
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 5

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, Chapter 11

For the Curry-Howard Correspondence we consider a simply typed lambda calculus

ND with products and sums whose abstract syntax and typing relation are defined as

follows:

X ∈ TVar

T ∈ Ty = X | T → T | T × T | T + T | 0 | 1

x ∈ Var

i ∈ {1,2}

t ∈ Ter = x | λx :T .t | t t | (t, t) | t.i | (i, t) as T | case t t t | δ t | ()

Γ ∈ TE = Var ⇀ Ty

Γx = T

Γ ` x : T

Γ [x := T] ` t : T ′

Γ ` λx :T .t : T → T ′
Γ ` t1 : T → T ′ Γ ` t2 : T

Γ ` t1 t2 : T ′

Γ ` t1 : T1 Γ ` t2 : T2

Γ ` (t1, t2) : T1 × T2

Γ ` t : T1 × T2

Γ ` t.i : Ti

Γ ` t : Ti T = T1 + T2

Γ ` (i, t) as T : T

Γ ` t : T1 + T2 Γ ` t1 : T1 → T Γ ` t2 : T2 → T

Γ ` case t t1 t2 : T

Γ ` t : (T → 0)→ 0

δ t : T Γ ` () : 1

The reduction relation of ND is defined by means of the proper reduction rules

(λx :T .t)t′ → t[x := t′] (t1, t2).i → ti case ((i, t) as T) t1 t2 → ti t

that can be applied to any subterm. Note that this means that the rules can be applied

in any order and also within abstractions.

Exercise 5.1: Nondeterminism Find a term t such that there exist exactly three terms

t′ such that t → t′.

2005–11–17 18:57



Exercise 5.2: Properties

(a) State the preservation property for ND.

(b) State the confluence property for ND.

(c) State the termination property for ND.

Exercise 5.3: Reduction Contexts Define the reduction contexts for

(a) ND as defined above.

(b) SL as defined in Assignment 4.

Exercise 5.4: Reduction Discipline For this exercise we consider a version of ND

where reduction is disallowed for the following subterms: (i) t in λx : T .t; (ii) t1 and

t2 in case t t1 t2; (iii) t in δ t.

(a) Define the reduction contexts that formalize this reduction discipline.

(b) State the descent rules that formalize this reduction discipline.

Exercise 5.5: Deterministic Reduction For this exercise we consider a computational

variant of ND obtained by deleting the syntactic form δ t and by restricting the reduc-

tion discipline to be deterministic, call-by-value and left-to-right.

(a) Define the values for this language.

(b) State the proper reduction rules for this language.

(c) State the reduction contexts for this language.

(d) Define the evaluation relation t ⇓ v by means of inference rules (big-step seman-

tics).

Exercise 5.6: Bool Show how the type Bool can be expressed with sums and unit:

Bool
def
= 1+ 1

false
def
=

true
def
=

if t then t1 else t2
def
=

2005–11–17 18:57



Exercise 5.7: Natural Deduction The types of ND can be seen as Boolean formulas,

where X is a Boolean variable, T1 → T2 is an implication, T1×T2 is a conjunction, T1+T2

is a disjunction, and 0 and 1 are 0 and 1. A term t is called a proof for a formula T iff

∅ ` t : T . One can show that a formula has a proof if and only if it is valid. We use the

abbreviation X
def
= X → 0. Find proofs for the following formulas:

(a) ((X → Y)×X) → Y

(b) (X + Y) → X × Y

(c) (X × Y) → X + Y

(d) X ×X

(e) X + Y → (X × Y)

(f) (X × Y) → X + Y

(g) 0→ X

(h) (X → Y)→ (Y → X)

Exercise 5.8: Peirce’s Law Peirce’s Law is the Boolean formula

((X → Y) → X) → X

This formula is valid. Hence it can be proven in ND. One can show that every proof for

Peirce’s law in ND must involve a subterm formed with δ. This is somewhat surprising

since Peirce’s law just employs implication while δmust be used with terms whose type

involves 0.

(a) Find a proof for Peirce’s Law in ND.

(b) Read http://en.wikipedia.org/wiki/Peirce’s_law.

Exercise 5.9: Fix If we extend ND with a recursion operator fix with the usual typing

rule
Γ ` t : T → T

Γ ` fix t : T

we can prove everything.

(a) Let T be a type. Find a proof for T in ND extended with fix.

(b) Let T be a type. Find a proof for T in ND extended with fix that applies fix only to

terms of the form λx1 :T1.λx2 :T2.t.

2005–11–17 18:57



Exercise 5.10: Proof Checker A SML interpreter provides a proof checker for ND.

Type variables, procedure types, products and 1 (unit) are built in. Sum types can be

obtained with

datatype (’a,’b) sum = L of ’a | R of ’b

and the type 0 can be realized as follows:

datatype null = N of null

val delta : ((’a -> null) -> null) -> ’a = fn _ => raise Match

Now we have a proof checker for ND. First we try a proof for 0→ X:

fn n:null => delta (fn f:’a->null => n)

fn : null → α

Since SML has type reconstruction, proofs can be written without type annotations:

fn n => delta (fn _ => n)

fn : null → α

If we bind the proof to an identifier p

val p = fn n => delta (fn _ => n)

val p : null → α

we obtain a polymorphic proof of 0 → T for all types T . Here is a proof for ((X + Y)×

(X + Z)) → (Y + Z) that exploits SML’s pattern matching and the polymorphic proof

p:

fn (R y, _) => L y

| (_, R z) => R z

| (L x, L f) => p (f x)

fn : (α, β) sum * (α → null, γ) sum → (β, γ) sum

Write your proofs for Exercise 5.7 in SML and check them with an interpreter.

2005–11–17 18:57


