Semantics, WS 2003:
Solutions for assigment 6

Prof. Dr. Gert Smolka, Dipl.-Inform. Guido Tack

Exercise 6.1: State Big-step reduction rules:
tilp ¥ Ax Tty tlp” ¥ volp” tlx:i=vllu" U vu

rrr

(E-APP)
tito|lpu ¥ vip
tly ¥ vig’ 1¢ dom(u’)

E-REF
ref tlu U Lp'[l:=v] (:
tlp ¥V 1y wd)=v (E-DEREF)

il & vy
tilp 4 Ly e Vvl (E-ASSIGN)

t1 =ty ¥ unitjull:=v]

Exercise 6.2: Curry-Howard in SML

(@) structure CurryHoward :> CURRYHOWARD =
struct
datatype (’a, ’b) sum = INL of ’a | INR of ’b
type n = unit

fun null _ = raise Empty
fun dneg _ = raise Empty
end

(b) Example (from exercise 5.5, d):

fn f => dneg (fn g => g(INL (fn x => g (INR (f x)))))

SML infers the following type:

val ("a, ’'b) it =fn : (Ca -> ’b) -> ("a -> n, ’b) sum

(c) A proof may look like this:

fn (nx, ny) => fn (x,y) => (hx x)

SML infers

2003-12-07 18:12

val (’a, ’b, 'c, 'd) it=fn : Ca -> 'b) * 'c -> 'a * 'd -> b

as its type. This is (by construction of SML'’s type checking algorithm) the most
general type of this term. Interpreted logically, this means that this term proves a
family of logical formulas: The original type is one instance, but the term is also
a proof of e.g. the following formula: (X — Z) A (Y — Z) — (X AY) — Z).

Exercise 6.3: Big-step semantics with error The new rules are:

error U error

t1 ¥ error
ty t» ¥ error

t1 Vv to U error
t1 t> ¥ error

Exercise 6.4: Recursion with state and error

(a) Assuming syntactic sugar for let, the following term diverges:

let
l = ref(Ax : Unit.x)
in
l:= Ay :Unit.() y;
(1) unit
(b) let
fixref = ref(Af : (Ty — To) — To — To).Ax : Tp.x)
in
fixref := Af : ((To — To) — To — To).Ax : To.f ((fixref) f) x;
\fixref
(c) let
fixref =ref(Af : (To — T1) — Tg — T1).Ax : Tgp.error as Tp)
in
fixref := Af : ((To — T1) — To — T1).Ax : To.f ((fixref) f) x;
lfixref

2003-12-07 18:12

(d) val fix = fn f =>

Tet
val fixref = ref (fn f => fn x => raise Empty)
val fix’ = fn f => fn x => (f ((Ifixref)) x)
in
fixref := fix’;
fix’ f
end

Exercise 6.5: Type inhabitation The proof is by induction on the structure of types.
For T = Unit, we have that & + unit : Unit.

For T = T; — T», we know by induction hypothesis that there is a term t with & + t :
T>. Then it follows from the typing rule for abstraction that @ + (Ax : T1.t) : T.

For T = T; x T>, we know by induction hypothesis that there exist terms t; and t»
such that @ +~ t; : Ty and @ + t; : T;. Hence, with the typing rule for products,
O+ {t1,t2}: T.

2003-12-07 18:12

