

Semantics, WS 2003: Solutions for assigment 6

Prof. Dr. Gert Smolka, Dipl.-Inform. Guido Tack

Exercise 6.1: State Big-step reduction rules:

$$\frac{t_1|\mu \Downarrow \lambda x : T.t|\mu' \qquad t_2|\mu' \Downarrow \nu_2|\mu'' \qquad t[x := \nu_2]|\mu'' \Downarrow \nu|\mu'''}{t_1 \ t_2 \ |\mu \Downarrow \nu|\mu'''}$$
(E-APP)

$$\frac{t|\mu \Downarrow \nu|\mu' \quad l \notin \text{dom}(\mu')}{\text{ref } t|\mu \Downarrow l|\mu'[l := \nu]}$$
 (E-REF)

$$\frac{t|\mu \Downarrow l|\mu' \quad \mu'(l) = \nu}{!t|\mu \Downarrow \nu|\mu'}$$
 (E-DEREF)

$$\frac{t_1|\mu \Downarrow l_1|\mu' \quad t_2|\mu' \Downarrow \nu|\mu''}{t_1 := t_2|\mu \Downarrow \text{unit}|\mu[l := \nu]}$$
 (E-ASSIGN)

Exercise 6.2: Curry-Howard in SML

(b) Example (from exercise 5.5, d):

```
fn f => dneg (fn g => g(INL (fn x => g (INR (f x)))))
```

SML infers the following type:

val ('a, 'b) it =
$$fn : ('a \rightarrow 'b) \rightarrow ('a \rightarrow n, 'b)$$
 sum

(c) A proof may look like this:

fn
$$(nx, ny) \Rightarrow fn (x,y) \Rightarrow (nx x)$$

SML infers

```
val ('a, 'b, 'c, 'd) it = fn : ('a -> 'b) * 'c -> 'a * 'd -> 'b
```

as its type. This is (by construction of SML's type checking algorithm) the most general type of this term. Interpreted logically, this means that this term proves a *family* of logical formulas: The original type is one instance, but the term is also a proof of e.g. the following formula: $(X \to Z) \land (Y \to Z) \to ((X \land Y) \to Z)$.

Exercise 6.3: Big-step semantics with error The new rules are:

$$error \Downarrow error$$
 $t_1 \Downarrow error$ $t_1 t_2 \Downarrow error$ $t_1 \Downarrow v \qquad t_2 \Downarrow error$ $t_1 t_2 \Downarrow error$

Exercise 6.4: Recursion with state and error

(a) Assuming syntactic sugar for let, the following term diverges:

```
let l = ref(\lambda x : Unit.x) in l := \lambda y : Unit.(!l) \ y; (!l) unit
```

(b) let $\begin{aligned} \textit{fixre} f &= \operatorname{ref}(\lambda f : ((T_0 \longrightarrow T_0) \longrightarrow T_0 \longrightarrow T_0).\lambda x : T_0.x) \\ &\text{in} \\ &\textit{fixre} f := \lambda f : ((T_0 \longrightarrow T_0) \longrightarrow T_0 \longrightarrow T_0).\lambda x : T_0.f((!\textit{fixre} f) f) \ x; \\ &!\textit{fixre} f \end{aligned}$

(c) let
$$\begin{aligned} \textit{fixre} f &= \operatorname{ref}(\lambda f : ((T_0 \longrightarrow T_1) \longrightarrow T_0 \longrightarrow T_1).\lambda x : T_0.\operatorname{error} \text{ as } T_1) \\ &\text{in} \\ \textit{fixre} f &:= \lambda f : ((T_0 \longrightarrow T_1) \longrightarrow T_0 \longrightarrow T_1).\lambda x : T_0.f((!\textit{fixre} f) f) \ x; \\ &: \textit{fixre} f \end{aligned}$$

```
(d) val fix = fn f =>
    let
      val fixref = ref (fn f => fn x => raise Empty)
      val fix' = fn f => fn x => (f ((!fixref) f) x)
    in
      fixref := fix';
      fix' f
end
```

Exercise 6.5: Type inhabitation The proof is by induction on the structure of types.

For T = Unit, we have that $\emptyset \vdash \text{unit}$: Unit.

For $T = T_1 \longrightarrow T_2$, we know by induction hypothesis that there is a term t with $\emptyset \vdash t$: T_2 . Then it follows from the typing rule for abstraction that $\emptyset \vdash (\lambda x : T_1.t) : T$.

For $T = T_1 \times T_2$, we know by induction hypothesis that there exist terms t_1 and t_2 such that $\emptyset \vdash t_1 : T_1$ and $\emptyset \vdash t_1 : T_1$. Hence, with the typing rule for products, $\emptyset \vdash \{t_1, t_2\} : T$.