

Semantics of Programming Languages Assignment 11

Andreas Podelski, Patrick Maier, Jan Schwinghammer http://www.ps.uni-sb.de/courses/sem-ws01/

Hand in until February, 6th, 2002

Let $\mathbf{D} = \langle D, \bot, \top, \bigvee, \bigwedge \rangle$ be a complete lattice.

We say that the join *completely distributes* over meets in **D** if for all $x \in D$ and $Y \subseteq D$, $x \land \bigvee Y = \bigvee \{x \land y \mid y \in Y\}.$

Let L be a set. We call a function $\delta : L \to D$ a partition of **D** if it satisfies $\top = \bigvee_{l \in L} \delta(l)$ (cover property) and $\forall k, l \in L : k \neq l \Rightarrow \delta(k) \land \delta(l) = \bot$ (disjointness property).

Exercise 11.1 (5) Let $\mathbf{D} = \langle D, \leq, \bigvee, \bigwedge \rangle$ be a complete lattice where the join completely distributes over meets. Let δ be a partition of \mathbf{D} indexed by some set L. We define the ordered set $\mathbf{D}^{\#} = \langle D^{\#}, \sqsubseteq \rangle$ as componentwise ordered dependent product, i. e., $D^{\#} = \prod_{l \in L} \{x \land \delta(l) \mid x \in D\} = \{y : L \to D \mid \forall l \in L : y(l) \in \{x \land \delta(l) \mid x \in D\}\}$ and for all $y, y' \in D^{\#}, y \sqsubseteq y'$ iff $\forall l \in L : y(l) \leq y'(l)$.

Prove that $\mathbf{D} \stackrel{\gamma}{\underset{\alpha}{\hookrightarrow}} \mathbf{D}^{\#}$ is a Galois connection, where α and γ are defined such that for all $x \in D$ and $l \in L$, $\alpha(x)(l) = x \wedge \delta(l)$ and for all $y \in D^{\#}$, $\gamma(y) = \bigvee_{l \in L} y(l)$.

Exercise 11.1 abstractly shows how to obtain an abstract domain as a partition of a concrete domain. Now, we are going to apply this exercise to develop a Galois connection between two familiar concrete domains.

We introduce stores for typed variables. Let Var be a set of variables, let Type be a set of sets of values and let $type : Var \to Type$ be a type assignment. We define the typed store $Store = \prod_{x \in Var} type(x)$ as dependent product, i.e., $Store = \{s : Var \to \bigcup Type \mid \forall x \in Var : s(x) \in type(x)\}$. We assume that Var contains a distinguished variable pc, the program counter, with type(pc) = PP, the set of program points.

Exercise 11.2 (5) Prove that $\mathbf{D} = \langle 2^{Store}, \subseteq, \bigcup, \bigcap \rangle$ is a complete lattice where the join completely distributes over meets. Find the natural partition $\delta : PP \to 2^{Store}$ and prove that it is a partition.

Exercise 11.3 (5) Prove that there is an ordered set $\mathbf{D}^{\#} = \langle D^{\#}, \sqsubseteq \rangle$ such that $\mathbf{D} \stackrel{\gamma}{\underset{\alpha}{\hookrightarrow}} \mathbf{D}^{\#}$ is a Galois connection, where α and γ are defined in such a way that for all $S \subseteq Store$ and $p \in PP$, $\alpha(S)(p) = \{s \in S \mid s(pc) = p\}$ and for all $d \in D^{\#}$, $\gamma(d) = \bigcup_{p \in PP} d(p)$. **Hint:** Apply exercise 11.1. **Exercise 11.4 (5)** Let $Var' = Var \setminus \{pc\}$ and $Store' = \prod_{x \in Var'} type(x)$. Find an order \sqsubseteq' on $(2^{Store'})^{PP}$ such that the ordered sets $\langle D^{\#}, \sqsubseteq \rangle$ and $\langle (2^{Store'})^{PP}, \sqsubseteq' \rangle$ are isomorphic. Explicitly specify the isomorphism φ and prove that it is one.

Exercise 11.5 (5) Using exercises 11.3 and 11.4, construct a Galois connection $\langle 2^{Store}, \subseteq \rangle \stackrel{\gamma'}{\underset{\alpha'}{\leftrightarrow}} \langle (2^{Store'})^{PP}, \sqsubseteq' \rangle$. Prove that α' and γ' are order isomorphisms and $\gamma' = {\alpha'}^{-1}$.