
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 2

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, chapters 6–7

Exercise 2.1: An ADT for λ-terms Under the URL

http://www.ps.uni-sb.de/courses/sem-ws05/assignments/lambda.sml

you can find ML implementations of pure λ-terms that ensure absence of capturing with

the following signature:

eqtype var

type term

datatype view = Var of var | App of term * term | Lam of var * term

val var : unit -> var

val term : view -> term

val view : term -> view

Use this interface to define the following procedures.

(a) Write a procedure free : term → var list that returns a list of the free variables

contained in a term.

(b) Write a procedure subst : (var × term)→ term → term such that subst (x, t) t ′ sub-

stitutes t for x in t′.

(c) A redex (“reducible expression”) is a λ-term of the form (λx . t1)t2. In the fol-

lowing, we say that a λ-term is in normal form if it contains no subterms that are

redexes.

Write a procedure simplify : term → term that given a term t either finds a redex

in t and simplifies it by applying general β-reduction once:

(λx . t1)t2 → t1[x := t2]

or raises the exception NF if t is in normal form already.

(d) (Challenge) Consider the procedure

fun nf t = nf (simplify t) handle NF => t

that tries to transforms a term into normal form. Give an example of a term t for

which nf t will either terminate or diverge, depending on which redex the simplify

procedure chooses to reduce first.

2005–11–02 15:28

Exercise 2.2: De Bruijn Notation

(a) Given a naming context {x 7→ 0, y 7→ 1, z 7→ 2}, express the following terms in de

Bruijn notation:

(i) λxy . zyx

(ii) (λx . xy(λy . yx))yx

(iii) λx . (λz . xz)(λy . yz)

(iv) λv . v(λxw .wx(λv . xyzvw))

(b) Give the result of the following substitutions:

(i) ((λ10)0)[0 := λ0]

(ii) (λλ021)[0 := λ0]

(iii) (λ2(λ032)01)[1 := λλ10]

(iv) (λ(λ2301)321)[2 := λ01]

Exercise 2.3: Environment-based Interpreter Recall the syntax and big-step evalua-

tion rules for the impure λ-terms in de Bruijn representation:

x ∈ Var = N

t ∈ Ter = x | tt | λt | S | ‘n’

v ∈ Val = 〈E, t〉 | S | n

E ∈ Env = ε | E,v

E,v ` 0 ⇒ v

E ` x ⇒ v′

E,v ` x + 1⇒ v′ E ` ‘n’ ⇒ n E ` S ⇒ S E ` λt ⇒ 〈E, t〉

E ` t1 ⇒ S E ` t2 ⇒ n

E ` t1t2 ⇒ n+ 1

E ` t1 ⇒ 〈E′, t〉 E ` t2 ⇒ v2 E′, v2 ` t ⇒ v

E ` t1t2 ⇒ v

Using the following type definitions,

datatype term = Var of int | App of term * term | Lam of term | Lit of int | Suc

datatype value = Clos of env * term | Nat of int | Succ

withtype env = value list

write a procedure eval : term− > value that evaluates a term according to the above

rules. The procedure should raise an exception Error in case evaluation gets stuck.

2005–11–02 15:28

