the signatureEvaluate , which specifies a functioneval for evaluating
expressions, and a functiontest . Note the use of ‘open Expr ’ to make the typeexpr refer toExpr.expr :

signature Evaluate = sig
local open Expr
in

val eval : expr -> int
val test : expr -> bool

end
end

File Evaluate.sml below contains structureEvaluate , which has a signature constraint, and mentions
unit Expr as well asReduce :

structure Evaluate :> Evaluate = struct
local open Expr
in

fun eval (Cst n) = n
| eval (Neg e) = ~ (eval e)
| eval (Plus (e1, e2)) = eval e1 + eval e2;

fun test e = (eval e = eval (Reduce.reduce e))
end

end

4.7 Compiling, linking, and loading units

Units can be compiled and linked using the batch compilermosmlc ; see Section 5. Units compiled with
option-c can be linked together. Usemosml -o mosmlout A.uo to produce a linked executable bytecode
file mosmlout which will invoke the runtime systemcamlrunm . Usemosml -noheader -o mosmlout
A.uo to produce a linked bytecode file which can be executed bycamlrunm mosmlout . The linker will
automatically link any required bytecode files intomosmlout . See Section 5.2 for more options.

Units can also be compiled from and loaded into the interactive systemmosml using the primitives
compile andload ; see Section 3.4 above.

11

4.8 Organizing programs for compatibility with SML Modules

Moscow ML and Standard ML of New Jersey (version 110) implement the same core language, and many
of the same libraries. Here we give advice on organizing structures and signatures so that they can be
compiled by both systems.

Assume we have a software system consisting of three structures A, B, and C, where A and B each
have a signature constraint, but C does not. Assume further that C depends on A and B. (There must be no
functors or nested structures in A and B). We organize them in five files:

Source file File contents
A.sig signature A = sig ... end
B.sig signature B = sig ... end
A.sml structure A :> A = struct ... end
B.sml structure B :> B = struct ... end
C.sml structure C = struct ... A.foo ... B.bar ... end

Now we can compile these files usingmosmlc and load them into amosml session as follows (where ‘$’ is
the shell prompt and ‘- ’ is the ML prompt):

$ mosmlc -c A.sig B.sig A.sml B.sml C.sml
$ mosml
- load "C";

Or, we can load and compile them in an SML/NJ session as follows:

$ sml
- app use ["A.sig", "B.sig", "A.sml", "B.sml", "C.sml"];

Hence the same source files can be used unmodified in both systems. Note that in Moscow ML,mosmlc
will create bytecode files A.ui, A.uo, and so on. If the source files do not change, there is no need to
recompile them withmosmlc ; just reload them using the fastload function.

If the source filesdo change, and have to be recompiled at every use, it may be more practical to use
the functioncompile :

$ mosml
- app compile ["A.sig", "B.sig", "A.sml", "B.sml", "C.sml"];
- load "C";

4.9 Matching a unit body against a signature

A unit body S matches a signature SIG under the conditions described in the Definition of Standard ML
[6]. Roughly, this means:

• a value specificationval v:t must be matched by a value variable or value constructor or exception
constructorv in S whose type generalizest

• a type abbreviationtype t = ty must be matched by the same type abbreviationt = ty in S
• an abstract typet must be matched by some typet in S
• an abstract equality typet must be matched by a typet in S admitting equality
• a datatype must be matched by precisely the same datatype in S
• an exception constructorE of typet must be matched by an exception constructorE in S whose type

generalizest

Moreover, to facilitate separate compilation, there are some representation constraints:

1. If the specified argument type of a value constructor (in a datatype specification) is an explicit tuple
or record, then the declared argument type must be an explicit tuple or record also, and vice versa.
This restriction does not apply if there is only one constructor in the datatype.

2. The order of value constructors in a datatype specification must be the same as in the matching
datatype declaration.

12

5 The batch compiler

Moscow ML includes a batch compilermosmlc in addition to the interactive systemmosml. It compiles and
links programs non-interactively, and can turn them into standalone executable files. The batch compiler
can be invoked from a Makefile, which simplifies the (re)compilation of large programs considerably; see
Section 6.

5.1 Overview

Themosmlc command has a command-line interface similar to that of most C compilers. It accepts several
types of arguments: source files for unit bodies, source files for unit signatures, and compiled unit bodies.

• An argument ending in .sig is taken to be the name of a source file containing a unit signature. Given
a file U.sig, the compiler produces a compiled signature in the file U.ui.

• An argument ending in .sml is taken to be the name of a source file containing a unit body. Given a
file U.sml, the compiler produces compiled object code in the file U.uo. It also produces an inferred
signature file U.ui if there is no explicit signature U.sig.

• An argument ending in .uo is taken to be the name of a compiled unit body. Such files are linked
together, along with the compiled unit bodies obtained by compiling .sml arguments (if any), and the
necessary Moscow ML library files, to produce a standalone executable program.
The linker automatically includes any additional bytecode files required by the files specified on the
command line; option-i makes it report all the files that were linked. The linker issues a warning
if a file B is required by a fileA that precedesB in the command line. At run-time, the top-level
declarations of the files are evaluated in the order in which the files were linked; in the absence of
any warning, this is the order of the files on the command line.

The output of the linking phase is a file containing compiled code that can be executed by the runtime
systemcamlrunm . If mosmlout is the name of the file produced by the linking phase, the command

camlrunm mosmlout arg 1 arg 2 ... arg n

executes the compiled code contained inmosml.out . The list of arguments can be obtained in Moscow
ML by evaluating the expressionCommandLine.arguments () .

MS Windows and DOS: If the output file produced by the linking phase has extension.exe , and op-
tion -noheader is not used, then the file is directly executable. Hence, an output file named
mosmlout.exe can be executed with the command

mosmlout arg1 arg2 ... argn

The output filemosmlout.exe consists of a tiny executable file prepended to a linked bytecode file.
The executable invokes thecamlrunm runtime system to interpret the bytecode. As a consequence,
this is not a standalone executable: it still requirescamlrunm.exe to reside in one of the directories
in the path.

Unix: The output file produced by the linking phase is directly executable (unless the-noheader op-
tion is used). It automatically invokes thecamlrunm runtime system, either using a tiny executable
prepended to the linked bytecode file, or using the Unix incantation#!/usr/local/bin/camlrunm
or similar. In the former case,camlrunm must be in one of the directories in the path; in the latter
case it must be in/usr/local/bin . To create a true stand-alone executable you may simply con-
catenate the runtime system with the bytecode file produced bymosmlc -noheader , but this adds
60–150 KB to the size of the executable, depending on your version of Unix:

cat /usr/local/bin/camlrunm mosmlout > mosmlbin
chmod a+x mosmlbin

13

5.2 Command-line options

The following command-line options are recognized bymosmlc .

-c
Compile only. Suppresses the linking phase of the compilation. Source code files are turned into
compiled files (.ui and .uo), but no executable file is produced. This option is useful for compiling
separate units.

-files response-file
Pass the names of files listed in file response-file to the linking phase just as if these names appeared
on the command line. File names in response-file are separated by blanks (spaces, tabs, newlines)
and must end either in .sml or .uo. A name U.sml appearing in the response file is equivalent to U.uo.
Use this option to overcome silly limitations on the length of the command line (as in MS DOS).

-g
This option causes some information about exception names to be written at the end of the executable
bytecode file.

-i
Causes the compiler to print the inferred signature of the unit body or bodies being compiled. Also
causes the linker to list all object files linked. A U.sig file corresponding to a given U.sml file can be
produced semi-automatically by piping the output of the compiler to a file U.out, and subsequently
editing this file to obtain a file U.sig.

-noautolink
In version 1.42 and later, the linker automatically links in any additional object files required by
the files explicitly specified on the command line. Option-noautolink reinstates the behaviour of
pre-1.42 versions: all object files must be explicitly specified in the appropriate order.

-standalone
Specifies that the runtime system should be prepended to the linked bytecode, thus creating a stand-
alone executable. This adds 75–100 KB to the size of the linked file.

-stdlib stdlib-directory
Specifies the standard library directory, which will be searched by the compiler and linker for the .ui
and .uo files corresponding to units mentioned in the files being linked. The default standard library is
set when the system is created, and is usually${HOME}/mosml/lib under Unix andc:\mosml\lib
under MS Windows and DOS.

-I directory
Add the given directory to the list of directories searched for compiled signature files (.ui) and com-
piled object code files (.uo). By default, the current directory is searched first, then the standard
library directory. Directories added with-I are searched after the current directory, but before the
standard library directory. When several directories are added with several-I options on the com-
mand line, these directories are searched from left to right.

-valuepoly
Specify that the type checker should use ‘value polymorphism’; see Section 7. Default.

-imptypes
Specify that the type checker should distinguish imperative and applicative type variables, gener-
alize all applicative type variables, and generalize imperative type variables only in non-expansive
expressions. See Section 7.

-o exec-file
Specify the name of the output file produced by the linker. In the absence of this option, a default
name is used. In MS Windows and DOS, the default name ismosmlout.exe ; in Unix it is a.out .

-P unit-set
Determines which library units will beopenat compile-time. Any library unit in the load path can
be used by the compiler for type checking purposes. Thus regardless of the-P option, the compiler
knows the type of library functions such asArray.foldl .

-P default The unitsChar , List , andString will be partially opened. This is the default, per-
mitting e.g.String.concat to be referred to just asconcat .

14

-P sml90 Provides an initial environment which is upwards compatible with that of the 1990Def-
inition of Standard MLand with pre-1.30 releases of Moscow ML. In particular, the functions
chr , explode , implode , andord work on strings, not characters. The math functions and
input-output facilities required by the 1990 Definition [5, Appendix C and D] are available at
top-level. In addition the same (new) libraries are opened as with-P default .

-P nj93 Provides a top-level environment which is mostly compatible with that of SML/NJ 0.93.
The functionsapp , ceiling , chr , dec , explode , fold , hd, implode , inc , max, min , nth ,
nthtail , ord , ordof , revapp , revfold , substring , tl , andtruncate have the same type
and meaning as in SML/NJ 0.93. The math functions and input-output facilities required by the
1990 Definition [5, Appendix C and D] are available at top-level. In addition the same (new)
libraries are opened as with-P default . This option doesnot imply -imptypes .

-P full Same as-P default .
-P none No library units are initially opened.

Additional directories to be searched for library units can be specified with the-I directory option.
-noheader

Causes the output file produced by the linker to contain only the bytecode, not preceded by any
executable code. A filemosmlout thus obtained can be executed only by explicitly invoking the
runtime system as follows:camlrunm mosmlout .

-q
Enables the quotation/antiquotation mechanism; see Section 16.

-v
Prints the version number of the various passes of the compiler.

6 Recompilation management

Recompilation management helps the programmer recompile only what is necessary after a change to a
unit signature or unit body.

Type-safe linking prevents the programmer from creating unsafe or meaningless programs. Theload
function and the batch linker ensure probabilistically type-safe linking, so it is virtually impossible to cause
the system to create a type-unsafe program.

6.1 Using ‘make’ to manage recompilation

Consider the example program in Section 4.6 consisting of the three units Evaluate, Expr, and Reduce.
Assume their source files *.sig and *.sml reside in a particular directory. Copy a Makefile stub (see below)
to that directory, and change to that directory.

1. Edit the Makefile so that the names of the bytecode files Evaluate.uo, Expr.uo, and Reduce.uo appear
on the line beginning with ‘all: ’ (see the example makefiles below).

2. Compute the dependencies among the files by executing:

make depend

3. Recompile all those files which have not yet been compiled, or which have been modified but not yet
recompiled, or which depend on modified files, by executing:

make

Step (3) must be repeated whenever you have modified a component of the program system. Step (2) need
only be repeated if the inter-dependencies of some components change, or if you add or remove an explicit
signature file. Step (1) need only be repeated when you add or delete an entire unit of the program system.

Old versions of the compiled *.ui and *.uo files can be removed by executing:

make clean

15

The inter-dependencies are computed by a small ML programmosmldep , which correctly handles nested
comments and strings in the source files.

6.2 An example Makefile for Unix

To use the Makefile below, first edit it so that all the required units (.uo files) appear on the line beginning
with ‘all: ’, then proceed as explained in Section 6.1. You do not need to edit any other part of the Make-
file. In particular, the dependencies followingDO NOT DELETE THIS LINEare generated automatically
when executingmake depend (as above). A copy of the Makefile can be found inmosml/tools/Makefile.stub .

You will need only the Unix utilitymake.

Unix Makefile stub for separate compilation with Moscow ML.

MOSMLHOME=${HOME}/mosml
MOSMLTOOLS=camlrunm $(MOSMLHOME)/tools
MOSMLC=mosmlc -c
MOSMLL=mosmlc
MOSMLLEX=mosmllex
MOSMLYACC=mosmlyac

.SUFFIXES :

.SUFFIXES : .sig .sml .ui .uo

all: Evaluate.uo Expr.uo Reduce.uo

clean:
rm -f *.ui
rm -f *.uo
rm -f Makefile.bak

.sig.ui:
$(MOSMLC) $<

.sml.uo:
$(MOSMLC) $<

depend:
rm -f Makefile.bak
mv Makefile Makefile.bak
$(MOSMLTOOLS)/cutdeps < Makefile.bak > Makefile
$(MOSMLTOOLS)/mosmldep » Makefile

DO NOT DELETE THIS LINE
Evaluate.ui: Expr.uo
Evaluate.uo: Evaluate.ui Expr.uo Reduce.ui
Reduce.uo: Reduce.ui Expr.uo
Reduce.ui: Expr.uo

6.3 An example Makefile for MS DOS

To use the Makefile below, first edit it so that all the required units (.uo files) appear on the line beginning
with ‘all: ’, then proceed as explained in Section 6.1. You do not need to edit any other part of the Make-
file. In particular, the dependencies followingDO NOT DELETE THIS LINEare generated automatically
when executingmake depend (as above). A copy of this makefile can be found inmosml\tools\makefile.stb .

You will need a DOS version ofmake, such as that from Borland C++ version 2.0 or 3.0.

16

DOS Makefile stub for separate compilation with Moscow ML.

MOSMLHOME=c:\mosml
MOSMLTOOLS=camlrunm $(MOSMLHOME)\tools
MOSMLC=mosmlc -c
MOSMLL=mosmlc
MOSMLLEX=mosmllex
MOSMLYACC=mosmlyac

all: evaluate.uo expr.uo reduce.uo

clean:
del *.ui
del *.uo
del makefile.bak

.sig.ui:
$(MOSMLC) $<

.sml.uo:
$(MOSMLC) $<

depend:
del makefile.bak
ren makefile makefile.bak
$(MOSMLTOOLS)\cutdeps < makefile.bak > makefile
$(MOSMLTOOLS)\mosmldep » makefile

DO NOT DELETE THIS LINE
evaluate.uo: evaluate.ui expr.uo reduce.ui
reduce.ui: expr.uo
reduce.uo: reduce.ui expr.uo
evaluate.ui: expr.uo

6.4 Unit names and DOS file names

Recompilation management for DOS is essentially as for Unix, except for the usual complications that
follow from the restrictions on the length of file names, and from their case-insensitivity.

Under MS DOS, filenames are all the same case and can be at most 8 characters long (plus a 3 character
extension). Since file names are used as unit names, this may cause problems. We attempt to circumvent
these problems as follows:

• Unit names used inside ML programs under DOS are ‘normalized’: the first character is made upper
case (if it is a letter), all other characters are made lower case, and the unit name is truncated to eight
characters. Hence a unit which resides in filecommands.sml can be referred to as unitCommands
inside an ML program, and can also be referred to asCommandStructure , etc., since normalization
transforms the latter into the former.

• The following names are exceptions to this rule:BasicIO , BinIO , CharArray , CharVector ,
CommandLine , FileSys , ListPair , OS, StringCvt , Substring , TextIO , Word8Array , Word8Vector ;
they are normalized precisely as shown in this list. This is to accommodate the SML Basis Library.

• In DOS makefiles, the file names appearing afterall: must be all lower case and at most 8 characters
long (otherwise ‘make’ will not work properly). For instance, the unitCharArray must be called
chararra in a DOS makefile.

• A unit name given as argument toload , to compile , or to the batch compiler, is truncated and
made lower case by DOS as usual, so evaluatingload "VeryLongName" will load bytecode file
verylong.uo .

17

7 Value polymorphism

The 1997 revision of Standard ML [6] adopts value polymorphism, discarding the distinction between
imperative (’_a) and applicative (’a) type variables, and generalizing type variables only in non-expansive
expressions. Consider aval -binding

val x = e;

With value polymorphism, the free type variables in the type ofx are generalized only if the right-hand side
e is non-expansive. This is a purely syntactic criterion: an expression isnon-expansiveif it has the form
nexp, defined by the grammar below:

nexp ::= scon special constant
longid (possibly qualified) identifier
{ 〈nexprow〉 } record of non-expansive expressions
(nexp) parenthesized non-expansive expression
con nexp constructor application, wherecon is notref
excon nexp exception constructor application
nexp: ty typed non-expansive expression
fn match function abstraction

nexprow ::= lab = nexp〈, nexprow〉

Roughly, a non-expansive expression is just a value, that is, an expression in normal form. For example,
the right-hand sidelength below is an identifier, and so is non-expansive. Hence the free type variable’a
in the type’a list -> int of x becomes generalized:

- val x = length;
> val x = fn : ’a list -> int

On the other hand, the right-hand side(fn f => f) length below, although it evaluates to the same value
as the previous one, is expansive: it is not derivable from the above grammar. Hence the type variable’a
will not be generalized, and type checking will fail:

- val x = (fn f => f) length;
! Toplevel input:
! val x = (fn f => f) length;
! ^^^^^^^^^^^^^^^^^^^^^^^^^^
! Value polymorphism: Free type variable at top level

In Standard ML, all type variables in types reported at top-level must be universally quantified; there must
be no free type variables. When type checking fails for this reason, there are two remedies: Either (1)
insert a type constraint to eliminate the type variables, or (2)eta-expandthe right-hand side to make it
non-expansive:

- val x1 = (fn f => f) length : bool list -> int;
> val x1 = fn : bool list -> int

- val x2 = fn ys => (fn f => f) length ys;
> val x2 = fn : ’a list -> int

In Moscow ML versions prior to 1.40, the type checker would distinguish imperative and applicative type
variables, generalize all applicative type variables, and generalize imperative type variables only in non-
expansive expressions, as required by the 1990Definition[5]. To reinstate this behaviour, invokemosml or
mosmlc with the option-imptypes . This is useful for compiling old programs.

18

8 Weak pointers

Moscow ML supports weak pointers and arrays of weak pointers, using library structureWeak. A weak
pointer is a pointer that cannot itself keep an object alive. Hence the object pointed to by a weak pointer
may be deallocated by the garbage collector if the object is reachable only by weak pointers.

The interface to arrays of weak pointers is the same as that of standard arrays (structureArray), but the
subscript functionsub may raise exceptionFail if the accessed object is dead. On the other hand, ifsub
returns a value, it is guaranteed not to die unexpectedly: it will be kept alive by the returned pointer. Also,
the weak array iteration functions iterate only over the live elements of the arrays.

One application of weak pointers is to implement hash consing without space leaks. The idea in hash
consing is to re-use pairs: whenever a new pair (a, b) is to be built, an auxiliary table is checked to see
whether such a pair exists already. If so, the old pair is reused. In some applications, this may conserve
much space and time. However, there is a danger of running out of memory because of a space leak: the
pair (a, b) cannot be deallocated by the garbage collector because it remains forever reachable from the
auxiliary table. To circumvent this problem, one creates a weak pointer from the auxiliary table to the pair,
so that the auxiliary table in itself cannot keep the pair alive.

For an example, seemosml/examples/weak . See also theWeaksignature; try ‘help "Weak"; ’.

9 Dynamic linking of foreign functions

Moscow ML supports dynamic linking of foreign (C) functions, using library structureDynlib 2. A library
of functions may be written in C and compiled into a dynamically loadable library, using appropriate
compiler options. With theDynlib structure one can load this library and call the C functions from Moscow
ML, without recompiling the runtime system.

It is the responsibility of the C functions to access and construct SML values properly, using the macroes
defined inmosml/src/runtime/mlvalues.h . For this reason, the foreign function interface is included
only with the source distribution. As usual, type or storage mistakes in C programs may crash your pro-
grams.

The ML garbage collector may run at any time an ML memory allocation is made. This may cause ML
values to be moved (from the young generation to the old one). To make sure that ML heap pointers needed
by your C function are adjusted correctly by the garbage collector, register them using thePush_roots and
Pop_roots macroes fromruntime/memory.h .

To modify a value in the ML heap, you must use theModify macro fromruntime/memory.h ; other-
wise you may confuse the incremental garbage collector and crash your program.

When loading the compiled library one must specify the absolute path unless it has been installed as a
system library. This may require putting it in a particular directory, such as/lib or /usr/lib , or editing
/etc/ld.so.conf and runningldconfig .

To compile Moscow ML3 with support for dynamic linking, edit filemosml/src/Makefile.inc as
indicated there.

For more information, see the examples in directorymosml/src/dynlibs , in particular
mosml/src/dynlibs/interface . See also theDynlib signature; try ‘help "Dynlib"; ’.

10 Using GNU gdbm persistent hash tables

Moscow ML provides an interface to GNU gdbm persistent hashtables, via structuresGdbmandPolygdbm ;
this requiresDynlib , see Section 9. GNU gdbm provides fast access even to very large hashtables stored
on disk, ensuring mutual exclusion, handy for creating simple databases for use by CGI scripts etc.

GNU gdbm (not included with Moscow ML) must be installed, and the interface to GNU gdbm defined
in mosml/src/dynlibs/mgdbm must be compiled and installed beforeGdbmandPolygdbm can be used.
For instructions, see filemosml/src/dynlibs/mgdbm/README .

2Thanks to Ken Larsen.
3Supported under Linux, FreeBSD, NetBSD, Solaris, Digital Unix, HP-UX, MacOS, and MS Windows’95/98/NT.

19

11 Using POSIX regular expressions

Moscow ML provides an interface to the GNU regex implementation of POSIX 1003.2 regular expressions,
with additional support for replacing matching substrings etc., via structureRegex . This requiresDynlib ,
see Section 9.

The GNU regex library (which is included with Moscow ML) and the interface defined in
mosml/src/dynlibs/mregex must be compiled and installed before structureRegex can be used. For
instructions, see filemosml/src/dynlibs/mregex/README .

12 Using the PostgreSQL relational database server

Moscow ML provides an interface to the PostgreSQL relational database server, via structurePostgres .
This requiresDynlib , see Section 9.

The PostgreSQL database server (not included) must be installed, and the interface to PostgreSQL
defined inmosml/src/dynlibs/mpq must be compiled and installed before structurePostgres can be
used. For instructions, see filemosml/src/dynlibs/mpq/README .

13 Using the MySQL relational database server

Moscow ML provides an interface to the MySQL relational database server, via structureMysql 4. This
requiresDynlib , see Section 9.

The MySQL database server (not included) must be installed, and the interface to Mysql defined in
mosml/src/dynlibs/mmysql must be compiled and installed before structureMysql can be used. For
instructions, see filemosml/src/dynlibs/mmysql/README .

14 Using the GIF image library

Moscow ML provides an interface to Thomas Boutell’s gd graphics package for creating GIF images, via
structureGdimage . This requiresDynlib , see Section 9.

Thomas Boutell’s gd image package (not included) must be installed, and the interface defined in
mosml/src/dynlibs/mgd must be compiled and installed before structureGdimage can be used. For
instructions, see filemosml/src/dynlibs/mgd/README .

15 Using the Socket interface

Moscow ML provides an interface to Internet and file sockets, via structureSocket 5, which adheres fairly
closely to the SML Basis Library structure of the same name. Using structureSocket requiresDynlib ,
see Section 9.

The sockets interface defined inmosml/src/dynlibs/msocket must be compiled and installed before
structureSocket can be used. For instructions, see filemosml/src/dynlibs/msocket/README .

4Thanks to Thomas S. Iversen.
5Thanks to Ken Larsen; initial development financed by the PROSPER project.

20

16 Quotations and antiquotations

Moscow ML implementsquotations, a non-standard language feature useful for embedding object lan-
guage phrases in ML programs. Quotations are disabled by default. This feature originates in the Stan-
dard ML of New Jersey implementation. To enable quotations in the interactive system (mosml), execute
quotation := true . This allows quotations to appear in declarations entered at top-level and in files com-
piled by the primitivecompile . To enable quotations in files compiled with the batch compilermosmlc ,
invoke it with option-q as inmosmlc -q .

A quotation is a particular kind of expression and consists of a non-empty sequence of (possibly empty)
fragmentssurrounded by backquotes:

exp ::= ‘ frags‘ quotation

frags ::= charseq character sequence
charseq̂ id frags antiquotation variable
charseq̂ (exp) frags antiquotation expression

The charseqis a possibly empty sequence of printable characters or spaces or tabs or newlines. A quo-
tation evaluates to a value of typety frag list wherety is the type of the antiquotation variables and
antiquotation expressions, and the type’a frag is defined as follows:

datatype ’a frag = QUOTE of string | ANTIQUOTE of ’a

A charseqfragment evaluates toQUOTE "charseq" . An antiquotation fragment̂id or ^(exp) evaluates to
ANTIQUOTE valuewherevalue is the value of the variableid resp. the expressionexp. All antiquotations
in a quotation must have the same typety .

An antiquotation fragment is always surrounded by (possibly empty) quotation fragments; and no two
quotation fragments can be adjacent. The entire quotation is parsed before any antiquotation inside it is
evaluated. Hence changing the value ofMeta.quotation in an antiquotation inside a quotation has no
effect on the parsing of the containing quotation.

For an example, say we have written an ML program to analyse C program phrases, and that we want
to enter the C declarationchar s[6] = "abcde" . We could simply define it as a string:

val phrase = "char s[6] = \"abcde\"";

but then we need to escape the quotes (") in the C declaration, which is tiresome. If instead we use a
quotation, these escapes are not needed:

val phrase = ‘char s[6] = "abcde"‘;

It evaluates to[QUOTE "char s[6] = \"abcde\""] : ’a frag list . Moreover, suppose we want to
generate such declarations for other strings than just"abcde" , and that we have an abstract syntax for C
phrases:

datatype cprog =
IntCst of int

| StrCst of string;
| ...

Then we may replace the string"abcde" by an antiquotation̂(StrCst str) , and the array dimension 6
by an antiquotation̂(IntCst (size str + 1)) , and make the stringstr a function parameter:

fun mkphrase str = ‘char s[^(IntCst (size str + 1))] = ^(StrCst str)‘;

Evaluatingmkphrase "longer" produces the following representation of a C phrase:

[QUOTE "char s[", ANTIQUOTE (IntCst 7), QUOTE "] = ",
ANTIQUOTE (StrCst "longer"), QUOTE ""] : cprog frag list

21

17 A lexer generator

This section describesmosmllex , a lexer generator which is closely based oncamllex from the Caml Light
implementation by Xavier Leroy. This documentation is based on that ofcamllex also.

17.1 Overview

Given a set of regular expressions with attached semantic actions,mosmllex produces a lexical analyser in
the style oflex . If file lexer.lex contains a specification of a lexical analyser, then executing

mosmllex lexer.lex

produces a filelexer.sml containing Moscow ML code for the lexical analyser. This file defines one
lexing function per entry point in the lexer definition. These functions have the same names as the entry
points. Lexing functions take as argument a lexer buffer, and return the semantic attribute of the corre-
sponding entry point.

Lexer buffers are an abstract data type implemented in the library unitLexing . The functions
createLexerString andcreateLexer from unit Lexing create lexer buffers that read from a character
string, or any reading function, respectively.

When used in conjunction with a parser generated bymosmlyac (see Section 18), the semantic actions
compute a value belonging to the datatypetoken defined by the generated parsing unit.

Example uses ofmosmllex can be found in directoriescalc andlexyacc undermosml/examples .

17.2 Hints on usingmosmllex

A lexer definition must have a rule to recognize the special symboleof , meaning end-of-file. In general, a
lexer must be able to handle all characters that can appear in the input. This is usually achieved by putting
the wildcard case_ at the very end of the lexer definition. If the lexer is to be used with e.g. MS Windows,
MS DOS or MacOS files, remember to provide a rule for the carriage-return symbol\r . Most often\r will
be treated the same as\n , e.g. as whitespace.

Do not use string constants to define many keywords; this may produce large lexer programs. It is better
to let the lexer scan keywords the same way as identifiers and then use an auxiliary function to distinguish
between them. For an example, see thekeyword function inmosml/examples/lexyacc/Lexer.lex .

17.3 Syntax of lexer definitions

The format of a lexer definition is as follows:

{ header}
let abbrev = regexp
...
let abbrev = regexp
rule entrypoint =

parse regexp { action }
| ...
| regexp { action }

and entrypoint =
parse ...

and ...
;

Comments are delimited by(* and*) , as in SML. An abbreviation (abbrev) for a regular expression may
refer only to abbreviations that strictly precede it in the list of abbreviations; in particular, abbreviations
cannot be recursive.

22

17.3.1 Header

The header section is arbitrary Moscow ML text enclosed in curly braces{ and} . It can be omitted. If it
is present, the enclosed text is copied as is at the beginning of the output filelexer.sml . Typically, the
header section contains theopen directives required by the actions, and possibly some auxiliary functions
used in the actions.

17.3.2 Entry points

The names of the entry points must be valid ML identifiers.

17.3.3 Regular expressions

The regular expressions regexp are in the style oflex , but with a more ML-like syntax.

‘ char‘
A character constant, with a syntax similar to that of Moscow ML character constants; see Sec-
tion 17.3.5. Match the denoted character.

_
Match any character.

eof
Match the end of the lexer input.

" string"
A string constant, with a syntax similar to that of Moscow ML string constants; see Section 17.3.6.
Match the denoted string.

[character-set]
Match any single character belonging to the given character set. Valid character sets are: single char-
acter constants‘c‘ ; ranges of characters‘ c1‘ - ‘ c2‘ (all characters betweenc1 andc2, inclusive);
and the union of two or more character sets, denoted by concatenation.

[^ character-set]
Match any single character not belonging to the given character set.

regexp *
Match the concatenation of zero or more strings that match regexp. (Repetition).

regexp +
Match the concatenation of one or more strings that match regexp. (Positive repetition).

regexp ?
Match either the empty string, or a string matching regexp. (Option).

regexp1 | regexp2
Match any string that matches either regexp1 or regexp2. (Alternative).

regexp1 regexp2
Match the concatenation of two strings, the first matching regexp1, the second matching regexp2.
(Concatenation).

abbrev
Match the same strings as the regexp in the most recentlet -binding of abbrev.

(regexp)
Match the same strings as regexp.

The operators* and+ have highest precedence, followed by?, then concatenation, then| (alternative).

23

17.3.4 Actions

An action is an arbitrary Moscow ML expression. An action is evaluated in a context where the identifier
lexbuf is bound to the current lexer buffer. Some typical uses oflexbuf in conjunction with the operations
on lexer buffers (provided by theLexing library unit) are listed below.

Lexing.getLexeme lexbuf
Return the matched string.

Lexing.getLexemeChar lexbuf n
Return then’th character in the matched string. The first character has number 0.

Lexing.getLexemeStart lexbuf
Return the absolute position in the input text of the beginning of the matched string. The first char-
acter read from the input text has position 0.

Lexing.getLexemeEnd lexbuf
Return the absolute position in the input text of the end of the matched string. The first character
read from the input text has position 0.

entrypoint lexbuf
Hereentrypoint is the name of another entry point in the same lexer definition. Recursively call
the lexer on the given entry point. Useful for lexing nested comments, for example.

17.3.5 Character constants

A character constant in the lexer definition is delimited by‘ (backquote) characters. The two backquotes
enclose either a space or a printable characterc, different from‘ and\ , or an escape sequence:

Sequence Character denoted
‘ c‘ the characterc
‘\\‘ backslash (\)
‘\‘‘ backquote (‘)
‘\n‘ newline (LF)
‘\r‘ return (CR)
‘\t‘ horizontal tabulation (TAB)
‘\b‘ backspace (BS)
‘\^ c‘ the ASCII character control-c
‘\ ddd‘ the character with ASCII codeddd in decimal

17.3.6 String constants

A string constant is a (possibly empty) sequence of characters delimited by" (double quote) characters.

string-literal ::= " strcharseq" non-empty string
"" empty string

strcharseq ::= strchar〈strcharseq〉 character sequence

A string characterstrchar is a space, or a printable characterc (except" and\), or an escape sequence:

Sequence Character denoted
c the characterc
\\ backslash (\)
\" double quote (")
\n newline (LF)
\r return (CR)
\t horizontal tabulation (TAB)
\b backspace (BS)
\^ c the ASCII character control-c
\ ddd the character with ASCII codeddd in decimal

24

18 A parser generator

This section describesmosmlyac , a simple parser generator which is closely based oncamlyacc from the
Caml Light implementation by Xavier Leroy;camlyacc in turn is based on Bob Corbett’s public domain
Berkeleyyacc . This documentation is based on that in the Caml Light reference manual.

18.1 Overview

Given a context-free grammar specification with attached semantic actions,mosmlyac produces a parser,
in the style ofyacc . If file grammar.grm contains a grammar specification, then executing

mosmlyac grammar.grm

produces a filegrammar.sml containing a Moscow ML unit with code for a parser and a filegrammar.sig
containing its interface.

The generated unit defines a parsing functionS for each start symbolS declared in the grammar. Each
parsing function takes as arguments a lexical analyser (a function from lexer buffers to tokens) and a lexer
buffer, and returns the semantic attribute of the corresponding entry point. Lexical analyser functions are
usually generated from a lexer specification by themosmllex program. Lexer buffers are an abstract data
type implemented in the library unitLexing . Tokens are values from the datatypetoken , defined in the
signature filegrammar.sig produced by runningmosmlyac .

Example uses ofmosmlyac can be found in directoriescalc andlexyacc undermosml/examples .

18.2 The format of grammar definitions

%{
header

%}
declarations

%%
rules

%%
trailer

Comments in the declarations and rules sections are enclosed in C comment delimiters/* and*/ , whereas
comments in the header and trailer sections are enclosed in ML comment delimiters(* and*) .

18.2.1 Header and trailer

Any SML code in the header is copied to the beginning of filegrammar.sml , after thetoken datatype
declaration; it usually containsopen declarations required by the semantic actions of the rules. Any SML
code in the trailer is copied to the end of filegrammar.sml . Both sections are optional.

18.2.2 Declarations

Declarations are given one per line. They all start with a%sign.

%token symbol . . . symbol
Declare the given symbols as tokens (terminal symbols). These symbols become constructors (with-
out arguments) in thetoken datatype.

%token < type > symbol . . . symbol
Declare the given symbols as tokens with an attached attribute of the given type. These symbols
become constructors (with arguments of the given type) in thetoken datatype. The type part is an
arbitrary Moscow ML type expression, but all type constructor names must be fully qualified (e.g.
Unitname.typename) for all types except standard built-in types, even if the properopen declara-
tions (e.g.open Unitname) were given in the header section.

25

%start symbol
Declare the given symbol as entry point for the grammar. For each entry point, a parsing function
with the same name is defined in the output filegrammar.sml . Non-terminals that are not declared
as entry points have no such parsing function.

%type < type > symbol . . . symbol
Specify the type of the semantic attributes for the given symbols. Every non-terminal symbol, in-
cluding the start symbols, must have the type of its semantic attribute declared this way. This ensures
that the generated parser is type-safe. The type part may be an arbitrary Moscow ML type expres-
sion, but all type constructor names must be fully qualified (e.g.Unitname.typename) for all types
except standard built-in types, even if the properopen declaration (e.g.open Unitname) were given
in the header section.

%left symbol . . . symbol
%right symbol . . . symbol
%nonassoc symbol . . . symbol

Declare the precedence and associativity of the given symbols. All symbols on the same line are
given the same precedence. They have higher precedence than symbols declared in previous%left ,
%right or %nonassoc lines. They have lower precedence than symbols declared in subsequent
%left , %right or %nonassoc lines. The symbols are declared to associate to the left (%left), to the
right (%right), or to be non-associative (%nonassoc). The symbols are usually tokens, but can also
be dummy nonterminals, for use with the%prec directive inside the rules.

18.2.3 The format of grammar rules

nonterminal :
symbol . . . symbol{ semantic-action}

| ...
| symbol . . . symbol{ semantic-action}

;

Each right-hand side consists of a (possibly empty) sequence of symbols, followed by a semantic action.
The directive ‘%prec symbol’ may occur among the symbols in a rule right-hand side, to specify that

the rule has the same precedence and associativity as the given symbol.
Semantic actions are arbitrary Moscow ML expressions, which are evaluated to produce the semantic

attribute attached to the defined nonterminal. The semantic actions can access the semantic attributes of
the symbols in the right-hand side of the rule with the$ notation:$1 is the attribute of the first (leftmost)
symbol,$2 is the attribute of the second symbol, etc. An empty semantic action evaluates to() : unit .

Actions occurring in the middle of rules are not supported. Error recovery is not implemented.

18.3 Command-line options ofmosmlyac

-v
Generate a description of the parsing tables and a report on conflicts resulting from ambiguities in
the grammar. The description is put in filegrammar.output .

-b prefix
Name the output filesprefix.sml , prefix.sig , prefix.output , instead of using the default nam-
ing convention.

18.4 Reporting lexer and parser errors

Lexical errors (e.g. illegal symbols) and syntax errors can be reported in an intelligible way by using
the Location module from the Moscow ML library. It provides functions to print out fragments of a
source text, using location information from the lexer and parser. Seehelp "Location.sig" for more
information. See filemosml/examples/lexyacc/Main.sml for an example.

26

19 Copyright and credits

Copyright notice Moscow ML - a lightweight implementation of Core Standard ML. Copyright (C) 1994,
1995, 1996, 1997, 1998, 1999. Sergei Romanenko, Moscow, Russia and Peter Sestoft, Copenhagen,
Denmark.
This program is free software; you can redistribute it and/or modify it under the terms of the GNU
General Public License as published by the Free Software Foundation; either version 2 of the Li-
cense, or (at your option) any later version.
This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY;
without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR
PURPOSE. See the GNU General Public License for more details.
You should have received a copy of the GNU General Public License along with this program; if not,
write to the Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
Note that a number of source files are derived from the Caml Light distribution, copyright (C) 1993
INRIA, Rocquencourt, France. Thus charging money for redistributing Moscow ML may require
prior permission from INRIA; see the INRIA copyright notice in file copyrght/copyrght.cl.

Moscow ML was written by Sergei Romanenko (roman@keldysh.ru), Keldysh Institute of Applied Math-
ematics, Russian Academy of Sciences, Miusskaya Pl. 4, 125047 Moscow, Russia.

and Peter Sestoft (sestoft@dina.kvl.dk), Department of Mathematics and Physics, Royal Veterinary and
Agricultural University, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Much of the
work was done at the Department of Computer Science at the Technical University of Denmark, and
while visiting AT&T Bell Laboratories, Murray Hill, New Jersey, USA.

Moscow ML owes much to

• the CAML Light implementation by Xavier Leroy and Damien Doligez (INRIA, Rocquencourt,
France);
• the ML Kit by Lars Birkedal, Nick Rothwell, Mads Tofte and David Turner (Copenhagen

University, Denmark, and Edinburgh University, Scotland);
• inspiration from the SML/NJ compiler developed at Princeton University and AT&T Bell Lab-

oratories, New Jersey, USA; and
• the good work by Doug Currie, Flavors Technology, USA, on the MacOS port.

20 How to get Moscow ML

• The Moscow ML home page is http://www.dina.kvl.dk/~sestoft/mosml.html
• The Linux executables are in ftp://ftp.dina.kvl.dk/pub/mosml/linux-mos14bin.tar.gz
• The MS Windows executables are in ftp://ftp.dina.kvl.dk/pub/mosml/win32-mos14bin.zip
• The MS DOS executables are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14bin.zip
• The Macintosh/MacOS (68k and PPC) executables are in

ftp://ftp.dina.kvl.dk/pub/mosml/mac-mos14bin.sea.hqx
• The DOS source files are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14src.zip
• The Unix and MS Windows source files are in ftp://ftp.dina.kvl.dk/pub/mosml/mos14src.tar.gz
• The MacOS modified source files (relative to Unix) are in

ftp://ftp.dina.kvl.dk/pub/mosml/mac-mos14src.sea.hqx
• The MkLinux executables and binaries are available at

http://www.ibg.uu.se/mkarchive/dev/lang

27

21 Books and other materials on Standard ML

The Definition and Commentary

• Robin Milner, Mads Tofte and Robert Harper,The Definition of Standard ML, MIT Press 1990, ISBN
0-262-63132-6.

• Robin Milner, Mads Tofte, Robert Harper, and David B. MacQueen,The Definition of Standard ML
(Revised), MIT Press 1997, ISBN 0-262-63181-4.

• Robin Milner and Mads Tofte,Commentary on Standard ML, MIT Press 1991, ISBN 0-262-63137-7.

Textbooks available from publishers

• Richard Bosworth,A Practical Course in Functional Programming Using Standard ML, McGraw-
Hill 1995, ISBN 0-07-707625-7.

• Michael R. Hansen and Hans Rischel,Introduction to Programming using SML, Addison-Wesley
1999, ISBN 0-201-39820-6.

• Greg Michaelson,Elementary Standard ML, UCL Press 1995, ISBN 1-85728-398-8.
• Colin Myers, Chris Clack, and Ellen Poon,Programming with Standard ML, Prentice Hall 1993,

ISBN 0-13-722075-8.
• Lawrence C. Paulson,ML for the Working Programmer, Second edition. Cambridge University Press

1996, ISBN 0-521-56543-X.
• Chris Reade,Elements of Functional Programming, Addison-Wesley 1989, ISBN 0-201-12915-9.
• Ryan Stansifer,ML Primer, Prentice Hall 1992, ISBN 0-13-561721-9.
• Jeffrey D. Ullman,Elements of ML Programming, Prentice Hall 1994, ISBN 0-13-184854-2.
• Åke Wikström, Functional Programming Using Standard ML, Prentice Hall 1987, ISBN 0-13-

331661-0.

Texts available on the net

• Emden Gansner and John Reppy (editors): Standard ML Basis Library, hypertext version:
http://www.cs.bell-labs.com/~jhr/sml/basis/index.html
http://www.dina.kvl.dk/~sestoft/sml/sml-std-basis.html (mirror site)

• Stephen Gilmore,Programming in Standard ML’97, report ECS-LFCS-97-364, University of Edin-
burgh. At http://www.dcs.ed.ac.uk/lfcsreps/EXPORT/97/ECS-LFCS-97-364/

• Robert Harper,Introduction to Standard ML, report ECS-LFCS-86-14, University of Edinburgh,
November 1986 (revised 1989). At ftp://ftp.cs.cmu.edu/afs/cs/project/fox/mosaic/intro-notes.ps.

• Mads Tofte,Tutorial on Standard ML, Technical Report 91/18, DIKU, University of Copenhagen,
December 1991. At ftp://ftp.diku.dk/pub/diku/users/tofte/FPCA-Tutorial/

References

[1] L. Birkedal, N. Rothwell, M. Tofte, and D.N. Turner. The ML Kit. Technical Report 93/14, DIKU,
University of Copenhagen, Denmark, 1993.

[2] E. Gansner and J. Reppy. Standard ML Basis Library. Technical report, AT&T Bell Labs, 1996.
[3] X. Leroy. The Zinc experiment: An economical implementation of the ML language. Rapport Tech-

nique 117, INRIA Rocquencourt, France, 1990. Available as
ftp://ftp.inria.fr/INRIA/Projects/cristal/Xavier.Leroy/economical-ML-implementation.ps.gz.

[4] X. Leroy. The Caml Light system, release 0.6. Documentation and user’s manual. INRIA, France,
September 1993. Available at ftp://ftp.inria.fr/lang/caml-light.

[5] R. Milner, M. Tofte, and R. Harper.The Definition of Standard ML. The MIT Press, 1990.
[6] R. Milner, M. Tofte, R. Harper, and D.B. MacQueen.The Definition of Standard ML (Revised). MIT

Press, 1997.
[7] S. Romanenko and P. Sestoft.Moscow ML Language Overview, version 1.44, August 1999.

28

