
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2003:

Solutions for assigment 8

Prof. Dr. Gert Smolka, Dipl.-Inform. Guido Tack

Exercise 8.1: Subtyping and References

(a) (λr : Ref (Unit → Unit).r := unit ; !r unit)(ref (λx : Unit.x))

Here, the r in r := unit can get the type Ref Top, so that the assignment is

well-typed because of the covariance of Ref . Of course the application !r unit

is well-typed even without subtyping. Hence, the whole term is stuck, as !r unit

reduces to unit unit.

(b) (!(ref unit)) unit

Exercise 8.2: Subtyping and Preservation Let t = (λx : Top.x)(λx : Top.x). Then

∅ →̀ t : Top, t −→ λx : Top.x, and ∅ →̀ (λx : Top.x) : Top → Top. Now Top ≠ Top →

Top, but Top :> Top → Top, which is enough for the Preservation Property. We allow

terms to go down in the subtype hierarchy during reduction.

2003–12–15 16:23



Exercise 8.3: Natural numbers in Java

(a) Object = {}

ObjectRep = {}

ObjectArg = {}

classObject = λr : ObjectRep.λf .λ_.{}

newObject = λr : ObjectArg.fix(classObject {})unit

Nat = {add : Nat → Nat}

NatRep = {}

NatArg = {}

classNat = λr : NatRep.λf .λ_.{add = λx : Nat.x}

newNat = λr : NatArg.fix(classNat {}) unit

Pos = {add : Nat → Nat}

PosRep = {pred : Nat}

PosArg = Nat

posRec = fix(λrec.

{ classPos = λr : PosRep.λf .λ_.{add = λx : Nat. r .pred.add(rec.newPos x)},

newPos = λr : PosArg.fix(rec.classPos {pred = r}) unit})

newPos = posRec.newPos

classPos = posRec.classPos

(b) Cla = {Object ,Nat,Pos}

Object <: Nat , Nat <: Pos

typ(Object)= {}

typ(Nat) = {add 7→ Nat → Nat }

typ(Pos) = {pred 7→ Nat,

add 7→ Nat → Nat }

mth(Nat) = {add 7→ λx : Nat.x}

mth(Pos) = {add 7→ λx : Nat. this.pred.add(new Pos {pred 7→ x})}

(c) We need some form of type case for subtraction. In Java, this is available through

instanceof:

2003–12–15 16:23



class Nat extends Object {

Nat() {}

Nat add(Nat y) { return y; }

Nat sub(Nat y) { return this; }

}

class Pos extends Nat {

Nat pred;

Pos (Nat x) { pred = x; }

Nat add(Nat y) { return pred.add(new Pos(y)); }

Nat sub(Nat y) {

if (y instanceof Pos) {

return pred.sub((Pos) y.pred);

} else {

return this;

}

}

In SJ, we can introduce a case construct for classes as follows:

Typing rule:

Γ ` t : C′ Γ ` t1 : C1 → T Γ ` t2 : C2 → T
C <:0 C1 C′ <:0 C2

Γ ` case C t t1 t2 : T

Reduction:

case C (new C′ f) v1 v2 −→ v1 (new C′ f) if C′ <:0 C

−→ v2 (new C′ f) otherwise

Now we can define sub in SJ (these are only the extensions):

typ Nat sub = Nat → Nat

typ Pos sub = Nat → Nat

mth Nat sub = λy : Nat.this

mth Pos sub = λy : Nat.case Pos y (λy : Pos. (this.pred.sub)(y.pred))

(λy : Nat. this)

Exercise 8.4: Buzzwords The examples for the given buzzwords are taken from the

different counter classes from chapter 18 in Pierce’s book.

(a) Encapsulation means that the internal representation of an object is generally hid-

den from view outside the object’s definition. So only the object’s own methods

can access its fields.

Example: The reference cell holding the value of a counter is only accessible by

methods of the counter.

2003–12–15 16:23



(b) Multiple representations: Two objects with the same interface may still have dif-

ferently implemented methods.

Example: Objects of the class counterClass (p. 231) implement the increment

operator as

inc = λ_:Unit. r.x := succ(!(r.x)),

whereas objects of setCounterClass (p. 235) use

inc = λ_:Unit. self.set(succ(self.get unit)).

(c) Subtyping: The notion of subtyping with objects is the same as before: A class A

is a subtype of a class B if objects of A can safely be used whenever an object of

B is expected.

Programming languages can create this class hierarchy in two ways: Explicitly (via

inheritance) or structurally (as with record subtyping). Example: The setCounter

class is a subtype of the counter class, because it holds for the interfaces of

objects of these classes that

{get: Unit→Nat, inc:Unit→Unit, set:Nat→Unit}

<: {get: Unit→Nat, inc:Unit→Unit}.

(d) Inheritance: Objects which share parts of their interfaces will also often share

parts of their methods (i.e. implementations). To avoid code duplication, classes

can be derived from another class, and objects of the subclass may use meth-

ods from the base class. In addition, inheritance often defines the subtyping on

classes. Example: Objects of the backupCounter class (p. 233) inherit the meth-

ods get and inc from the resetCounter class.

(e) Overriding: When a new class is defined using inheritance, it is not necessary to

use all methods of the base class, but they may also be redefined. This is called

overriding.

Example: The backupCounter class overrides the method reset of the resetCounter

class.

(f) Late binding of self means that self is only bound at the latest possible moment:

when a method of an object is used. This makes it possible for a method defined

in a superclass to access methods defined in a subclass.

Example: The class setCounterClass from section 18.10.

(g) Open recursion means that all methods of a class can be mutually recursive: A

method can call other methods of its class (including the method itself) through

self. Example: The class setCounterClass from section 18.10.

2003–12–15 16:23



Exercise 8.5: Exponentially larger normal forms We define the terms ti as follows:

t0 = λx.x

t1 = (λx.f x x) t0

tn = (λx.f x x) tn−1

2003–12–15 16:23


