Semantics of Programming Languages: Solution of Assignment 5

Thorsten Brunklaus and Jan Schwinghammer

Exercise 5.1

(a) Let $M = N[\Gamma] \in \text{Th}(\mathcal{A})$ and h surjective homomorphism. For all η satisfying Γ in \mathcal{A} we have

$$h(\mathcal{A}[\![M]\!]\eta) = \mathcal{B}[\![M]\!]\eta^h$$
$$h(\mathcal{A}[\![N]\!]\eta) = \mathcal{B}[\![M]\!]\eta^h$$

and thus $\mathcal{B}[\![M]\!]\eta^h = \mathcal{B}[\![N]\!]\eta^h$. Since h is surjective, we have

$$\forall \eta^{'} \text{satisfiying } \Gamma \text{ in } \mathcal{B} \; \exists \eta \text{ such that } \eta^{'} = h \circ \eta$$

This yields $M = N[\Gamma] \in Th(\mathcal{B})$.

(b) \mathcal{A} and \mathcal{B} are isomorphic. Therefore, we have surjective homomorphisms $h: \mathcal{A} \to \mathcal{B}$ and $k: \mathcal{B} \to \mathcal{A}$. (a) yields $\text{Th}(\mathcal{A}) = \text{Th}(\mathcal{B})$.

Exercise 5.2 We have to show

 $\exists h: \mathcal{A} \to \mathcal{B} \text{ surjective homomorphism } \Leftrightarrow \mathcal{B} \text{ and } \mathcal{A}/\sim \text{ isomorphic for some } \sim.$

We define the relation \sim as follows. $a \sim b :\Leftrightarrow h(a) = h(b)$. It is easy to see that \sim is a congruence relation.

- " \Rightarrow " We proceed with constructing an isomorphism $g: \mathcal{A}/\sim \to \mathcal{B}$ by setting g([a]):=h(a). This is well-defined.
 - (i) g is surjective because h is surjective.
 - (ii) g is injective. Let g([a]) = g([b]). Then h(a) = h(b). By definition, we have $a \sim b$ and thus [a] = [b].
- "\(\infty \) We define $h: \mathcal{A} \to \mathcal{B}$ with h(a) := g([a]).
 - (i) h is homomorphism.

$$h(f(a_1, \dots, a_n)) \stackrel{\text{(def h)}}{=} g([f(a_1, \dots, a_n)])$$

$$\stackrel{\text{(def)}}{=} g(f([a_1], \dots, [a_n]))$$

$$\stackrel{\text{(g hom)}}{=} f(g([a_1]), \dots, g([a_n]))$$

$$\stackrel{\text{(def h)}}{=} f(h(a_1), \dots, h(a_n))$$

(ii) h is surjective. This follows from the fact that g is a isomorphism and the definition of \sim .

Since \mathcal{A}/\sim is isomorphic to itself, " \Leftarrow " and exercise 3.5.6 yield $\operatorname{Th}(\mathcal{A})\subseteq\operatorname{Th}(\mathcal{A}/\sim)$.

Exercise 5.3

(a) Assume that $h: \mathcal{A}_2 \to \mathcal{A}_1$ is homomorphism.

$$h(S^{\mathcal{A}_2}\langle 1, -2\rangle) = h\langle 1, -1\rangle$$

$$h(S^{\mathcal{A}_2}\langle 1, -2\rangle) = S^{\mathcal{A}_1}(h\langle 1, -2\rangle) = h\langle 1, -2\rangle + 1$$

and thus h(1,-1) > h(1,-2). Further we have

$$h(\langle 1, -1 \rangle +^{\mathcal{A}_2} \langle 1, -1 \rangle) = h\langle 1, -2 \rangle$$

$$h(\langle 1, -1 \rangle +^{\mathcal{A}_2} \langle 1, -1 \rangle) = h\langle 1, -1 \rangle +^{\mathcal{A}_1} h\langle 1, -1 \rangle = 2 * h\langle 1, -1 \rangle$$

and thus $h(1,-1) \leq h(1,-2)$. Therefore, there is no such h and A_2 is not initial algebra.

(b) Assume that $h: A_3 \to A_1$ is homomorphism.

$$h(S^{\mathcal{A}_3}[k-2]) = h[k-1]$$

$$h(S^{\mathcal{A}_3}[k-2]) = S^{\mathcal{A}_1}(h[k-2]) = h[k-2] + 1$$

and thus h[k-1] > h[k-2]. Further we have

$$h([k-1] +^{\mathcal{A}_3} [k-1]) = h[k-2]$$

$$h([k-1] +^{\mathcal{A}_3} [k-1]) = h[k-1] +^{\mathcal{A}_1} h[k-1]$$

and thus $h[k-1] \leq h[k-2]$. Therefore, there is no such h and A_3 is not initial algebra.

Exercise 5.4

- $x \to M \in \mathcal{R} \Rightarrow x \to_{\mathcal{R}} M \to_{\mathcal{R}} [M/x] M \to_{\mathcal{R}} \dots$ since $M \to_{\mathcal{R}} [M/x] M$ is instance of $x \to_{\mathcal{R}} M$.
- $N \to_{\mathcal{R}} M$ where x occurs in M but not in N. Setting x = N yields $x \to_{\mathcal{R}} N \to_{\mathcal{R}} [N/x] N \to_{\mathcal{R}} \dots$

Exercise 5.5

$$\mathcal{A} = \langle \mathbb{N} \backslash \{0, 1\}, \text{or}^{\mathcal{A}}, \text{and}^{\mathcal{A}}, \text{not}^{\mathcal{A}} \rangle$$

$$\text{or}^{\mathcal{A}}(x, y) = x * y$$

$$\text{and}^{\mathcal{A}}(x, y) = x + y + 1$$

$$\text{not}^{\mathcal{A}}(x) = 2^{x}$$

Exercise 5.6

(a) Let
$$\mathcal{A} = \langle \mathbb{N} \backslash \{0, 1\}, 0^{\mathcal{A}}, \mathbb{S}^{\mathcal{A}}, +^{\mathcal{A}} \rangle$$
.

$$0^{\mathcal{A}} = 2$$

$$\mathbb{S}^{\mathcal{A}}(x) = x + 2$$

$$+^{\mathcal{A}}(x, y) = x * y$$

(b) Let
$$\mathcal{A} = \langle \mathbb{N} \backslash \{0, 1\}, 0^{\mathcal{A}}, \mathbb{S}^{\mathcal{A}}, +^{\mathcal{A}}, *^{\mathcal{A}} \rangle$$
.

$$0^{\mathcal{A}} = 2$$

$$\mathbb{S}^{\mathcal{A}}(x) = x + 2$$

$$+^{\mathcal{A}}(x, y) = x * y$$

$$*^{\mathcal{A}}(x, y) = y^{x}$$

Exercise 5.7

(3+1)

$$(0+y) + z \xrightarrow{1} y + z$$

$$\stackrel{3}{\searrow} 0 + (y+z) \xrightarrow{1} y + z$$

$$(3+2)$$

$$((-x) + x) + z \xrightarrow{2} 0 + z \xrightarrow{1} z (NF)$$

 $\stackrel{3}{\searrow} (-x) + (x+z) (NF)$ not joinable

$$(3+3)$$

$$((x+y)+z) + a \xrightarrow{3} (x+y) + (z+a) \xrightarrow{3} x + (y+(z+a))$$

$$\xrightarrow{3} (x+(y+z)) + a \xrightarrow{3} x + (((y+z)+a) \xrightarrow{3} x + (y+(z+a))$$

Exercise 5.8

$$(1+1)$$

$$\neg\neg\neg x \xrightarrow{1} \neg x$$

$$\downarrow^{1} \neg x$$

$$(1+2)$$

$$\neg \neg (x \lor y) \xrightarrow{1} x \lor y$$

$$\stackrel{2}{\searrow} \neg (\neg x \land \neg y) \xrightarrow{3} \neg \neg x \lor \neg \neg y \xrightarrow{1,1} x \lor y$$

$$(1+3)$$

$$\neg \neg (x \land y) \xrightarrow{1} x \land y$$

$$\stackrel{3}{\searrow} \neg (\neg x \lor \neg y) \xrightarrow{2} \neg \neg x \land \neg \neg y \xrightarrow{1,1} x \land y$$

$$(3+4)$$

$$\neg(x \land (y \lor z)) \xrightarrow{3} \neg x \lor \neg(y \lor z) \xrightarrow{2} \neg x \lor (\neg y \land \neg z) \ (NF)$$

$$\xrightarrow{4} \neg((x \land y) \lor (x \land z)) \xrightarrow{2} \neg(x \land y) \land \neg(x \land z) \xrightarrow{3,3} (\neg x \lor \neg y) \land (\neg x \lor \neg z)$$

$$\xrightarrow{4} ((\neg x \lor \neg y) \land \neg x) \lor ((\neg x \lor \neg y) \land \neg z)$$

$$\xrightarrow{5,5} ((\neg x \land \neg x) \lor (\neg y \land \neg x)) \lor ((\neg x \land \neg z) \lor (\neg y \land \neg z)) \ (NF) \ \text{not joinable}$$

(3+5) analogously

$$(4+5)$$

$$\begin{split} (x \vee y) \wedge (z \vee a) & \xrightarrow{4} ((x \vee y) \wedge z) \vee ((x \vee y) \wedge a) \xrightarrow{5,5} ((x \wedge z) \vee (y \wedge z)) \vee ((x \wedge a) \vee (y \wedge a)) \; (NF) \\ & \xrightarrow{5} (x \wedge (z \vee a)) \vee (y \wedge (z \vee A)) \\ & \xrightarrow{4,4} ((x \wedge z) \vee (x \wedge a)) \vee ((y \wedge z) \vee (y \wedge a)) \; (NF) \; \text{not joinable} \end{split}$$

Further we have (5 + 4) = (4 + 5).