

Logik, Semantik und Verifikation SS 2002: Musterlösung zum 12. Übungsblatt

Prof. Dr. Gert Smolka, Dipl.-Inform. Tim Priesnitz

Aufgabe 12.1: Prüfbarkeit (4) M ist nicht prüfbar. Beweis durch Widerspruch. Aus einen Prüfer für M können wir einen Prüfer für S_0 konstruieren, da

$$x \in S_0 \Leftrightarrow x \in \#Com \land \mathcal{F}(\#^{-1}x)0 = \bot$$

 $\Leftrightarrow x \in \#Com \land \#(X_0 := 0; \#^{-1}x) \in M$

Aufgabe 12.2: Prüfbarkeit (4) Analog zur vorangegangenen Aufgabe, da

$$x \in S_0 \Leftrightarrow x \in \#Com \land \#(X_0 := 0; \#^{-1}x) \in M$$

Aufgabe 12.3: Minimum (4)

$$\lambda f \in \mathbb{N} \to \mathbb{B}. \, \lambda x \in \mathbb{N}. \, fx \wedge \forall (\lambda n \in \mathbb{N}. \, fn \Rightarrow x \leq n)$$

Aufgabe 12.4: Beschreibung einer Aussage (1+1+3+3+1)

(a)

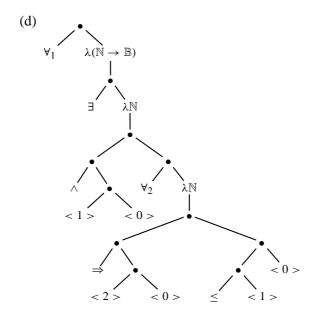
$$X \in \mathbb{N} \to \mathbb{B}$$

$$m \in \mathbb{N}$$

$$x \in \mathbb{N}$$

(b)

$$\begin{array}{ll} \forall_1 & \in ((\mathbb{N} \to \mathbb{B}) \to \mathbb{B}) \to \mathbb{B} \\ \exists & \in (\mathbb{N} \to \mathbb{B}) \to \mathbb{B} \\ \forall_2 & \in (\mathbb{N} \to \mathbb{B}) \to \mathbb{B} \end{array}$$



(e) 0 (wähle $X = \lambda x \in \mathbb{N}.0$).

Aufgabe 12.5: Englisch nach ETT (3) Wir benutzen ab nun die folgende Abkürzung:

 $\exists x \in M. A \text{ für } \exists (\lambda x \in M. A)$

(a) $\forall p \in person.$ $\exists p' \in person.$ loves $p \ p'$ (b) $\exists p \in person.$ $\exists p' \in person.$ loves $p \ p'$ (c) $\forall p \in person.$ $\forall p' \in person.$ loves $p \ p'$ (d) $\neg(existsp \in person.$ $\forall p' \in person.$ loves $p \ p'$ (e) $\exists p \in person.$ $\neg(\exists p' \in person.$ loves $p \ p'$

Aufgabe 12.6: Englisch nach ETT (2)

- (a) $\exists p \in person. \exists t \in time. fool p t$
- (b) $\forall p \in person. \exists t \in time. fool p t$
- (c) $\neg (\forall p \in person. \forall t \in time. fool p t)$
- (d) $\forall p \in person. \exists t \in time. \neg fool p t$

Aufgabe 12.7: Primzahlen (2+2+4+2)

(a)

$$teilt \in \mathbb{N} \to \mathbb{N} \to \mathbb{B}$$
$$teilt n m = \exists n' \in \mathbb{N}. n \ge 1 \land m = n \cdot n'$$

(b)

$$prim \in \mathbb{N} \to \mathbb{B}$$

$$prim \ m = m \ge 2 \land \forall n \in \mathbb{N}. \ teilt(n, m) \Rightarrow (n = 1 \lor n = m)$$

(c)

$$\begin{array}{l} \textit{unendlich} \in (\mathbb{N} \to \mathbb{B}) \to \mathbb{B} \\ \textit{unendlich} \ X = \neg \ (\exists n \in \mathbb{N}. \ \forall x \in \mathbb{N}. \ Xx \Rightarrow x \leq n) \end{array}$$

(d)

unendlich prim

Aufgabe 12.8: Unendliche Teilmengen (2+3)

(a)

$$injektiv \in (\mathbb{N} \to M) \to \mathbb{B}$$

 $injektiv \ f = \forall n, m \in \mathbb{N}. \ fn = fm \Rightarrow n = m$

(b)

unendlich
$$\in (M \to \mathbb{B}) \to \mathbb{B}$$

unendlich $f = \exists g \in \mathbb{N} \to M$. injektiv $(g) \land \forall n \in \mathbb{N}$. $f(gn)$

Aufgabe 12.9: Wohlfundierte Induktion (5+5)

(a)

terminiert
$$\in (X \to X \to \mathbb{B}) \to \mathbb{B}$$

terminiert $R = \neg (\exists f : \mathbb{N} \to X. \forall n \in \mathbb{N}. R(fn)(f(n+1)))$

(b)

$$bedingung \in X \to \mathbb{B}$$

$$bedingung \ M = \exists > \in X \to X \to \mathbb{B}. \ terminiert > \land \forall x \in X. \ (\forall y \in X. \ y < x \Rightarrow My) \Rightarrow Mx$$