
U
N

IV
E R S IT A

S

S
A

R
A V I E N

S
I S

Semantics, WS 2005 – Assignment 9

Prof. Dr. Gert Smolka, Dipl.-Inform. Andreas Rossberg

http://www.ps.uni-sb.de/courses/sem-ws05/

Recommended reading: Types and Programming Languages, Chapter 29–30

In this assignment we will explore the higher-order polymorphic lambda calculus Fω.

Fω is obtained from F by adding procedures taking types to types, and by considering

such procedures again as types. Consequently, there are different kinds of types, where

kinds are formalized as follows:

k ∈ Kind = ? | k→ k

Types of kind ? are called proper types and act as types of terms. Types of kind k → k′

are called type constructors and act as procedures taking types of kind k to types of

kind k′. The syntax of types is defined as follows:

X ∈ TVar

T ∈ Ty = X | T → T | ∀X :k.T | λX :k.T | T T ′

The well-kinded types are obtained with a kinding relation Γ ` T : k where the en-

vironment Γ maps type variables to kinds. The terms of Fω are as in F, except that

polymorphic procedures can take types of any kind as argument:

x ∈ Var

t ∈ Ter = x | λx :T .t | t t | λX :k.t | t T

The typing relation Γ ` t : T takes environments Γ mapping type variables to kinds

and term variables to types. To provide for the evaluation of type constructors, the

following typing rule is added:

Eq
Γ ` t : T T ≡ T ′ Γ ` T : k Γ ` T ′ : k

Γ ` t : T ′

There are several possibilities to define type equivalence T ≡ T ′. We use

T ≡ T ′
def
⇐⇒ T and T ′ have the same β-normal form

The β-normal form of a type is obtained by applying the β-rule

(λX :k.T)T ′ → T[X := T ′]

as long as it is applicable and wherever it is applicable. The free applicability of the

2006–01–13 15:59



β-rule can be specified by the following reduction contexts:

R = • | R → T | T → R | ∀X :k.R | λX :k.R | RT | T R

We write λX.t, λX.T and ∀X.T as abbreviations for the terms λX :?.t, λX :?.T

and ∀X :?.T .

Exercise 9.1: Sorting Relations

(a) State the inference rules defining the kinding relation Γ ` T : k of Fω. Assume

Γ ∈ TVar ⇀ Kind.

(b) State the inference rules defining the typing relation Γ ` t : T of Fω. Assume that

Γ maps type variables to kinds and term variables to types.

(c) Consider environments Γ mapping type variables to kinds and term variables to

types. An environment is well-formed if the types of the term variables are well-

kinded with respect to the kinds of the type variables. Give a formal definition

of well-formed finite environments. Use recursion on the size of the environment

(number of variables introduced).

Exercise 9.2: Polymorphic Lists We implement polymorphic lists in Fω.

(a) Give a type List : ?→ ? that implements list over an arbitrary type.

(b) Give the types of the polymorphic operations nil, cons and foldl.

(c) Implement the operations nil, cons and foldl.

(d) Write a procedure length : ∀X . List X → Nat that yields the length of a list. You

may use Nat , zero, succ, List, and foldl as names for the corresponding objects.

Exercise 9.3: ADTs in SML We consider the implementation of ADTs for variants (i.e.,

elements of binary sum types) in SML. We will use the names Var , left , right , scase for

the abstract type and the operations of the ADT.

(a) Declare a structure Var that implements a plain ADT providing variants carrying

integers or Booleans.

(b) Declare a functor GVar that implements a generic ADT providing variants.

(c) Declare a structure Var that implements a plain ADT providing variants carrying

reals or integers. Use the functor GVar .

(d) Declare a structure PVar that implements a polymorphic ADT providing variants.

Hint: www.ps.uni-sb.de/courses/sem-ws05/assignments/adt.sml

2006–01–13 15:59



Exercise 9.4: ADTs in Fω We will implement several ADTs for lists in Fω. The signa-

ture of an ADT is represented with a type

Sig : ?→ ?

= λZ. ∀X :k. T1 → ·· · → Tn → Z

where X represents the abstract type and T1, . . . , Tn are the types of the operations.

The variable Z must not occur free in T1, . . . , Tn. The ADT can then be implemented as

a procedure

imp : ∀Z. Sig Z → Z

= λZ. λf :Sig Z. f T t1 . . . tn

where T and t1, . . . , tn are the implementations of the abstract type and the operations.

Finally, a term t that uses the ADT and yields a result of type T can be realized with the

application

imp T (λX :k.λf1 :T1. · · · λfn :Tn. t)

where X and f1, . . . , fn act as names for the abstract type and the operations.

Now consider the signature of a plain ADT that implements lists over Nat :

L : ?

nil : L

cons : Nat → L → L

foldl : L → ∀Z. (Nat → Z → Z) → Z → Z

(a) Give a type Sig that represents the signature of the ADT.

(b) Write a procedure imp that implements the ADT. Use the code from Exercise 9.2.

(c) Consider a generic ADT that implements Lists over a type given as parameter.

(i) Give a type Sig′ such that Sig′ T represents the signature of an ADT that

implements lists over T .

(ii) Write a procedure imp′ such that imp′ T implements an ADT that imple-

ments lists over T .

(d) Consider an ADT that implements polymorphic lists as in Exercise 9.2.

(i) Give the signature of the ADT.

(ii) Give a type Sig′′ that represents the signature of the ADT.

(iii) Write a procedure imp′′ that implements the ADT.

2006–01–13 15:59



Exercise 9.5: Uniform Presentation We have already seen a uniform presentation of

F, which represents terms and types uniformly as expressions,

x ∈ Var

e ∈ Exp = x | λx :e.e | e e | Πx :e.e | ? | �

and formalizes the respective notions through a sorting relation Γ ` e : e′ where Γ ∈

Var ⇀ Exp. The same can be done for Fω.

(a) Show how the kinds, types and terms of Fω can be represented with expressions.

(b) State the sorting rules needed for Fω. The following should be satisfied:

e is a kind
def
⇐⇒ ∅ ` e : �

e is a type
def
⇐⇒ ∃Γ , e′ : Γ ` e : e′ ∧ e′ is a kind

e is a term
def
⇐⇒ ∃Γ , e′ : Γ ` e : e′ ∧ e′ is a type

(c) State the sorting rules needed for Fω if the expressions represent variables in de

Bruijn style:

n ∈ Var = N

e ∈ Exp = n | λe.e | e e | Π e.e | ? | �

Hint: Consult www.ps.uni-sb.de/courses/sem-ws05/assignments/f.pdf.

Exercise 9.6: Implementation of Fω We will implement Fω using uniform syntax. As

starting point, we take the implementation of F that we discussed last week (www.ps.uni-

sb.de/courses/sem-ws05/assignments/f.sml).

(a) Write a procedure norm : exp → exp that yields the β-normal form of well-kinded

types.

(b) Give an ill-kinded type that doesn’t have a β-normal form.

(c) Modify the procedure check : exp list → exp → exp so that it becomes a type checker

for Fω. This means that check nil e should yield

• the type of e if e is a closed and well-typed term.

• the kind of e if e is a closed and well-kinded type.

• � if e is a kind.

2006–01–13 15:59



In all other cases check nil e should raise an exception. Proceed as follows:

(i) Extend the rule for Π so that types of all kinds become admissible (in F only

so-called proper types of kind ? are admissible).

(ii) Modify the rules such that they put only β-normal types on the stack (the first

argument of check implementing the type environment). Make sure that the

procedure norm is only applied to expressions that have been established as

well-kinded types or kinds before (to avoid non-termination). Hint: Only the

rules for Π and λ put types on the stack.

(iii) Modify the rules such that check returns only β-normal expressions (under

the provision that the stack contains only β-normal expressions). Hint: Only

the rules for λ and applications need to be considered. If done right, the

procedure check will contain exactly three applications of norm, one in each

of the rules for λ, Π and applications.

(d) Write a procedure verify : exp → exp → bool such that verify e s returns true if and

only if e is a closed term, s is a closed type, and e has type s.

(e) Type-check your answers to Exercises 9.2 and 9.4 with the procedure verify.

(f) Write a procedure checkEnv : exp list → bool that checks whether an environment

is well-formed (see Exercise 9.1).

Exercise 9.7: βη-Type Equivalence If F is a type constructor k → k′, then λX :k.FX is

a different type constructor that behaves the same as F. However, with our definition of

type equivalence, F and λX :k.FX are not equivalent. This can be fixed by defining type

equivalence with respect to βη-normal forms, which are obtained with the β-rule and

the so-called η-rule:

λX :k.TX → T if X ∉ FV T

(a) Find a closed term that is ill-typed under β-type equivalence and well-typed under

βη-type equivalence.

(b) Extend your implementation of Fω (Exercise 9.6) so that it employs βη-type equiv-

alence. Hint: Use subst to write a procedure that checks whether a variable occurs

free in an expression.

Exercise 9.8: New Year’s Challenge: Multiplicative closure in linear time Consider

the following problem: Given natural numbers a, b, n such that a,b ≥ 2, compute the

first n elements of the set Ma,b = {ak · bl | k, l ∈ N } in O(n) time. For instance, if

a = 2 and b = 3, the first 10 elements of Ma,b are 1, 2, 3, 4, 6, 8, 9, 12, 16, 18. Try to

come up with a algorithm and you will realize that the problem isn’t as easy as it looks

(due to the O(n) requirement).

2006–01–13 15:59



Here is a naive algorithm. Start with a set S = {1} and iterate n-times as follows:

Remove the smallest element x from the set and replace it with ax and bx. Upon

termination, the removed elements are the first n elements of Ma,b. Here you can see

what happens for a = 2, b = 3 and n = 5:

{1} → {2,3} → {3,4,6} → {4,6,9} → {6,8,9,12} → {8,9,12,18}

To improve the algorithm, we implement the set S with two queues Qa and Qb, where

Qa takes ax and Qb takes bx when x is removed. Initially, both queues contain just

1. Since the queues contain their elements in strictly ascending order, the smallest

element of S always appears as the first element of at least one of the queues. Now

it is routine to implement a linear time algorithm with imperative data structures. An

implementation with functional data structures requires a clever data structure for the

queues.

We implement the queues with streams (see Assignment 7) as given by the signature:

stream : (unit → α∗α stream) → α stream

decons : α stream → α∗α stream

To obtain a linear time algorithm, we implement streams as follows:

datatype ’a state = E of ’a * ’a stream | O of unit -> ’a * ’a stream

withtype ’a stream = ’a state ref

fun stream f = ref(O f)

fun decons s = case s of ref(E p) => p

| ref(O f) => (s:=E(f()); decons s)

This avoids recomputing f () each time decons is applied to a stream.

In the following, use streams only according to the above signature, which hides their

imperative implementation.

(a) Write procedures head : α stream→ α, tail : α stream → α stream and take : int → α stream → α list

for streams.

(b) Write a procedure times : int → int stream→ int stream such that times k yields a

stream kx1, kx2, kx3, . . . when applied to a stream x1, x2, x3, . . ..

(c) Write a procedure merge : int stream → int stream → int stream that merges two

strictly ascending streams into one strictly ascending stream. A stream x1, x2, x3, . . .

is strictly ascending if x1 < x2 < x3 < . . . .

(d) Write a procedure rstream : α → (α stream → α stream) → α stream such that rstream x f

yields a stream s such that s = x :: f s if f is plain. A procedure f : α stream → α stream

is called plain if, for all n and s, accessing the n-th element of the result stream

f s will at most access the first n elements of the argument stream s.

2006–01–13 15:59



(e) Declare a constant time procedure mul : int → int → int stream such that mul a b

yields a strictly ascending stream whose elements are the elements of Ma,b.

(f) Convince yourself that take n (mul a b) runs in O(n) time.

(g) Our problem simplifies the problem of computing the so-called Hamming num-

bers. Read http://en.wikipedia.org/wiki/Hamming_number and write a procedure

that yields the n-th Hamming number in O(n) time.

(h) A general formulation of the problem is as follows. Let X ⊆ N. Then the multi-

plicative closure of X is the least set MC[X ] such that

MC[X] = {1} ∪ {mx |m ∈ MC[X]∧ x ∈ X }

Write a procedure mc : int → int list → int list that yields, in ascending order, the

first n elements of the multiplicative closure of a finite, nonempty set that doesn’t

contain 0 or 1. The procedure should run in O(kn) where k is the size of the set.

2006–01–13 15:59


