
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 7

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, Chapter 20

With this assignment you will explore recursive types. There are several exercises that

explore the expressivity of types whose recursion goes through procedural types using

SML.

For now, we only consider iso-recursive types, equi-recursive types will be treated

later.

Exercise 7.1: Streams A stream represents an infinite sequence v1, v2, v3, . . . of val-

ues. In SML, we can implement streams with the recursive type

datatype α stream = S of unit → α × α stream

(a) Write a procedure stream : α → (α → α)→ α stream that yields for x and f the

stream x, fx, f (fx),

(b) Declare the stream 0,1,2, . . . of natural numbers.

(c) Write a procedure head : α stream → α that yields the head of a stream.

(d) Write a procedure tail : α stream → α stream that yields the tail of a stream.

(e) Write a procedure nth : int → α stream→ α that yields the nth element of a stream

(nth 1 s should yield the head of a stream).

(f) Write a procedure cons : α → α stream → α stream that puts a value at the begin-

ning of a stream.

(g) Write a procedure merge : α stream → α stream → α stream that merges two streams

v1, v2, v3, . . . and w1,w2,w3, . . . into a stream v1,w1, v2,w2, v3,w3,

Exercise 7.2: Fix Declare in SML a recursion operator

fix : ((α → β) → α → β) → α → β

without using procedural recursion. Use the recursive type

datatype (α,β) fix = F of (α,β) fix → α → β

2005–12–01 12:09

which makes it possible to apply a procedure f : (α,β)fix → α → β to itself (f (F f))

by lowering its type with the constructor F . Base your procedure fix on the untyped

recursion operator

S = λgfx.g(ff)x

fix = λg.(Sg)(Sg)

and give the variable f the type (α,β)fix.

Exercise 7.3: SR We consider a simply typed language SR with recursive types and

deterministic, left-to-right, call-by-value reduction:

X ∈ TVar

T ∈ Ty = 1 | T → T | T × T | T + T | X | µX.T

x ∈ Var

i ∈ {1,2}

t ∈ Ter = () | x | λx :T .t | t t | (t, t) | t.i | (i, t) as T | case t t t

| fold t as T | unfold t

v ∈ Val ⊆ Ter = () | λx :T .t | (v,v) | (i, v) as T | fold v as T

Γ ∈ TE = Var ⇀ Ty

The typing rules for fold and unfold are as follows:

Γ ` t : T[X := µX.T]

Γ ` fold t as µX.T : µX.T

Γ ` t : µX.T

Γ ` unfold t : T[X := µX.T]

(a) State the reduction contexts for SR.

(b) State the proper reduction rule(s) needed for fold and unfold.

(c) State the evaluation rules in big-step semantics for fold and unfold.

(d) Given types T1 and T2, give a recursion operator fix : ((T1 → T2) → (T1 → T2)) →

(T1 → T2).

(e) State a type Nat in SR that represents the natural numbers.

(f) State a value zero : Nat that represents the number 0.

(g) State a procedure succ : Nat → Nat that increments a number by 1.

(h) Given a type T , state a procedure ncaseT : Nat → (1→ T) → (Nat → T) → T .

(i) State a procedure add : Nat → Nat → Nat that adds two numbers. Use fix.

(j) State a type List in SR that represents lists of natural numbers.

2005–12–01 12:09

(k) State a value nil : List that represents the empty list.

(l) State a procedure cons : Nat → List → List that puts a number in front of a list.

(m) Given a type T , state a procedure lcaseT : List → (1 → T) → (Nat → List → T) → T .

(n) State a procedure length : List → Nat that yields the length of a list. Use fix.

Exercise 7.4: UN We consider an untyped language UN whose values are procedures

or integers:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | n+ 1

v ∈ Val ⊆ Ter = λx . t | n

UN’s evaluation is deterministic, left-to-right and call by value. A term is called pure

if it doesn’t contain arithmetic primitives. We say that a value v represents a natural

number n if v is closed and pure and v(λx.x + 1)0 evaluates to n.

We implement UN in SML using a technique that is quite different from the one we used

in Assignment 1. We start with the closed values of UN:

datatype cval = P of cval -> cval | N of int

The idendity procedure and the Church numeral c0 can be represented as follows:

val id = P (fn x => x)

val zero = P (fn f => id)

Next we implement an SML procedure apply that takes two closed values v1 and v2 of

UN and yields the closed value obtained by evaluating the application v1v2 in UN. If

v1v2 diverges in UN, apply v1 v2 will diverge in SML.

exception Error

fun apply (P f) x = f x | apply _ _ = raise Error

val apply : cval → cval → cval

UN’s operation t + 1 can be implemented as follows:

fun plus1 (N n) = N(n+1) | plus1 _ = raise Error

val plus1 : cval → cval

Now it’s your job to declare the following:

(a) A UN procedure succ : cval that yields a UN procedure representing n + 1 when

applied to a value representing n.

2005–12–01 12:09

(b) An SML procedure put : int → cval that yields a UN procedure representing n when

applied to a natural number n.

(c) A UN procedure derep : cval that yields the UN value n when applied to a value

representing n.

(d) An SML procedure get : cval → int that yields n when applied to a value represent-

ing n.

(e) A UN procedure add : cval that yields a UN procedure representing m + n when

applied to two procedures representing m and n.

(f) A UN procedure mul : cval that yields a UN procedure representing m · n when

applied to two procedures representing m and n.

Exercise 7.5: Translation Find a translation from SR to U (UN without numbers) such

that for every closed and well-typed term t of SR the following holds: t terminates in

SR if and only if its translation terminates in U.

() λx.x

λx :T .t λx.t

t1 t2 t1 t2

(t1, t2)

t.i

(i, t) as T

case t1 t2 t3

fold t as T

unfold t

2005–12–01 12:09

