Constraint Graphs

A constraint graph is a functiong € V — VO U V! U V2 such that V is a finite set
of type variables and { (X,Y) | gX = (Y) } is terminating.

The letter g will always denote a constraint graph. Given a constraint graph g, a
type variable X is called a

terminal node if gX = ().

forward node if gX € V1.

branching node if gX € V2.

Fwd g def {(X,Y) | gX=(Y)} forward edges
Edgeg % Fwdgu {[(X,Y;) | gX = (Y1,Y2) Ai € {1,2}} edges
Cong def Fwdgu {(X,Y] - Y2) | gX =(Y1,Y2)} constraint

Note that Fwd g is a confluent and terminating relation. We define:

gX 4l ormal form of X with respect to Fwd g

A constraint graph g is acyclic if Edge g is terminating. If g is acyclic, every node
of g represents a type. We define the corresponding function ty g € Dom g — Ty
by recursion on Edge g:

ygX=X if gX={)
ygX=tygyY if gX=(Y)
ygX=tyghr—-tygY, if gX=(Y1,Y2)

Proposition 1 If g is acyclic, then { (X,ty g X) | X € Domg A gX +# X} is a
solved constraint equivalent to Con g.

Proposition 2 Con g satisfiable < g acyclic.

A flat constraint is a constraint C such that for every pair (T7,T>) € C both
components T; and T» are type variables. A combined constraint is a pair (g, E)
consisting of a graph function g and a flat constraint E such that E contains only
variables in Dom g. Equivalence of combined constraints is defined as follows:

(g,E) ~(g',E") & CongUE~Cong UE' A Domg = Domg’

With the unification rules shown in the following proposition one can compute
for (g, E) a graph function g’ such that (g,E) = (g',0).

Proposition 3 (Unification Rules)
1. (g, Eu{X=Y}) = (g,E)

if gX =gY (Reflexivity)
2. (9, EU{X=Y}) = (glgX:=gY], EU{X;1 =Y, Xz =Y2})

if gX = gY, g(gX) = (X1,X2) and g(gY) = (Y1, Y2) (Decomposition)
3. (g, Eu{X=Y}) = (glgX:=gY], E)

if gX + gY and g(gX) = () (Replacement)
4. (g, Eu{X=Y}) = (glgY :=gX], E)
if gX +gY and g(gY) = () (Replacement)

All rules leave the number of nodes unchanged, and Rules 2-4 increase the
number of forward nodes. Hence one arrives at a combined constraint (g’,)
after O(|E| + |Dom g|) steps if one begins with (g,E). Since g can be com-
puted in O(|Dom g|), a combined constraint (g, E) can be simplified in time
O(|E| + |Dom g|?) = O(|Dom g|?). Since g can be checked for cycles in linear
time, a combined constraint can be solved in quadratic time (i.e., O (|Dom glz)).

Rather than checking the acyclicity of the constraint graph at the end, one can
check the acyclicity at the beginning and strengthen the decomposition and re-
placement rules such that they don’t introduce cycles.

© G. Smolka, 5. 2. 2006

