Semantics, WS 2005 - Assignment 5

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg
http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, Chapter 11

For the Curry-Howard Correspondence we consider a simply typed lambda calculus

ND with products and sums whose abstract syntax and typing relation are defined as
follows:

X e Tvar
TeTy = X|T-T|TxT|T+T|0]|1
x € Var
ie (1,2}

teTer = x| Ax:T.t|tt|(t,t)|ti|(,t)asT |casettt|ot]| ()
I'eTE = Var — Ty

Ix=T INx:=T]+t:T I'-61:T-T IT'-t:T
I'-x:T I''-Ax:Tt:T - T F'titp: T

I't1:1Th I't>:T> I'—t:T1 xXT> r—t:T; T=T,+T1>
' (t1,t2): 11 X T F'-ti:T; '@, t)yasT: T

I'ett:T1+ 1> I't;:T7 - T I'tty:To - T
I'~casetty tr: T

'-t:(T-0)-0
ot:T '-0:1

The reduction relation of ND is defined by means of the proper reduction rules
Ax:T.t)t' — t[x:=t"] (t1,t2).i—t; case ((i,t)asT)tytr —t;t
that can be applied to any subterm. Note that this means that the rules can be applied

in any order and also within abstractions.

Exercise 5.1: Nondeterminism Find a term t such that there exist exactly three terms
t’ such thatt — t’.

2005-11-17 18:57

Exercise 5.2: Properties
(a) State the preservation property for ND.
(b) State the confluence property for ND.

(c) State the termination property for ND.

Exercise 5.3: Reduction Contexts Define the reduction contexts for
(a) ND as defined above.

(b) SL as defined in Assignment 4.

Exercise 5.4: Reduction Discipline For this exercise we consider a version of ND
where reduction is disallowed for the following subterms: (i) t in Ax : T.t; (ii) £; and
tr in case t ty tp; (iil) t in 6 t.

(a) Define the reduction contexts that formalize this reduction discipline.

(b) State the descent rules that formalize this reduction discipline.

Exercise 5.5: Deterministic Reduction For this exercise we consider a computational
variant of ND obtained by deleting the syntactic form 6 t and by restricting the reduc-
tion discipline to be deterministic, call-by-value and left-to-right.

(a) Define the values for this language.
(b) State the proper reduction rules for this language.
(c) State the reduction contexts for this language.

(d) Define the evaluation relation t ¥ v by means of inference rules (big-step seman-
tics).

Exercise 5.6: Bool Show how the type Bool can be expressed with sums and unit:

Bool = 1+1
false =
true =

if t then t else tp, =

2005-11-17 18:57

Exercise 5.7: Natural Deduction The types of ND can be seen as Boolean formulas,
where X is a Boolean variable, T1 — T» is an implication, T; X T> is a conjunction, T7 + 1>
is a disjunction, and 0 and 1 are O and 1. A term t is called a proof for a formula T iff
@ + t: T. One can show that a formula has a proof if and only if it is valid. We use the

abbreviation X %' X - 0. Find proofs for the following formulas:

@ (X-Y)xX)—-Y
b) X+Y)—-XxY
(© (XXY)-X+Y

Exercise 5.8: Peirce’s Law Peirce’s Law is the Boolean formula
(X-Y)—-X)—-X

This formula is valid. Hence it can be proven in ND. One can show that every proof for
Peirce’s law in ND must involve a subterm formed with 8. This is somewhat surprising
since Peirce’s law just employs implication while 6 must be used with terms whose type
involves 0.

(a) Find a proof for Peirce’s Law in ND.

(b) Read http://en.wikipedia.org/wiki/Peirce’s_law.

Exercise 5.9: Fix If we extend ND with a recursion operator fix with the usual typing

rule
I'=t:T-T
I'fixt: T

we can prove everything.
(a) Let T be a type. Find a proof for T in ND extended with fix.

(b) Let T be a type. Find a proof for T in ND extended with fix that applies fix only to
terms of the form Axi:T1.Ax>:T>.t.

2005-11-17 18:57

Exercise 5.10: Proof Checker A SML interpreter provides a proof checker for ND.
Type variables, procedure types, products and 1 (unit) are built in. Sum types can be
obtained with

datatype (’a,’b) sum = L of ’a | R of 'b
and the type O can be realized as follows:

datatype null = N of null
val delta : (CCa -> null) -> null) -> ’a = fn _ => raise Match

Now we have a proof checker for ND. First we try a proof for 0 — X:

fn n:null => delta (fn f:’a->null => n)
fn:null - «

Since SML has type reconstruction, proofs can be written without type annotations:

fn n => delta (fn
fn: null - «

=> n)

If we bind the proof to an identifier p

val p = fn n => delta (fn => n)

val p : null - x

we obtain a polymorphic proof of 0 — T for all types T. Here is a proof for ((X +Y) x
(X + Z)) — (Y + Z) that exploits SML’s pattern matching and the polymorphic proof
p:
fn Ry,) =1Ly

| (_, Rz) =R z

| (L x, L) =p (fx
fn: (x, B) sum * (x — null, y) sum — (B, y) sum

Write your proofs for Exercise 5.7 in SML and check them with an interpreter.

2005-11-17 18:57

