
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 4

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, Chapter 8–9, Section 11.11

We consider the simply typed language SL whose abstract syntax and typing relation

are defined as follows:

T ∈ Ty = T → T | Bool | Int

x ∈ Var

t ∈ Ter = x | λx :T .t | t t | fix t

| false | true | if t then t else t

| 0 | t + 1 | t − 1 | t = 0

v ∈ Val ⊆ Ter = λx :T .t | false | true | 0 | v + 1

Γ ∈ TE = Var ⇀ Ty

Γ (x) = T

Γ ` x : T

Γ [x := T] ` t : T ′

Γ ` λx :T .t : T → T ′
Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` t1 t2 : T ′
Γ ` t : T → T

Γ ` fix t : T

Γ ` false : Bool Γ ` true : Bool

Γ ` t0 : Bool Γ ` t1 : T Γ ` t2 : T

Γ ` if t0 then t1 else t2 : T

Γ ` 0 : Nat

Γ ` t : Nat

Γ ` t + 1 : Nat

Γ ` t : Nat

Γ ` t − 1 : Nat

Γ ` t : Nat

Γ ` t = 0 : Bool

Exercise 4.1: Procedures in SL Find closed terms as follows:

(a) plus : nat → nat → nat such that plus describes a procedure that adds two num-

bers.

(b) times : nat → nat → nat such that times describes a procedure that multiplies two

numbers.

(c) fac : nat → nat such that fac describes a procedure that yields the factorial of a

number (i.e. n!).

2005–11–10 18:14

Exercise 4.2: Reduction Relation The reduction relation for SL is defined by inference

rules that can be modularized with respect to the different syntactic forms. Further-

more, we distinguish between descent rules and proper reduction rules. The syntactic

form fix t, for instance, contributes one descent rule and one proper reduction rule:

t → t′

fix t → fix t′ fix(λx :T .t) → t[x := fix(λx :T .t)]

(a) Which syntactic forms don’t have descent rules?

(b) Which syntactic forms have more than one descent rule?

(c) Which syntactic forms don’t have proper reduction rules?

(d) Which syntactic forms have more than one proper reduction rule?

(e) State all descent rules.

(f) State all proper reduction rules.

Exercise 4.3: Key Properties State the following properties for SL:

(a) Uniqueness of types.

(b) Progress.

(c) Preservation.

(d) Normalization.

(e) Functionality of reduction relation.

(f) Substitution lemma for reduction relation.

(g) Substitution lemma for typing relation.

Exercise 4.4: Big-Step Semantics The evaluation relation is a relation between terms

and values that can be described as follows: t ⇓ v a t →∗ v . It is possible to define

the evaluation relation independently of the reduction relation by means of inference

rules (one speaks of a so-called big-step semantics, see [Pierce, Exercise 3.5.17]). Here

are the inference rules for the syntactic forms fix t and t − 1:

t ⇓ v′ v′ = λx :T .t′ t′[x := fix v′] ⇓ v

fix t ⇓ v

t ⇓ 0

t − 1 ⇓ 0

t ⇓ v + 1

t − 1 ⇓ v

Find the inference rules for the other syntactic forms.

2005–11–10 18:14

Exercise 4.5: Environment Semantics Often it is useful to formulate the dynamic

semantics of a programming language with values that are not represented as terms.

For SL, for instance, numeric values may be represented as numbers. Giving values

their own representation has the consequence that procedure application cannot be

realized by substitution and that procedures cannot be represented as terms. Instead,

one uses value environments V ∈ VE = Var ⇀ Val mapping variables to values and

represents procedures as so-called closures 〈t, V〉 consisting of an abstraction (the so-

called code) and a value evironment. We want to formulate a dynamic semantics with

value environments for an untyped version of SL. We work with values of the form

n ∈ N

v ∈ Val = n | 〈λx . t, V〉 | 〈fix λx1 . λx2 . t, V〉

V ∈ VE = Var ⇀ Val

and an evaluation relation that contains all triples 〈V, t, v〉 such that the term t evalu-

ates in the value environment V to the value v . We write V ` t ⇒ v if 〈V, t, v〉 is an

element of the evaluation relation. The evaluation can be defined by inference rules.

Here are the inference rules for variables, abstractions and fix:

V(x) = v

V ` x ⇒ v

t = λx . t′

V ` t ⇒ 〈t, V〉

t = fix λx1 . λx2 . t′

V ` t ⇒ 〈t, V〉

(a) Give a well-typed term t such that fix t cannot be evaluated with the rule given for

fix although its reduction terminates with a value in the small-step semantics.

(b) State the inference rules for the other syntactic forms of SL.

Exercise 4.6: Implementation in Standard ML We implement the abstract syntax of

SL in Standard ML as follows:

type var = int

datatype ty = Arrow of ty * ty | Bool | Int

datatype ter = V of var | L of var * ty * ter | A of ter * ter

| Fix of ter | False | True | If of ter * ter * ter

| O | S of ter | P of ter | Z of ter

(a) Write a procedure check : (var → ty) → ter → ty that computes the type of a term

in a type environment. If the term is ill-typed, check should throw the exception

Error . The procedure realising the type environment throws Error for unbound

variables.

(b) Write a procedure eval : (var → value)→ ter → value that tries to evaluates a term

in a value environment. Represent values as follows:

datatype value = N of int | C of ter * (var -> value)

2005–11–10 18:14

