
1

Constraint Graphs

A constraint graph is a function g ∈ V → V0∪V1∪V2 such that V is a finite set

of type variables and { (X,Y) | gX = 〈Y 〉 } is terminating.

The letter g will always denote a constraint graph. Given a constraint graph g, a
type variable X is called a

• terminal node if gX = 〈〉.

• forward node if gX ∈ V1.

• branching node if gX ∈ V2.

Fwd g
def
= { (X,Y) | gX = 〈Y 〉 } forward edges

Edge g
def
= Fwd g ∪ { (X,Yi) | gX = 〈Y1, Y2〉 ∧ i ∈ {1,2} } edges

Con g
def
= Fwd g ∪ { (X,Y1 → Y2) | gX = 〈Y1, Y2〉 } constraint

Note that Fwd g is a confluent and terminating relation. We define:

ĝX
def
= normal form of X with respect to Fwd g

A constraint graph g is acyclic if Edge g is terminating. If g is acyclic, every node

of g represents a type. We define the corresponding function ty g ∈ Dom g → Ty

by recursion on Edge g:

ty g X = X if gX = 〈〉
ty g X = ty g Y if gX = 〈Y 〉
ty g X = ty g Y1 → ty g Y2 if gX = 〈Y1, Y2〉

Proposition 1 If g is acyclic, then { (X, ty g X) | X ∈ Dom g ∧ gX ≠ X } is a

solved constraint equivalent to Con g.

Proposition 2 Con g satisfiable ⇐⇒ g acyclic.

A flat constraint is a constraint C such that for every pair (T1, T2) ∈ C both

components T1 and T2 are type variables. A combined constraint is a pair (g, E)
consisting of a graph function g and a flat constraint E such that E contains only

variables in Dom g. Equivalence of combined constraints is defined as follows:

(g, E) ≈ (g′, E′)
def
⇐⇒ Con g ∪ E ≈ Con g′ ∪ E′ ∧ Dom g = Dom g′

With the unification rules shown in the following proposition one can compute

for (g, E) a graph function g′ such that (g, E) ≈ (g′, �).

2

Proposition 3 (Unification Rules)

1. (g, E ∪ {X = Y}) ≈ (g, E)

if ĝX = ĝY (Reflexivity)

2. (g, E ∪ {X = Y}) ≈ (g[ĝX := ĝY], E ∪ {X1 = Y1, X2 = Y2})

if ĝX ≠ ĝY , g(ĝX) = 〈X1, X2〉 and g(ĝY) = 〈Y1, Y2〉 (Decomposition)

3. (g, E ∪ {X = Y}) ≈ (g[ĝX := ĝY], E)

if ĝX ≠ ĝY and g(ĝX) = 〈〉 (Replacement)

4. (g, E ∪ {X = Y}) ≈ (g[ĝY := ĝX], E)

if ĝX ≠ ĝY and g(ĝY) = 〈〉 (Replacement)

All rules leave the number of nodes unchanged, and Rules 2–4 increase the

number of forward nodes. Hence one arrives at a combined constraint (g′, �)
after O(|E| + |Dom g|) steps if one begins with (g, E). Since ĝ can be com-

puted in O(|Dom g|), a combined constraint (g, E) can be simplified in time

O(|E| + |Dom g|2) = O(|Dom g|2). Since g can be checked for cycles in linear

time, a combined constraint can be solved in quadratic time (i.e., O(|Dom g|2)).

Rather than checking the acyclicity of the constraint graph at the end, one can

check the acyclicity at the beginning and strengthen the decomposition and re-

placement rules such that they don’t introduce cycles.

© G. Smolka, 5. 2. 2006

