
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 1

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, chapters 1–5, emphasis on 5

We consider variables, numbers, terms and values as follows:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | S

v ∈ Val = λx . t | n | S

A term is pure if it doesn’t contain numbers or the successor operator S. The reduction

relation → ⊆ Ter2 is defined as follows:

Beta
(λx . t)v → t[x := v]

S
n′ = n+ 1

Sn → n′

DAL
t1 → t′1

t1t2 → t′1t2
DAR

t → t′

vt → vt′

A procedure is a closed term of the form λx . t. Boolean values, pairs and the natural

numbers can be represented as pure values as follows:

true
def
= λxy . x

false
def
= λxy . y

(t1, t2)
def
= (λxyf . fxy)t1 t2

c0
def
= λfs . s

cn
def
= λfs . cn−1f(fs) (n ≥ 1)

Exercise 1.1: Numbers We say that a term t represents a number n if t is pure and

the term tS0 evalutes to n. Find a pure procedure

(a) add that given values representing m and n yields a value representing m+n.

(b) mul that given values representing m and n yields a value representing m ·n.

(c) exp that given values representing m and n yields a value representing mn.

2005–10–21 19:16

(d) fac that given a value representing n yields a value representing n!.

(e) pre that given a value representing n yields a value representing max {0, n− 1}.

(f) sub that given values representingm and n yields a value representing max {0,m−n}.

(g) leq that given values representing m and n tests wether m ≤ n.

(h) foo that given a value representing n diverges if and only if n > 0.

(i) chu2int that given a value representing n yields the value n (this procedure has

to be impure).

Exercise 1.2: Lists Let lists be represented as pure terms as follows (think of foldl in

Standard ML):

nil
def
= λfs . s

x :: y
def
= λfs . yf(fxs)

Find a pure procedure

(a) null that tests wether a list is empty.

(b) hd that yields the head of a list.

(c) rev that reverses a list.

(d) tl that yields the tail of a list.

Exercise 1.3: Implementation in Standard ML We implement the lambda terms of the

lambda calculus introduced in the lecture as follows:

type var = string

datatype ter = V of var | A of ter*ter | L of var*ter | I of int | S

(a) Declare a procedure isvalue : ter → bool that tests whether a term is a value.

(b) Declare a procedure closed : var list → ter → bool that tests for a list xs and a term

t whether all free variables of t occur in xs.

(c) Declare a procedure subst : ter → var → ter → ter that yields for a term t, a vari-

able x and a closed (!) term u the term t[x := u].

(d) Declare a procedure chu : int → ter that for n ∈ N yields a value representing n.

(e) Declare a procedure reduce : ter → ter that attempts to reduce a term (by one

step). If the term is not reducible, the exception Error should be thrown.

2005–10–21 19:16

(f) Declare a procedure eval : ter → ter that evaluates a term. If repeated reduction

of a term yiels a non-reducible term that is not a value, the exception Error should

be thrown.

(g) Check that your procedures for Church numerals from the first exercise do what

they are supposed to do. For instance, try A(chu2int, A(A(mul, chu 5), chu 9)).

2005–10–21 19:16

