
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2003:

Solutions for assigment 6

Prof. Dr. Gert Smolka, Dipl.-Inform. Guido Tack

Exercise 6.1: State Big-step reduction rules:

t1|µ ⇓ λx : T .t|µ′ t2|µ
′ ⇓ v2|µ

′′ t[x := v2]|µ
′′ ⇓ v|µ′′′

t1 t2 | µ ⇓ v|µ′′′
(E-APP)

t|µ ⇓ v|µ′ l ∉ dom(µ′)

ref t|µ ⇓ l|µ′[l := v]
(E-REF)

t|µ ⇓ l|µ′ µ′(l) = v

!t|µ ⇓ v|µ′
(E-DEREF)

t1|µ ⇓ l1|µ
′ t2|µ

′ ⇓ v|µ′′

t1 := t2|µ ⇓ unit|µ[l := v]
(E-ASSIGN)

Exercise 6.2: Curry-Howard in SML

(a) structure CurryHoward :> CURRYHOWARD =

struct

datatype (’a, ’b) sum = INL of ’a | INR of ’b

type n = unit

fun null _ = raise Empty

fun dneg _ = raise Empty

end

(b) Example (from exercise 5.5, d):

fn f => dneg (fn g => g(INL (fn x => g (INR (f x)))))

SML infers the following type:

val (’a, ’b) it = fn : (’a -> ’b) -> (’a -> n, ’b) sum

(c) A proof may look like this:

fn (nx, ny) => fn (x,y) => (nx x)

SML infers

2003–12–07 18:12



val (’a, ’b, ’c, ’d) it = fn : (’a -> ’b) * ’c -> ’a * ’d -> ’b

as its type. This is (by construction of SML’s type checking algorithm) the most

general type of this term. Interpreted logically, this means that this term proves a

family of logical formulas: The original type is one instance, but the term is also

a proof of e.g. the following formula: (X −→ Z)∧ (Y −→ Z) −→ ((X ∧ Y) −→ Z).

Exercise 6.3: Big-step semantics with error The new rules are:

error ⇓ error

t1 ⇓ error

t1 t2 ⇓ error

t1 ⇓ v t2 ⇓ error

t1 t2 ⇓ error

Exercise 6.4: Recursion with state and error

(a) Assuming syntactic sugar for let, the following term diverges:

let

l = ref(λx : Unit.x)

in

l := λy : Unit.(!l) y ;

(!l) unit

(b) let

fixref = ref(λf : ((T0 −→ T0) −→ T0 −→ T0).λx : T0.x)

in

fixref := λf : ((T0 −→ T0) −→ T0 −→ T0).λx : T0.f ((!fixref )f ) x;

!fixref

(c) let

fixref = ref(λf : ((T0 −→ T1) −→ T0 −→ T1).λx : T0.error as T1)

in

fixref := λf : ((T0 −→ T1) −→ T0 −→ T1).λx : T0.f ((!fixref )f ) x;

!fixref

2003–12–07 18:12



(d) val fix = fn f =>

let

val fixref = ref (fn f => fn x => raise Empty)

val fix’ = fn f => fn x => (f ((!fixref) f) x)

in

fixref := fix’;

fix’ f

end

Exercise 6.5: Type inhabitation The proof is by induction on the structure of types.

For T = Unit, we have that ∅ ` unit : Unit.

For T = T1 −→ T2, we know by induction hypothesis that there is a term t with ∅ ` t :

T2. Then it follows from the typing rule for abstraction that ∅ ` (λx : T1.t) : T .

For T = T1 × T2, we know by induction hypothesis that there exist terms t1 and t2

such that ∅ ` t1 : T1 and ∅ ` t1 : T1. Hence, with the typing rule for products,

∅ ` {t1, t2} : T .

2003–12–07 18:12


