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1 Functional Programming and

Standard ML

For this course, we require familiarity with the basics of functional programming

and the programming language Standard ML. In case functional programming is

new to you, you should work through one of the texts given on the web pages

of the course. You should have a Standard ML interpreter installed on your

computer. If you have not worked with Standard ML before, we recommend

that you use Alice, an interpreter for Standard ML that comes with an easy to

use graphical user interface. Links to interpreters and to reading material on

Standard ML can be found on the web pages of the course.

Standard ML was designed by leading researches in the field of programming

languages. We use Standard ML in this course since it realizes key ideas of the

theory of programming languages in a practical language. In the following, we

review some features of Standard ML that are essential to this course. For now,

we will mainly work with examples, deeper explanations will be given later. You

can learn a lot about Standard ML by experimenting with the given examples on

an interpreter.

1.1 Equations and Declarations

The heart and soul of functional programming are functions and equations.

Computation is accomplished by applying equations from left to right.

Syntactically, a Standard ML program is a sequence of declarations. Here is

an example:

val a = 2*7

val b = 2*a-8

fun abs x = if x<0 then ~x else x

fun add x y = x + y

val succ = add 1

val pred = add ~1

val c = add a b + succ b

Each line is a declaration. A declaration starts with either the keyword val or fun

and continues with an equation. Declarations that start with fun define proce-

dures. Procedures are algorithmic versions of functions. A program is executed
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1 Functional Programming and Standard ML

by executing the declarations in the order they are given. The execution of the

first and second declaration produces the simplified equations

a = 14

b = 20

which are called bindings: The identifier a is bound to the number 14, and b

to 20. The declarations of the procedures abs, add, succ, and pred cannot be

further simplified. The procedures succ and pred are obtained from the two-

argument procedure add by applying it to a single argument. The procedure

succ computes the successor function for integers, and pred the predecessor

function. The declaration of c is executed by applying the simplified equations

(i.e., bindings) for a, b, add, and succ from left to right:

c = add a b + succ b

= add 14 b+ succ b

= add 14 20+ succ b

= (14+ 20)+ succ b

= 34+ succ b

= 34+ succ 20

= 34+ add 1 20

= 34+ (1+ 20)

= 34+ 21

= 55

The execution of the declaration for c produces the binding c = 50. Note that

every execution step amounts to a left-to-right application of an equation (oper-

ations like + come with built-in equations).

In the context of functional programming, execution is usually referred to as

evaluation. For instance, one says that the expression 9− 2 evaluates to 7.

1.2 Recursion

Suppose we want to write a procedure that computes, given two numbers x

and n, the power xn (n must be a natural number). We can start from the

equations

x0 = 1

xn = x ·xn−1 if n > 0
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1.3 Types

These equations yield an algorithm for computing powers, as can be seen from

the following example:

32 = 3 · 31 = 3 · (3 · 30) = 3 · (3 · 1) = 3 · 3 = 9

Note that the equations are applied from left to right. The equations are exhaus-

tive, that is, to each power at least one of the equations is applicable. Moreover,

the equations are terminating, that is, the equations cannot be applied infinitely

often to a given power. In Standard ML, the two equations can be formulated as

a recursive procedure:

fun power x n = if n<1 then 1 else x*power x (n-1)

power : int → int → int

Note that the procedure is formulated with a single equation, which combines

the original equations by means of a conditional.

1.3 Types

Standard ML is a statically typed language. Given a program, an interpreter will

derive types for all identifiers of the program and check that the program is well-

typed. Execution is only attempted if the program is well-typed. Standard ML is

designed such that the derived types are uniquely determined. Here are the types

of the identifiers declared by our example program:

a : int

b : int

abs : int → int

add : int → int → int

succ : int → int

pred : int → int

c : int

The type of a procedure starts with the types of the arguments and ends with

the type of the result, where the types are separated by the symbol "→". The type

int → int → int of add suggests that we get a procedure of type int → int when we

apply plus to a single argument of type int. Here are two notational conventions

for types and applications that free us from writing parentheses:

X → Y → Z := X → (Y → Z)

fxy := (fx)y
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1 Functional Programming and Standard ML

In set theory, we have the isomorphism equivalence

X × Y → Z ≅ X → (Y → Z)

Thus there are two possibilities for the representation of binary operations as

functions. The usual cartesian representation appearing on the left combines

the two arguments into a pair. The cascaded representation appearing on the

right gets along without pairing by taking the arguments one after the other. The

cascaded representation was discovered by Moses Schönfinkel around 1920. Its

often called curried representation, after Haskell Curry who promoted its use.

Exercise 1.3.1 Write two procedures

cas : (α∗ β → γ) → α→ β→ γ

car : (α→ β→ γ) → α∗ β→ γ

such that car(cas f ) = f and cas(car g) = g.

1.4 Polymorphic Higher-Order Procedures

A higher-order procedure is a procedure that takes a procedure as argument.

As example, we consider a function iter that satisfies the equation

iter n x f = fnx

The mathematical notation fn stands for the function obtained by repeating n

times the application of the function f :

f 0x = x

fnx = fn−1(fx) if n > 0

If we rewrite the equations with iter , we obtain

iter 0 x f = x

iter n x f = iter (n− 1) (fx) f if n > 0

We say that iter iterates the step function f on the start value x. Based on the

equations, we declare a procedure that computes the function iter :

fun iter n x f = if n<1 then x else iter (n-1) (f x) f

iter : int → α → (α → α) → α
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1.4 Polymorphic Higher-Order Procedures

Since there is no unique type for x and f , Standard ML types iter polymorphi-

cally using a type variable α. This means that iter can be used for every type α.

Now let’s look again at the computation of powers. Since xn can be obtained

by multiplying 1 n times with x, we have

xn = iter n 1 (λa. a · x)

The notation λa.a·x stands for the function that multiplies its argument with x.

Based on this equation, we can declare a procedure power that computes xn as

follows:

fun power x n = iter n 1 (fn a => a*x)

power : int → int → int

Note that power is not a recursive procedure. The recursion needed for comput-

ing powers is obtained from the higher-order procedure iter . We now see that

iter provides a recursion scheme that can be used to write procedures without

explicit recursion.

Recall the definition of the factorials:

0! = 1

n! = n · (n− 1)! if n > 0

We can compute factorials with iter if we start from the pair (1,0!). This can be

seen from the equations

(n+ 1, n!) = f(n, (n− 1)!) if n > 0

f(k, a) = (k+ 1, k · a)

From these equations we obtain the procedure

fun fac n = #2(iter n (1,1) (fn (k,a) => (k+1,k*a)))

fac : int → int

The projection operator #2 yields the second component of a tuple.

Exercise 1.4.1 (Fibonacci Numbers) Use iter to write a procedure fib : int → int

that satisfies the equation fib n = if n < 2 then n else fib(n− 1)+ fib(n− 2).

Exercise 1.4.2 (Loops) Consider the procedure

fun loop x p f = if p x then loop (f x) p f else x

Write a procedure gcd : int → int → int that yields the greatest common divisor of

two positive numbers. Use loop to realize the necessary recursion. The procedure

should satisfy the equation gcd x y = if x = 0 then y else gcd (y mod x) x.
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1 Functional Programming and Standard ML

1.5 A General Recursion Operator

We will now develop a higher-order procedure fix that is as powerful as explicit

recursion. That is, every procedure with explicit recursion can be rewritten with

fix to an equivalent procedure not using explicit recursion.

As starting point we take the recursive procedure

fun fac n = if n<2 then 1 else n*fac(n-1)

fac : int → int

We eliminate the recursion by taking the procedure needed for the recursion as

argument:

fun fac’ fac n = if n<2 then 1 else n*fac(n-1)

fac : (int → int) → int → int

We call fac′ the scheme for fac. We now observe that the procedure fac′ fac

behaves as the procedure fac, a fact that we can express with the equation

fac′ fac = fac

When we apply the procedure fix to fac′, we obtain a procedure that behaves like

the procedure fac, a fact that we express with the equation

fix fac′ = fac

We now have enough information to declare the procedure fix:

fun fix f x = f (fix f) x

fix : ((α → β) → α → β) → α → β

Using fix, we can declare a procedure computing factorials as follows:

val fac = fix fac’

fac : int → int

The name fix for the recursion operator comes from the notion of a fixed

point. In general, x is called a fixed point of a function f if fx = x. The

equations above say that fac is a fixed point of fac′, and that fix applied to fac′

yields a fixed point of fac′.

Note that iter terminates if it is used with a terminating procedure. In con-

trast, fix may yield a non-terminating procedure if it is aplied to a terminating

procedure (i.e., fix(fn f ⇒ fn x ⇒ f x). This tells us that the expressivity of fix

comes with the price that one has to worry about termination. In fact, recursion

theory tells us that there is no programming language such that every procedure

terminates and every total computable functions can be computed by at least

one of its procedures.
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1.6 Lists

Exercise 1.5.1 (Powers) Write a procedure power : int → int → int such that

power x n = xn. Use fix to realize the necessary recursion.

Exercise 1.5.2 (Conditionals) Write a procedure

cond : bool → (unit → α)→ (unit → α)→ α

such that cond t0 (fn () ⇒ t1) (fn ()⇒ t2) is semantically equivalent to the ex-

pression if t0 then t1 else t2 . The type unit has exactly one element, which is the

empty tuple (). Explain why the type bool → α→ α→ α does not suffice for cond

(assume the execution of either t1 or t2 does not terminate). The technique of

postponing the evaluation of an expression by packaging it into a procedure is

known as λ-lifting.

1.6 Lists

In set theory, finite sequences can be represented as tuples 〈x1, . . . , xn〉. There is

an empty tuple 〈〉, and, for every x, a singleton tuple 〈x〉. We use X∗ to denote

the set of all tuples whose components are in the set X.

For programming, a recursive representation of finite sequences as lists is

often preferable. Given a set X, the set L(X) of lists over X is defined as follows:

L(x) := {〈〉} ∪ (X ×L(X))

Thus a list over X is either the empty tuple (the empty list) or a pair 〈x, xs〉

of an x ∈ X and a list xs over X. There is a bijection between X∗ and L(X)

that preserves the characteristic properties of sequences. We use the following

notations:

nil := 〈〉

x :: xr := 〈x, xr〉 read “x cons xr”

x1 :: x2 :: xr := x1 :: (x2 :: xr)

[x1, . . . , xn] := x1 :: . . . xn :: nil

Standard ML provides lists based on these notations. For every type T , the type

T list has the lists over T as elements. Nil and cons are polymorphically typed:

nil : α list

(::) : α∗α list → α list

Syntactically, nil is a constant and :: is an infix operator (like + for numbers).

Given a list x :: xr , we refer to x as the head and to xr as the tail of the list.
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1 Functional Programming and Standard ML

Length and concatenation of lists are defined as follows:

|[x1, . . . , xn]| := n length

[x1, . . . , xm]@[y1, . . . , yn] := [x1, . . . , xm, y1, . . . , yn] concatenation

Length and concatenation can be computed recursively:

|nil| = 0

|x :: xr| = 1+ |xr|

nil @ ys = ys

(x :: xr)@ ys = x :: (xr @ ys)

In Standard ML, these equations can be realized with polymorphic procedures:

fun length nil = 0

| length (x::xr) = 1 + length xr

length : α list → int

fun append nil ys = ys

| append (x::xr) ys = x::append xr ys

append : α list * α list → α list

Note that the equations appear directly in the declarations of the procedures.

Given the straightforward structure of lists, there is no need to combine the

equations for nil and cons with a conditional. To combine the equations into one

with a conditional, we need the following procedures:

fun null nil = true

| null (x::xr) = false

null : α list → bool

fun hd nil = raise Empty

| hd (x::xr) = x

hd : α list → α

fun tl nil = raise Empty

| tl (x::xr) = xr

tl : α list → α list

The expression raise Empty will raise the exception Empty. Now we can write

append with a conditional:

fun append xs ys = if null xs then ys

else hd xs :: append (tl xs) ys

append : α list * α list → α list
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1.6 Lists

Here is procedure that yields the length of a list.

fun len xs = fix (fn f => (fn nil => 0 | x::xr => 1 + f xr)) xs

It realizes the necessary recursion with fix.

The canonical recursion scheme for lists is

fun foldl f y nil = y

| foldl f y (x::xr) = foldl f (f(x,y)) xr

foldl : ( α * β → β ) → β → α list → β

The evaluation of foldl f y1 [x1, . . . , xn] is best understood graphically:

xn

x2

x1

f

f

f

y1

The computation is bottom-up. First the step function f is applied to the first list

element x1 and the start value y1, which yields an intermediate value y2. Next f

is applied to x2 and y2, which yields y3. Finally, f is applied to xn and yn,

which yields the final result. Here are procedures that compute the sum and the

product of the elements of a list over integers:

val sum = foldl op+ 0

sum : int list → int

val product = foldl op* 1

sum : int list → int

The expression op+ and op∗ provide the procedures that correspond to the

operations + and *.

Reversion of lists is defined as follows:

rev [x1, . . . , xn] := [xn, . . . , x1]

Using foldl, we can declare a procedure that reverses lists as follows:

fun rev xs = foldl op:: nil xs

α list → α list

Recall that Standard ML will type

val rev’ = foldl op:: nil

monomorphically, that is, rev′ can only be used with a single type, which is

determined when rev′ is used first. Polymorphic typing, if at all possible, can

always be forced by declaring a procedure with fun.

We can also declare a procedure that concatenates lists with foldl:
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1 Functional Programming and Standard ML

fun append xs ys = foldl op:: ys (rev xs)

If we replace rev with its definition, we obtain

fun append xs ys = foldl op:: ys (foldl op:: nil xs)

Exercise 1.6.1 Write a procedure mapr : (α→ β) → α list → β list that satisfies

the equation mapr f [x1, . . . , xn] = [f xn, . . . , f x1]. Use foldl to realize the neces-

sary recursion.

Exercise 1.6.2 Write a procedure list : int → (int → α)→ α list that satisfies the

equation list n f = [f 1, . . . f n]. Use iter to realize the necessary recursion.
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2 PCF

We now change our mode of investigation. Rather than exploring a complex

programming language such as Standard ML, we will define an idealized language

PCF. At the example of PCF, we will illustrate basic mathematical techniques for

the definition of programming languages. PCF was introduced around 1975 by

Gordon Plotkin. We can see PCF as a fairly minimal language that, for every

computable funtion, provides at least one procedure that computes it. In fact,

the acronym PCF stands for partial computable functions.

PCF is an explicitly typed language where the argument variables of proce-

dures must be introduced with a type. There is no polymorphism. Procedures

are described with λ and recursion is obtained with fix. PCF has two base types,

bool and nat (the natural numbers).

Required Reading: Pierce, Chapter 3. Introduces PCF without procedures. Ex-

plains inference rules and other basics.

2.1 Abstract Syntax

Figure 2.1 shows the abstract syntax of PCF. It defines sets of syntactic objects

whose elements are called types, variables, values and terms. There are the

inclusions Var ⊆ Val ⊆ Ter . The definition of values and terms is mutually

recursive. There is only one variable binder (λ). A term is open if it contains a

free occurrence of a variable, and closed otherwise. For technical convenience,

variables are treated as values. Closed values represent the proper values, that

is, the Boolean values, the natural numbers, and the procedures of PCF.

Syntactic objects are represented as pairs 〈n,γ〉 where n is the variant num-

ber and γ is the constituent tuple. For instance, an abstraction λx:T . t is rep-

resented as the pair 〈8, 〈x, T , t〉〉, where 8 is the variant number and 〈x, T , t〉 is

the constituent tuple. Abstractions have the variant number 9 since this is what

we obtain if we number the syntactic variants introduced in Figure 2.1 starting

from 1. Variables receive the variant number 4 and hence are represented as

pairs 〈4, k〉 where k is a natural number.

We will implement the mathematical definitions for PCF in Standard ML. The

abstract syntax can be implemented as follows:

15



2 PCF

T ∈ Ty ::= bool | int | T → T

x ∈ Var := N

v ∈ Val ::= x | false | true | 0 | succ v | λx:T .t

t ∈ Ter ::= v | if t then t else t | succ t | pred t | iszero t | t t | fix t

Figure 2.1: PCF: Abstract syntax

datatype ty = Bool | Int | Proc of ty * ty

type var = string

datatype ter =

False | True | If of ter*ter*ter

| O | Succ of ter | Pred of ter |Iszero of ter

| V of var | A of ter*ter | L of var*ty*ter | Fix of ter

Because Standard ML doesn’t have subtyping, we don’t introduce a type for val-

ues and define the type of terms directly. Moreover, variables are represented

by the type string that is disjoint from the type ter . So there is a difference be-

tween a variable x and the term V x that just consists of the variable x. Here is

a procedure that tests whether a variable occurs free in a term:

fun free x (V y) = (x=y)

| free x False = false

| free x True = false

| free x (If(t0,t1,t2)) = free x t0 orelse free x t1 orelse free x t2

| free x O = false

| free x (Succ t) = free x t

| free x (Pred t) = free x t

| free x (Iszero t) = free x t

| free x (A(s,t)) = free x s orelse free x t

| free x (L(y,ty,t)) = x<>y andalso free x t

| free x (Fix t) = free x t

free : var → ter → bool

Exercise 2.1.1 (Values) Write a procedure value : term → bool that tests whether

a term is a value.

Exercise 2.1.2 (Substitution) Write a procedure subst : var → ter → ter → ter

such that subst x s t yields the term that is obtained from t by replacing every

free occurrence of the variable x with the term s. Don’t worry about capture.
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2.2 Typing Relation

Γ ⊢ x : T
(x, T) ∈ Γ

Γ ⊢ false : bool Γ ⊢ true : bool

Γ ⊢ t0 : bool Γ ⊢ t1 : T Γ ⊢ t2 : T

Γ ⊢ if t0 then t1 else t2 : T Γ ⊢ 0 : nat

Γ ⊢ t : nat

Γ ⊢ succ t : nat

Γ ⊢ t : nat

Γ ⊢ pred t : nat

Γ ⊢ t : nat

Γ ⊢ iszero t : bool

Γ ⊢ t1 : T2 → T Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T

Γ[x:=T1] ⊢ t : T

Γ ⊢ (λx : T1. t) : T1 → T

Γ ⊢ t : T → T

Γ ⊢ fix t : T
T functional

Figure 2.2: Inference rules defining the typing relation

2.2 Typing Relation

We need a definition that says which terms are well-typed and what are the types

of well-typed terms. To treat open terms, we provide types for free variables by

means of a type environment. A type environment is a function Γ ∈ Var ⇀ Ty.

Hence Γ ⊆ Var×Ty for every type environment γ. The simplest type environment

is 0 (the empty set). We need the notation

Γ[x:=T] := {(x, T)} ∪ { (y, S) ∈ Γ | x ≠ y }

Note that Γ[x:=T] is the type environment that behaves everywhere like Γ except

on x, where it yields T .

The typing relation is a set ⊢ ⊆ (Var ⇀ Ty) × Ter × Ty. The typing relation

will be defined such that (Γ , t, T) ∈ ⊢ holds if and only if t is well-typed and has

type T with respect to Γ . We write Γ ⊢ t : T for (Γ , t, T) ∈ ⊢. The typing relation

is defined recursively by the inference rules appearing in Figure 2.2.

There is exactly one inference rule for every syntactic form of terms, and the

terms in the premises of the rules are always constituents of the term in the

conclusion. Hence we have a recursion that reduces the size of terms. The rules

are algorithmic in that they describe a recursive procedure that given Γ and t

yields the unique type T such that Γ ⊢ t : T if it exists.

Proposition 2.2.1 (Unique Type) Given Γ and t, there is at most one T such that

Γ ⊢ t : T .

Proposition 2.2.2 If Γ ⊢ t : T and Γ ⊆ Γ ′, then Γ ′ ⊢ t : T .
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v ⇓ v
v ∈ {0, false, true} ∪ Var or v = λx:T . t

t0 ⇓ true t1 ⇓ v

if t0 then t1 else t2 ⇓ v

t0 ⇓ false t2 ⇓ v

if t0 then t1 else t2 ⇓ v

t ⇓ v

succ t ⇓ succ v

t ⇓ 0

pred t ⇓ 0

t ⇓ succ v

pred t ⇓ v

t ⇓ 0

iszero t ⇓ true

t ⇓ succ v

iszero t ⇓ false

t1 ⇓ λx:T . t t2 ⇓ v2 [x := v2]t ⇓ v

t1 t2 ⇓ v

t ⇓ v1 [x := fix v1]t1 ⇓ v

fix t ⇓ v
v1 = λx:T . t1

Figure 2.3: Inference rules defining the evaluation relation

Both propositions can be shown by inductive proofs that, for each rule, show

that the conclusion satisfies the claim if the premises satisfy the claim. This form

of induction is known as rule induction. Later, we will give a careful analysis of

rule induction. In the literature, rule induction is often referred to as induction

on the length of derivations.

Exercise 2.2.3 (Elaboration) Write a procedure elab : (var → ty) → ter → ty that

yields the type of a term. Raise the exception Error if the term is not well-typed.

The empty type environment and an update operation for environments can be

declared as follows:

exception Error

fun empty x = raise Error

fun update f x t y = if y=x then t else f y

2.3 Big-Step Semantics

We will now define an evaluation relation ⇓ ⊆ Ter × Val such that t ⇓ v holds

if and only if the term t evaluates to v . The evaluation relation is defined recur-

sively by the inference rules appearing in Figure 2.3. The approach that defines

the evaluation relation of a language directly with inference rules is known as

big-step semantics.
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2.4 Small-Step Semantics

The rules for applications and fix make use of term substitution, which, in

general, is a fairly complex operation. Term substitution appears with the nota-

tion [x:=s]t which stands for the term that is obtained from t by capture-free

replacement of ever free occurrence of x with s. The tricky point about substi-

tution is the capture-freeness. If s is closed, capture-freeness is not a issue and

we can simply replace ever free occurrence of x with s in the obvious way (see

Exercise 2.1.2).

The rules defining the evaluation relation are agorithmic in that they yield a

procedure that, given a term t, computes the value v of t (i.e., t ⇓ v) if it exists.

Proposition 2.3.1 (Determinism) Given t, there is at most one v such that t ⇓ v .

Proposition 2.3.2 (Type Preservation) If Γ ⊢ t : T and t ⇓ v , then Γ ⊢ v : T .

Exercise 2.3.3 (Evaluation) Write a procedure eval : ter → ter that yields the

value of a closed term if it exists. Raise the exception Error if eval must quit

because of a type inconsistency or a free variable occurrence.

Exercise 2.3.4 Given a well-typed closed term t for which there is no value v

such that t ⇓ v .

Exercise 2.3.5 The evaluation relation is defined for all terms, not just well-

typed terms. Explain why the term (λx:int.xx)(λx:int.xx) does not evaluate

to a value.

2.4 Small-Step Semantics

If we evaluate a term t, there may be two reasons for not obtaining a value: either

the evaluation does not terminate or the evaluation gets stuck because there is

a type error. This distinction is not modelled by the evaluation relation, but it

is implicitly contained in the inference rules defining the evaluation relation. To

make the distinction explicit, we now define a reduction relation →∈ Ter × Ter

that models single computation steps and relates to the evaluation relation in

that t ⇓ v ⇐⇒ t → ·· · → v . Given the reduction relation, an non-terminating

evaluation of t appears as an infinite reduction chain t → t1 → t2 → t3 → ·· · is-

suing from t, and an evaluation error of t appears as an finite reduction chain

t → ·· · → t′ such that t′ is neither a value nor reducible (i.e., there is no t′′ such

that t → t′′).

We define the reduction relation recursively with the inference rules appear-

ing in Figure 2.4. The rules without premisses are called proper reduction rules,
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if false then t1 else t2 → t2 if true then t1 else t2 → t1

pred 0 → 0 pred(succ v)→ v

iszero 0 → true iszero(succ v)→ false

(λx:T .t)v → [x:=v]t fix v → [x:=fix v] t
v = λx:T .t

t0 → t
′
0

if t0 then t1 else t2 → if t′0 then t1 else t2

t → t′

succ t → succ t′
t → t′

pred t → pred t′
t → t′

iszero t → iszero t′

t1 → t
′
1

t1 t2 → t
′
1 t2

t → t′

v t → v t′
t → t′

fix t → fix t′

Figure 2.4: Inference rules defining the reduction relation

and the rules with premisses are called descent rules. The approach that de-

fines the reduction relation of a language directly with inference rules is known

as small-step semantics.

The proper reduction rules follow directly from the evaluation rules. The

same is true for the descent rules, with the exception of

t → t′

v t → v t′

In contrast to the alternative descent rule

t2 → t
′
2

t1 t2 → t1 t
′
2

the descent rule appearing in Figure 2.4 forces that the first constituent of an

application is reduced before the second constituent. This order is not present

in the evaluation rule for applications:

t1 ⇓ λx:T . t t2 ⇓ v2 [x := v2]t ⇓ v

t1 t2 ⇓ v

The property t ⇓ v ⇐⇒ t → ·· · → v will hold no matter which of the two

descent rules we use. However, with the descent rule in Figure 2.4 we obtain a

deterministic reduction relation.
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2.5 Evaluation Contexts

Proposition 2.4.1 (Determinism) Given t, there is at most one term t′ such that

t → t′.

Proposition 2.4.2 (Coincidence) For every term t and every value v , we have

t ⇓ v if and only if t → ·· · → v .

A term t is called reducible if there is a term t′ such that t → t′.

Proposition 2.4.3 (Progress) Every closed and well-typed term is either a value

or reducible.

Proposition 2.4.4 (Type Preservation) If Γ ⊢ t : T and t → t′, then Γ ⊢ t′ : T .

Together, progress and type preservation yield type safety:

Proposition 2.4.5 (Type Safety) If 0 ⊢ t : T , then there is either a value v such

that t → ·· · → v , or the reduction of t does not terminate.

2.5 Evaluation Contexts

A context is term with a hole. Evaluation contexts are defined as follows:

C ::= [] | if C then t else t | succ C | pred C | iszero C | C t | v C | fix C

The application of a context C to a term t yields the term that is obtained by

filling the hole of C with t. We denote this term with C[t].

The top-level reduction relation→0 ⊆ Ter×Ter is the relation defined by the

proper reduction rules. Note that →0 ⊆ →.

A term t is called a redex if there is a term t′ such that t →0 t
′. An evaluation

context C is called a reduction context for a term t if there exists a redex s such

that t = C[s].

Proposition 2.5.1 For every term t:

1. There exists at most one evaluation context C such that there exists a redex s

such that t = C[s]. If it exists, we call C the reduction context of t.

2. There exists at most one redex s such that there exists an evaluation context C

such that t = C[s]. If it exists, we call s the reduction redex of t.

3. t is reducible if and only if there exists a reduction context C for t and a

redesx s such that t = C[s].

Proposition 2.5.2 For all terms t, t′:

t → t′ ⇐⇒ ∃s, s′, C : t = C[s] ∧ s →0 s
′ ∧ C[s′] = t′
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2.6 Closure Semantics

We will now consider a semantics that represents values semantically. In partic-

ular, the natural numbers are represented as natural numbers. Moreover, proce-

dures are represented as so-called closures. In contrast to the big- and small-step

semantics we have seen before, the inference rules defining the closure seman-

tics of PCF do not make use of substitution. As it comes to the implementation

of programming languages, closure semantics is a more realistic model than big-

and small-step semantics.

We start with the definition of a set of semantic values:

SV := B of {0,1} Boolean value

| N of N natural number

| C of Var × Ter × (Var ⇀ SV ) closure

| R of Var × Var × Ter × (Var ⇀ SV ) recursive closure

The functions φ ∈ Var ⇀ SV are called value environments. The letter φ

will always denote a value environment. Similiar to syntactic objects, semantic

values are represented as pairs whose first component is a variant number. For

instance, B 0 = (1,0) and Nn = (2, n).

A closure C(x, t,φ′) represents a procedure with an argument variable x, a

body t, and an environment φ′. The environment provides the values of the free

variables of t that are different from x. When the closure is applied, there will

be a value for x, which means that we can evaluate the body t in an environment

that binds all of its free variables.

A recursive closure R(f , x, t,φ) represents the scheme of a recursive pro-

cedure with a recursion variable f , an argument variable x, a body t, and an

environment φ′. When the recursive closure is applied, there will be a value

for x. The body t will then be evaluated in the environment obtained from φ′ by

binding x to the argument value and f to the recursive closure R(f , x, t,φ).

The closure-evaluation relation is a subset of (Var ⇀ SV )×Ter×SV . We write

φ ⊢ t ⊲ w if the triple (φ, t,w) is an element of the closure-evaluation relation.

We define the closure-evaluation relation such that φ ⊢ t ⊲ w if and only if

the term t evaluates to the semantic value w in the environment φ. Figure 2.5

defines the closure-evaluation relation by means of inference rules.

There is an important syntactic restriction that comes with closures. As one

can see from the respective inference rule in Figure 2.5, fix can only be applied

to double abstractions. More general uses of fix can be compiled as follows

fix t ⇝ (λp.fix(λf .λx.pfx))t
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2.6 Closure Semantics

φ ⊢ x ⊲w
(x,w) ∈ φ

φ ⊢ false⊲ B0 φ ⊢ true⊲ B1

φ ⊢ t0 ⊲ B0 φ ⊢ t2 ⊲w

φ ⊢ if t0 then t1 else t2 ⊲w

φ ⊢ t0 ⊲ B1 φ ⊢ t1 ⊲w

φ ⊢ if t0 then t1 else t2 ⊲w

φ ⊢ 0⊲N0

φ ⊢ t ⊲Nn

φ ⊢ succ t ⊲ Nn
m = n+ 1

φ ⊢ t ⊲Nn

φ ⊢ pred t ⊲Nm
m = if n = 0 then 0 else n− 1

φ ⊢ t ⊲Nn

φ ⊢ iszero t ⊲ Bm
m = if n = 0 then 1 else 0

φ ⊢ t1 ⊲w1

φ ⊢ t2 ⊲w2

φ′[x:=w2] ⊢ t ⊲w

φ ⊢ t1 t2 ⊲w
w1 = C(x, t,φ′)

φ ⊢ t1 ⊲w1

φ ⊢ t2 ⊲w2

(φ′[f :=w1])[x:=w2] ⊢ t ⊲w

φ ⊢ t1 t2 ⊲w
w1 = R(f , x, t,φ′)

φ ⊢ λx:T . t ⊲ C(x, t,φ)

φ ⊢ fix(λf :T1. λx:T2. t) ⊲ R(f , x, t,φ)

Figure 2.5: Inference rules defining the closure-evaluation relation

The closure semantics agrees with the big step semantics if fix is only applied

to double abstractions. Since the two semantics use different representations

of values, expressing this statement precisely (what exactly means agree?) is

tedious. However, its easy to state the following:

Proposition 2.6.1 For every closed term t that applies fix only to double abstrac-

tions, we have the following: (∃v : t ⇓ v) ⇐⇒ (∃w : 0 ⊢ t ⊲w).

We will see in the next section that the seemingly weak agreement expressed

by the proposition is in fact a rather strong agreement.
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2.7 Contextual Equivalence

When we program, we employ an intuitive notion of semantic equivalence for

the expressions forming the program. Given two semantically equivalent expres-

sions s and t, the idea is that replacing s with t does not affect the result of a

computation.

Around 1975, Plotkin came up with a surprisingly simple formal definition of

semantic equivalence. Since Plotkin’s definition is based on contexts and there

may be different notions of semantic equivalence, the resulting relation is known

as contextual equivalence.

This time we will employ a general notion of context where contexts may have

their hole at any subterm position:

C ::= [] | if C then t else t | if t then C else t | if t then t else C

| succ C | pred C | iszero C | C t | t C | λx.C | fix C

The application of a context C to a term t yields the term that is obtained by

filling the hole of C with t. We denote this term with C[t].

A congruence on the set of terms is an equivalence relation ∼ on Ter such

that s ∼ t =⇒ C[s] ∼ C[t] for all terms s, t and all contexts C . A congruences is

an abstract notion of equality that supports replacing equals with equals. Clearly,

semantic equivalence for PCF should be a congruence.

We call a congruence ∼ compatible if →0 ⊆ ∼. Compatibility means, that s

and t are congruent if s can be obtained from t by a top level application of

a proper reduction rule. Obviously, semantic equivalence for PCF should be a

compatible congruence.

Proposition 2.7.1 If ∼ is a compatible congruence, then:

1. s → t =⇒ s ∼ t

2. s ⇓ v =⇒ s ∼ v

We say that a term t converges if there is a value v such that t ⇓ v . A

term diverges if it doesn’t converge. Note that all values converge, and that

applications of the form xy diverge. Contextual equivalence of terms is defined

as follows:

s ∼ t :⇐⇒ ∀C : C[s] converges ⇐⇒ C[t] converges

Proposition 2.7.2 Contextual equivalence is a compatible congruence relation.

At first glance it seems that contextual equivalence makes too many terms

equivalent, but this is not the case. To show that two term s, t are not equiv-

alent, it suffices to give a context C such that C[s] converges and C[t] doesn’t

converge. We say that such a context C separates s and t.
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Here are examples:

1. The terms 0 and succ 0 are not equivalent equivalent since they are separated

by the context if iszero [] then 0 else 0 0.

2. Two distinct variables x and y are not equivalent since they are separated

by the context (λx.[]0)(λx.x). (We don’t give argument types because they

don’t matter for the example.)

3. The terms 0 and pred 0 are contextually equivalent since pred 0 →0 0.

Proposition 2.7.3 s 6∼ t if one of the following conditions holds:

1. There is a context separating s and t.

2. There are a context C and two values v1, v2 such that C[s] ⇓ v1, C[t] ⇓ v2

and v1 6∼ v2.

Proposition 2.7.4 If v1, v2 are closed values such that both have eithe type bool

or nat, then v1 ∼ v2 if and only if v1 = v2.

There are different possibilities for the definition of contextual equivalence.

We have chosen one that is technically simple but has the drawback of ignoring

types. If you want to know more about contextual equivalence, we recommend

the chapter by Andrew Pitts in B. Pierce, Advanced Topics in Types and Program-

ming Languages.

Exercise 2.7.5 Find a context that separates

a) false and true

b) succ(succ 0) and succ(succ(succ 0))

Exercise 2.7.6 Find two terms s ∼ t such that 0 ⊢ s : nat and 0 6⊢ t : nat.

Exercise 2.7.7 Let us write t⇑ if there is no v such that t ⇓ v . Then, for all

terms t and evaluation contexts E, t⇑ implies E[t]⇑.

a) Does the converse hold, i.e., E[t]⇑ =⇒ t⇑ ?

b) Does the implication hold for arbitrary contexts C , i.e., t⇑ =⇒ C[t]⇑?

Exercise 2.7.8 Show that if t⇑ then t ∼ Ω, where Ω = fix λx:T .x. Hint: Recall

that if s converges, then s → . . .→ v for some v . Hence, if either of C[t] or C[Ω]

converges, you can use induction on the length of this reduction sequence. To

make the induction work, you must generalize to contexts with multiple holes.

Exercise 2.7.9 Suppose t ∼ t′. Then, for all x and v , [x := v]t ∼ [x := v]t′.
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2.8 Delayed Evaluation

There are two possibilities for the evaluation of applications. In our version of

PCF we haven chosen the call by value variant, which means that we employ the

evaluation rule

t1 ⇓ λx:T . t t2 ⇓ v2 [x := v2]t ⇓ v

t1 t2 ⇓ v

Call by value refers to the fact that the second constituent of an application is

evaluated before the procedure is applied. In the call by name variant of PCF,

one would emply the evaluation rule

t1 ⇓ λx:T . t [x := t2]t ⇓ v

t1 t2 ⇓ v

which does not evaluate the second constituent of an application. Algol 60 is

an early programming language that comes with call by name procedure appli-

cation. Most modern programming languages employ call by value procedure

application. A noteworthy exception is the functional programming language

Haskell.

To study the difference between the two regimes, we extend the values of PCF

with so-called thunks, which take the syntactic form

v ::= · · · | lazy t

A thunk is a term that is only evaluated if its value is really needed. A call by

name application can be expressed in PCF as t1 (lazy t2). The idea behind thunks

can be made precise with two evaluation relations ⇓ (lazy evaluation) and ⇓̇

(eager evaluation), which are defined in Figure 2.6 by inference rules. Note that

⇓ and ⇓̇ are defined by mutual recursion. Eager evaluation is also referred to as

strict evaluation.

From the rules in Figure 2.6 we see that lazy evaluation is used for the con-

stituent of succ and the second constituent of applications. Eager evaluation is

employed for the first constituent of conditionals, pred, iszero, aplications, and

fix. These are the constituent where a value is really needed.

The typing rule for thunks is straightforward:

Γ ⊢ t : T

Γ ⊢ lazy t : T

Alice ML is an extension of Standard ML that has thunks. We use Alice ML to

demonstrate a programming technique based on thunks.

A stream is a list v1 :: v2 :: · · · :: (lazy t). A stream may represent an infinite

list. The stream 0 :: 1 :: 2 :: . . . of all natural numbers can be obtained as follows:
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2.8 Delayed Evaluation

t ⇓ v

t⇓̇v
v is not a thunk

t ⇓ lazy t′ t′⇓̇v

t⇓̇v

v ⇓ v
v ∈ {0, false, true} ∪ Var or v = λx:T . t or v = lazy t

t0⇓̇true t1 ⇓ v

if t0 then t1 else t2 ⇓ v

t0⇓̇false t2 ⇓ v

if t0 then t1 else t2 ⇓ v

t ⇓ v

succ t ⇓ succ v

t⇓̇0

pred t ⇓ 0

t⇓̇succ v

pred t ⇓ v

t⇓̇0

iszero t ⇓ true

t⇓̇succ v

iszero t ⇓ false

t1⇓̇λx:T . t t2 ⇓ v2 [x := v2]t ⇓ v

t1 t2 ⇓ v

t⇓̇v1 [x := fix v1]t1 ⇓ v

fix t ⇓ v
v1 = λx:T . t1

Figure 2.6: Lazy and eager evaluation

fun gen n = n :: (lazy gen(n+1))

val nats = gen 0

val nats = 0::_lazy : int list

Note that gen 0 doesn’t terminate if the recursion isn’t delayed with lazy. The

procedure

fun take 0 xs = nil

| take n nil = raise Empty

| take n (x::xr) = x::take (n-1) xr

yields the list of the first n elements of a list or stream:

take 7 nats

[0, 1, 2, 3, 4, 5, 6] : int list

We say that take k forces the computation of the first k elements of a stream. A

lazy map procedure can be defined as follows:

fun mapz f nil = nil

| mapz f (x::xr) = f x :: (lazy mapz f xr)

With mapz we can obtain the stream of squares from the stream nats:
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val squares = mapz (fn x => x*x) nats

val squares = 0::_lazy : int list

take 7 squares

[0, 1, 4, 9, 16, 25, 36] : int list

To obtain the stream of all multiples of 3 and 5 in ascending order, we may use

the recursive declaration

val rec muls = 1 :: (lazy merge (mul 3 muls) (mul 5 muls))

where the procedure mul multiplies every element of a stream with a given con-

stant and merge merges two ascending streams into one ascending stream:

fun mul n = mapz (fn x => n*x)

fun merge nil ys = ys

| merge xs nil = xs

| merge (x::xr) (y::yr) = case Int.compare(x,y) of

LESS => x::(lazy merge xr (y::yr))

| EQUAL => x::(lazy merge xr yr)

| GREATER => y::(lazy merge (x::xr) yr)

Unfortunately, the declaration of muls will be rejected by the current version of

Alice. The problem can be circumvented by using a recursion operator fixz:

val muls = fixz (fn muls => 1 :: (lazy merge (mul 3 muls) (mul 5 muls)))

The recursion operator can be declared with futures and promises, two advanced

programming constructs available in Alice:

fun fixz f = let val p = Promise.promise()

val x = Promise.future p

in Promise.fulfill(p, f x); x end

Exercise 2.8.1 (Contextual Equivalence)

a) Are 1 and lazy 1 contextually equivalent?

b) Give a a term t such that t and lazy t are not contextually equivalent.

2.9 Procedural Representation of Thunks

To delay the evaluation of a term t, we can turn it into a thunk lazy t. In lan-

guages without thunks we can represent lazy t as a procedure λx.t where the

argument variable x does not occur in t. In contrast to lazy t , the eager eval-

uation of λx.t must be forced explicitly by an application of λx.t. Moreover,

the type of λx.t is different from the type of t. As it turns out, the stream-based
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programming techniques demonstrated above work well with the procedural rep-

resentation of thunks. We refer to the procedural representation of thunks as

λ-lifting.

We demonstrate stream-based programming in Standard ML. We start by

declaring a type constructor for streams:

datatype ’a stream = S of ’a * (unit -> ’a stream)

The declaration excludes finite streams and employs the procedural representa-

tion of thunks. Now the stream of natural numbers and a procedure take can be

declared as follows:

fun gen n = S(n, fn () => gen(n+1))

val nats = gen 0

fun take n (S(x,p)) = if n<1 then nil else x::take (n-1) (p())

val xs = take 7 nats

val xs = [0, 1, 2, 3, 4, 5, 6] : int list

The stream of squares can be obtained as follows:

fun maps f (S(x,p)) = S(f x, fn () => maps f (p()))

val squares = maps (fn x => x*x) nats

Finally, the stream of all multiples of 3 and 5 in ascending order can be obtained

as follows:

fun mul k = maps (fn x => k*x)

fun merge (S(x,p)) (S(y,q)) = case Int.compare(x,y) of

LESS => S(x, fn () => merge (p()) (S(y,q)))

| EQUAL => S(x, fn () => merge (p()) (q()))

| GREATER => S(y, fn () => merge (S(x,p)) (q()))

fun gen () = S(1, fn () => let val s = gen() in merge (mul 3 s) (mul 5 s) end)

val muls = gen()

Exercise 2.9.1 Write declarations that represent the stream x0 :: x1 :: x2 :: · · ·

where

x0 = 0

x1 = 1

xn+2 = xn + xn+1 + 1

a) with lazy in Alice ML;

b) with the procedural representation of thunks in Standard ML.
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3 Untyped Lambda Calculus

We consider the untyped call-by-value λ-calculus. This is a sublanguage of un-

typed PCF where procedures are the only closed values.

3.1 Terms and Substitutions

The variables and terms of the untyped λ-calculus are defined as follows:

x,y, z ∈ Var := N

t, s ∈ Ter ::= x | t t | λx.t

Contexts are defined in the canonical way:

C ::= [] | Ct | tC | λx.C

A term s is a subterm of a term t if there exists a context C such that t = C[s]. A

term is combinatorial if none of its subterms is an abstraction (i.e., of the form

λx.t). Size and free variables of terms are defined as follows:

|x| = 1 FV = {x}

|s t| = 1+ |s| + |t| FV (s t) = FV s ∪ FV t

|λx.t| = 1+ |t| FV (λx.t) = FV t − {x}

A term is closed if it has no free variables, and open otherwise. Closed ab-

stractions are called combinators or procedures. The simplest procedure is the

identity

I := λx.x

The definition of the substitution operation [x:=s]t is straightforward if s is

closed or t is combinatorial: Replace every free occurrence of x in t with s. Oth-

erwise, substitution must be defined such that capture is avoided by renaming

of bound variables. For instance, given two distinct variables x and y , the sub-

stitution [x:=y](λy.x) must not yield λy.y but λz.y for some variable z ≠ y .

Because of the renaming, things become easier if we work with a generalized

notion of substitution. From now on, a substitution will be a function Var → Ter :

θ ∈ Sub := (Var → Ter) substitution
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3 Untyped Lambda Calculus

ǫ := λx∈Var. x identity substitution

[x:=s] := ǫ[x:=s]

Ker θ := {x ∈ Var | θx ≠ x } kernel

A substitution operator is a function S : Sub → Ter → Ter that applies a substi-

tution θ to a term t. The result should be a term that can be obtained from t

by replacing the free variable occurrences in t according to θ, where capture is

avoided by renaming of bound variables. This leads us to the following definition

(recursion on term size):

Sθx = θx

Sθ(st) = (θs)(θt)

Sθ(λx.t) = λy.S(θ[x:=y])t where y = ρ(x, V)

V = ∪{ FV (θy) | y ∈ FV (λx.t) }

The interesting part is the potential renaming of the bound variable x in the

third equation. First note that the finite set V contains exactly those variables

that would capture variable occurrences if used as argument variable. The choice

function ρ will chose a variable that is not in V .

There are different possibilities for the choice function. A choice function ρ

is admissible if ρ(x, V) ∈ (Var − V) for all x and V . Every admissible choice

function yields a substitution operator that does what it is supposed to do. We

will only consider substitution operators that are based on admissible choice

functions. The most obvious admissible choice function is

ρ0(x, V) := min(Var − V)

We use S0 for the substitution operator obtained with ρ0. For hand calculation ρ0

has the (aesthetic) drawback that it renames argument variables even if this is

not necessary. For instance, S0ǫ(λx.x) = λ0.0 for every variable x.

Here is a choice function that avoids renaming whenever possible:

ρ1(x, V) := if x ∉ V then x else min(Var − V )

We use S1 for the substitution operator obtained with ρ1. We write θt for S1θt

and [x:=s]t for S1([x:=s])t.

Proposition 3.1.1 (Coincidence) For every substitution operator S:

(∀x ∈ FV t : θx = θ′x) =⇒ Sθt = Sθ′t

Proposition 3.1.2 (Free Variables) For every substitution operator S:

FV (Sθt) = ∪{ FV (θy) | y ∈ FV (λx.t) }
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3.2 Alpha Equivalence

Proposition 3.1.3 S1 satisfies the following properties:

1. θt = t if ∀x ∈ FV t : θx = x

2. ǫt = t

3. [x:=s](λx.t) = λx.t

4. [x:=s]t = t if x ∉ FV t

5. [x:=s](λy.t) = λy. [x:=s]t if x ≠ y and y ∉ FV s

3.2 Alpha Equivalence

Informally, two terms are α-equivalent if they are equal up to consistent re-

naming of bound variables. Formally, we define α-equivalence as follows (by

recursion on term size):

x ∼α x
′ ⇐⇒ x = x′

st ∼α s
′t′ ⇐⇒ s ∼α s

′ ∧ t ∼α t
′

λx.t ∼α λx
′.t′ ⇐⇒ x′ ∉ FV (λx.t) ∧ [x:=x′]t ∼α t

′

Proposition 3.2.1 All substitution operators yield the same relation ∼α.

Proposition 3.2.2 ∼α is a congruence such that s ∼α t =⇒ θs ∼α θt.

Proposition 3.2.3 For all terms s and t, the following statements are equivalent:

1. λx.t ∼α λx
′.t′

2. ∃y ∉ FV (λx.t) ∪ FV (λx′.t′) : [x:=y]t ∼α [x
′:=y]t′

3. ∀y ∉ FV (λx.t)∪ FV (λx′.t′) : [x:=y]t ∼α [x
′:=y]t′

Proposition 3.2.4

1. t ∼α S0ǫt

2. S0ǫ(S0ǫt) = S0ǫt

3. s ∼α t ⇐⇒ S0ǫs = S0ǫt

The last statement of the proposition says that based on S0 we can give a

very straightforward definition of α-equivalence. A careful study of S0 with com-

plete proofs of its basic properties can be found in Allen Stoughton, Substitution

Revisited, Theoretical Computer Science, 59:317-325, 1988.1

Exercise 3.2.5 (Free variables) Show that t ∼α t
′ implies FV (t) = FV (t′). Hint:

Use Proposition 3.1.2 and consider the identity substitution ǫ applied with S0.

1 http://people.cis.ksu.edu/∼stough/research/subst.ps
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3 Untyped Lambda Calculus

3.3 Call-by-Value Reduction

In the following, we will give definitions for values and contextual equivalence

that are different from the definitions we gave for PCF. In retrospect, the defini-

tions for PCF should be changed so that they agree with the definitions for the

λ-calculus.

We start with the definition of values:

v ∈ Val ⊆ Ter ::= λx.t

This time we exclude variables. This has the advantage that values are closed

under substitution, i.e, t ∈ Val =⇒ θt ∈ Val. The top level reduction relation →0

is defined by a single proper reduction rule:

(λx.t)v →0 [x:=v]t

The reduction relation

t → t′ :⇐⇒ ∃s, s′, E : t = E[s] ∧ s →0 s
′ ∧ E[s′] = t′

is then obtained with the evaluation contexts

E ::= [] | Et | vE

Proposition 3.3.1

1. Progress: Every closed term that is not a procedure is reducible.

2. Stability: t → t′ =⇒ θt → θt′

3. Compatibility: s → s′ ∧ s ∼α t =⇒ ∃t′ : t → t′ ∧ s′ ∼α t
′

Consider the terms

ω := λx.xx

Ω := ωω

Obviously, Ω → Ω. This means that Ω is a closed term whose reduction does not

terminate.

The evaluation relation ⇓ is defined as follows:

t ⇓ v :⇐⇒ t → ·· · → v

We write t⇓ and say that t converges if t ⇓ v for some value v . Contextual

equivalence is defined as follows:

s ∼ t :⇐⇒ ∀C : C[s] and C[t] closed =⇒ (C[s]⇓ ⇐⇒ C[s]⇓)
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3.4 Church Arithmetic

The closedness conditions accounts for the fact that what really matters is the

evaluation of closed terms. The closedness condition makes a difference in that

it yields more equivalences. For instance, given the above definition of contextual

equivalence, we have

x ∼ (λy.x)y

We refer to this equivalence as ν -equivalence.

Exercise 3.3.2 Show that the above equivalence doesn’t hold if contextual equiv-

alence is defined without the closedness condition.

Exercise 3.3.3 Find s, t and θ such that s ∼ t and θs 6∼ θt.

Proposition 3.3.4 Contextual equicalence is a congruence relation with the fol-

lowing properties:

1. Compatibility: → ⊆ ∼ and ∼α ⊆ ∼

2. Stability: (∀x ∈ FV (st) : θx ∈ Val) ∧ s ∼ t =⇒ θs ∼ θt

Since every value of the λ-calculus is an abstraction, it is not surprising that

we have the equivalence

x ∼ λy.xy if x ≠ y

We refer to this equivalence as η-equivalence.

3.4 Church Arithmetic

Church discovered that the natural numbers and the intuitively computable func-

tions on natural numbers can be represented in the λ-calculus. In fact, the λ-

calculus was the first system used to define the set of computable functions. In

1936, Church’s students Kleene and Turing published papers that showed that

computability in the λ-calculus coincides with computability in their systems

based on µ-recursion and Turing Machines.

The Booleans are represented as procedures that return one of two argu-

ments:

false := λxy.y

true := λxy.x

if t0 then t1 else t2 := t0(λx.t1)(λx.t2)(λx.x) where x ∉ FV (t1t2)
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3 Untyped Lambda Calculus

Pairs are represented as procedures that return the first component if applied to

true and the second component if applied to false:

(t1, t2) := (λxyf . fxy) t1 t2

fst t := t true

snd t := t false

For the representation of the natural numbers, we first define a notation for the

n-times application of a term s to a term t:

s0t := t

snt := sn−1(st) if n > 0

For instance, s3t is the term s(s(st)). Now a natural number n is represented as

a procedure that applies a given procedure f n-times to a given x:

cn := λfx. fnx

The procedures cn are called Church numerals. Here are some procedures for

natural numbers:

succ := λnfx.nf(fx)

iszero := λn.n(λx. false)true

pred := λn. fst (n (λp.(snd p, succ(snd p))) (c0, c0))

plus := λmnfx.mf(nfx)

times := λmnf.m(nf)

power := λmn.nm

Due to the coding of natural numbers as procedures, we can obtain many opera-

tions for the natural numbers without recursion.

At this point we can ask whether we can formally specify what procedures like

succ, plus, and times are supposed to do. In fact, we can specify these procedures

with the equivalences

succ cn ∼ cn+1

plus cm cn ∼ cm+n

times cm cn ∼ cm·n

which are supposed to hold for all natural numbers m and n. That this is the

case can be shown by induction on n.
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3.5 Recursion Operator

3.5 Recursion Operator

The λ-calculus has procedures that act as recursion operators. To derive one of

those, suppose we have a term Df with one free variable f such that

Df Df → f(λx.Df Df x)

Then we can define a recursion operator as follows:

fix := λf .Df Df

It’s not difficult to find a term Df with the required properties:

Df := λd. f(λx.ddx)

The specification of a recursion operation is given by the the equivalence

fix f ∼ f(λx.(fix f)x)

3.6 Observing Church Arithmetic

Since the λ-calculus is Turing-complete, its contextual equivalence is not semi-

decidable. In particular, given a number n and a term t, it is not semi-decidable

whether cn ∼ t. Since Church Arithmetic works modulo contextual equivalence

(e.g., succ c0 ∼ c1 but succ c0 ⇓ c1 does not hold), we cannot effectively observe

whether a computation renders a certain number or not.

The problem can be solved by extending the λ-calculus with output primi-

tives. We choose as output primitives observable natural numbers with a suc-

cessor operation:

n ∈ N

t ∈ Ter ::= · · · | n | S t

v ∈ Val ⊆ Ter ::= · · · | n

E ::= · · · | SE

For the successor operation we need an additional proper reduction rule:

Sn→0 n+ 1

We call a term pure if it is a term of the pure (i.e., unextended) calculus. Of

course, every pure term is also a term of the extended calculus, but not vice versa.

We use ≈ to denote the contextual equivalence of the extended calculus. The

main difference between ∼ and ≈ is that with ∼ we can assume that everything

is a procedure while with ≈ we cannot.
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3 Untyped Lambda Calculus

Exercise 3.6.1 Show x 6≈ λy.xy .

Proposition 3.6.2 If s, t are pure terms, then s ≈ t =⇒ s ∼ t. The converse does

not hold.

Proposition 3.6.3 In the extended calculus the following holds:

1. ∀m,n ∈ N : m ≠ n ⇐⇒ cm 6≈ cn

2. t ≈ cn =⇒ t(λx. Sx)0 ⇓ n

Statement (2) of the proposition tells us how we can observe whether a com-

putation renders a certain number. The various procedures defined in the previ-

ous section are all correct with respect to ≈. For instance, we have the following

equivalences:

succ cn ≈ cn+1

plus cm cn ≈ cm+n

times cm cn ≈ cm·n

3.7 Higher-Order Abstract Syntax

Higher-order abstract syntax (HOAS) is an implementation technique that rep-

resents abstractions λx.t as procedures ter → ter , where the procedure for an

abstraction λx.t returns for a term s the term [x:=s]t. The closed terms of our

extended λ-calculus can be implemented as follows:

datatype ter = A of ter * ter | L of ter -> ter | I of int | S of ter

The beauty of HOAS is the fact that we can write an eval procedure without

implementing substitution. This is the case since every abstraction has built-in

the substitution needed for its application.

HOAS is more than just an implementation technique. Its one of the key

features of the logic programming language Twelf2 developed by Frank Pfenning

and his students at CMU.

Exercise 3.7.1

a) Write declarations for the terms succ, plus, and times.

b) Write a procedure eval : ter → ter that evaluates terms.

c) Write procedures church : int → ter and dechurch : ter → int such that

church n yields cn and dechurch t yields n if t ∼ cn.

2 http://twelf.plparty.org
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Exercise 3.7.2

a) Write a procedure size : ter → int that yields the size of a term.

b) Write a procedure occurs : int → ter → bool that tests whether a number oc-

curs in a term.

c) Write a procedure new : ter → int that yields a number that doesn’t occur in a

term.

d) Write a procedure equal : ter → ter → bool that tests whether two terms are

equal (i.e., α-equivalent).

3.8 De Bruijn Terms

De Bruijn devised a representation for terms that represents abstractions with-

out argument variables. Instead, an argument reference is done through a natu-

ral number n that says how many λ’s on the path to the root must be skipped

until one arrives at the λ that introduces the argument. Here are examples:

λx.x ⇝ λ0

λxy.x ⇝ λ(λ1)

λfxy.fyx ⇝ λ(λ(λ(2(0)(1))))

The idea extends to open terms:

fx ⇝ fx

λx.y ⇝ λ(y + 1)

λxy.fyx ⇝ λ(λ((f + 2)(0)(1)))

Formally, we define de Bruijn terms as follows:

n ∈ Var := N

τ ∈ DB ::= n | τ τ | λτ

Note that de Bruijn terms are simpler than ordinary terms since de Bruijn ab-

stractions have only one constituent. The translation of terms to de Bruijn terms

is defined as follows:

db ∈ Ter → DB

dbx = x

db(s t) = (db s)(db t)

db(λx.t) = λ(db(S(λy∈Var. if y = x then 0 else y + 1) t))
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Proposition 3.8.1 s ∼α t ⇐⇒ db s = db t

We can map substitutions to de Bruin substitutions:

db θ := λx∈Var.db(θx)

Moreover, we can define a de Bruin substitution operator Ŝ such that the follow-

ing proposition holds.

Proposition 3.8.2 db(Sθt) = Ŝ(db θ)(db t)

Here is the definition of Ŝ:

Ŝψτ = Ŝ′0ψτ

Ŝ′dψn = if n < d then n else up d (ψ(n− d))

Ŝ′dψ(τ1τ2) = (Ŝ
′dψτ1)(Ŝ

′dψτ2)

Ŝ′dψ(λτ) = λ(Ŝ′(d+ 1)ψτ)

updn = n+ d

updτ = Ŝ(λn∈Var. n+ d)τ if τ ∉ Var

The auxiliary function Ŝ′ takes an additional argument d (the λ-depth) that says

how many λ’s are on the path to the root. The auxiliary function up raises all

free variable occurrences of a term by a given number.

Exercise 3.8.3 (De Bruijn Terms) We implement ordinary and de Bruijn terms

as follows:

type var = int

datatype ter = V of var | A of ter * ter | L of var * ter

datatype dbt = DV of var | DA of dbt * dbt | DL of dbt

a) Write a procedure free : var → dbt → bool that test whether a variable occurs

free in a de Bruijn term.

b) Write a procedure subst : (var → dbt)→ dbt → dbt that applies a de Bruijn

substitution to a de Bruijn term.

c) Write a procedure db : ter → dbt that translates a term into a de Bruijn term.
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The simply typed λ-calculus is obtained from the untyped λ-calculus by impos-

ing a straightforward type discipline. Computationally, the resulting system is

rather weak. However, full computational power can be regained by adding a

recursion operator and operations on base types. One such extended system is

PCF. Alternatively, full computational power can be regained by extending the

type system with unit, product types, sum types and recursive types.

The simply typed lambda calculus will also serve us as the basis for the study

subtyping and type reconstruction.

Originally, the simply typed λ-calculus was invented as a logical sytem (by

Church, first publication in 1940). For logical applications, the simply typed λ-

calculus is equipped with a model-theoretic semantics and the resulting system

is referred to as simple type theory. From the perspective of logic, simple type

theory is a very expressive since it subsumes propositional logic, predicate logic

as well as modal and temporal logics. Moreover, simple type theory is the canon-

ical base for higher-order logic.

There is another important use of the simply typed λ-calculus in logic which

runs under the name Curry-Howard correspondence. Here types serve as for-

mulas and terms serve as proofs. This use of the simply typed λ-calculus was

not anticipated by Church. It was first made explicit in a paper by Howard that

appeared in 1980.

4.1 Basic Definitions

The terms of the simply typed λ-calculus are obtained from the terms of the

untyped λ-calculus by equipping abstractions with types for their arguments.

Types are either basic or functional. No particular assumptions are made about

the base types, which are provided through a nonempty set. Here are the basic

definitions:

X,Y ∈ BT base type

T , S ∈ Ty ::= X | T → T type

x,y, z ∈ Var := N variable

t, s ∈ Ter ::= x | t t | λx:T .t term
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C ::= [] | Ct | tC | λx:T .C context

θ ∈ Var → Ter substitution

Γ ∈ Var ⇀ Ty type environment

We assume that there is at leat one base type. Subterms, size of terms, free vari-

ables and the application of substitutions are defined as in the untyped case.

The α-equivalence relation is defined as one would expect from the untyped

case, where it is important that α-equivalent abstractions are required to have

the same argument type:

x ∼α x
′ ⇐⇒ x = x′

st ∼α s
′t′ ⇐⇒ s ∼α s

′ ∧ t ∼α t
′

λx:T .t ∼α λx
′:T .t′ ⇐⇒ x′ ∉ FV (λx:T .t) ∧ t′ ∼α [x:=x′]t

The typing relation Γ ⊢ t : T is defined recursively by the following inference

rules, which we have seen before for PCF.

Γ ⊢ x : T
(x, T) ∈ Γ

Γ ⊢ t1 : T2 → T Γ ⊢ t2 : T2

Γ ⊢ t1 t2 : T

Γ[x:=T1] ⊢ t : T

Γ ⊢ (λx : T1. t) : T1 → T

The following proposition provides a more explicit characterisation of the typing

relation. It could be used as an alternative definition of the typing relation.

Proposition 4.1.1 (Inversion)

1. Γ ⊢ x : T ⇐⇒ (x, T) ∈ Γ

2. Γ ⊢ t1t2 : T ⇐⇒ ∃T2 : Γ ⊢ t1 : T2 → T ∧ Γ ⊢ t2 : T2

3. Γ ⊢ λx:T1.t : T ⇐⇒ ∃T2 : T = T1 → T2 ∧ Γ[x:=T1] ⊢ t : T2

Proof Follows from the fact that Γ ⊢ t : T is always established by one of the

three inference rules defining the typing relation. �

4.2 Basic Properties

We now state the basic properties of the typing relations. Typically, they can be

proven by induction on term size. Make sure that you can do the proofs.

Proposition 4.2.1 (Unique Type)

Γ ⊢ t : T ∧ Γ ⊢ t : T ′ =⇒ T = T ′

Proof By induction on the size of t. �
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Proposition 4.2.2 (Coincidence)

(∀x ∈ FV t : Γx = Γ ′x) ∧ Γ ⊢ t : T =⇒ Γ
′ ⊢ t : T

Proof By induction on the size of t. �

Proposition 4.2.3 (Relevance) Γ ⊢ t : T =⇒ FV t ⊆ Dom Γ

Proof By induction on the size of t. �

Proposition 4.2.4 (Replacement)

(∀ Γ , T : Γ ⊢ t : T =⇒ Γ ⊢ t′ : T) ∧ Γ ⊢ C[t] : T =⇒ Γ ⊢ C[t′] : T

Proof By induction on the size of C . �

Proposition 4.2.5 (Substitution)

(∀x ∈ FV t : Γ ′ ⊢ θx : Γx) ∧ Γ ⊢ t : T =⇒ Γ ′ ⊢ θt : T

Proof By induction on the size of t. The proof holds for every substitution

operator. Let

(1) ∀x ∈ FV t : Γ ′ ⊢ θx : Γx

(2) Γ ⊢ t : T

We show Γ ′ ⊢ θt : T by case analysis.

Case t = x. Then x ∈ FV t and Γx = T by (2). Hence Γ ′ ⊢ θt : T by (1).

Case t = t1t2. Then Γ ⊢ t1 : T2 → T and Γ ⊢ t2 : T2 by (2) and Inversion. Hence

Γ ′ ⊢ θt1 : T2 → T and Γ ′ ⊢ θt2 : T2 by (1) and induction. Hence Γ ′ ⊢ θt : T .

Case t = λx:T1. t2. Then by (2) and Inversion:

(3) T = T1 → T2 and Γ[x:=T1] ⊢ t2 : T2

(4) θ′ := θ[x:=y] and θt = λy :T1. θ
′t2

(5) y ∉ ∪{ FV (θz) | z ∈ FV t2 − {x} }

First we show

(6) ∀z ∈ FV t2 : Γ ′[y :=T1] ⊢ θ
′z : (Γ[x:=T1])z

Let z ∈ FV t2. If z = x, then θ′z = y by (4) and (Γ[x:=T1])z = T1. Hence

Γ ′[y :=T1] ⊢ θ
′z : (Γ[x:=T1])z. Now let z ≠ x. By (1) we have Γ ′ ⊢ θz : Γz.

By (5) and Coincidence we have Γ ′[y :=T1] ⊢ θz : Γz. Now the claim follows by

θ′z = θz (using (4)) and (Γ[x:=T1])z = Γz.

By (6) and (3) and induction we now have Γ ′[y :=T1] ⊢ θ
′t2 : T2. Hence Γ ′ ⊢ θt : T

by (4) and (3). �
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Proposition 4.2.6 (Compatibility with β-Reduction)

Γ ⊢ C[(λx:T1.t1)t2] : T =⇒ Γ ⊢ C[[x:=t2]t1] : T

Proof Because of Replacement it suffices to show the claim for C = []. For C = []

the claim follows from Substitution. �

Proposition 4.2.7 (Compatibility with α-Equivalence)

t ∼α t
′ ∧ Γ ⊢ t : T =⇒ Γ ⊢ t′ : T

In other words, all α-equivalent terms have the same behaviour with respect to

typing.

Proof By induction on the size of t′. The cases where t ∈ Var or t = t1t2 are

easy. If t = λx:T1.s, then by definition of α-equivalence, t′ = λy :T1.s
′ for some

y ∉ FV (t) such that s′ ∼α [x := y]s. By inversion, Γ[x := T1] ⊢ s : T2 for some

T2 such that T = T1 → T2.

Let θ = [x := y], then clearly Γ[y := T1] ⊢ θx : T1. Moreover, if z ∈ FV (t)

then z ≠ x, z ≠ y and θz = z. By the Relevance Lemma, z ∈ Dom Γ . Hence,

(z, Γz) ∈ Γ implies Γ[y := T1] ⊢ θz : (Γ[x := T1])z. Combining these cases, and

using FV (s) ⊆ FV (t)∪ {x}, we therefore have

∀z ∈ FV (s) : Γ[y := T1] ⊢ θz : (Γ[x := T1])z

Since Γ[x := T1] ⊢ s : T2, an application of the Substitution Lemma yields

Γ[y := T1] ⊢ θs : T2

which by definition of θ is just Γ[y := T1] ⊢ [x := y]s : T2. Because [x :=

y]s ∼α s
′ and s′ is strictly smaller than t′, the induction hypothesis gives

Γ[y := T1] ⊢ s
′ : T2

from which the required Γ ⊢ t′ : T2 follows by T-Abs. �

Exercise 4.2.8 (Compatibility with α-Equivalence) Complete the inductive

proof of Lemma 4.2.7 by carefully spelling out the missing cases t ∈ Var and

t = t1t2.

4.3 Reduction

We define two reduction relations. Call-by-value Reduction
v
→ is what we know

from PCF and the untyped λ-calculus. It’s defined as follows:

v ∈ Val ⊆ Ter ::= λx:T .t value
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4.3 Reduction

(λx:T .t)v
v
→0 [x:=v]t

E ::= [] | Et | vE

t
v
→ t′ :⇐⇒ ∃E, s, s′ : t = E[s] ∧ s

v
→0 s

′ ∧ E[s′] = t′

Full reduction → generalizes call-by value reduction in that every β-redex can be

reduced:

(λx:T .t)s →0 [x:=s]t

t → t′ :⇐⇒ ∃C, s, s′ : t = C[s] ∧ s →0 s
′ ∧ C[s′] = t′

Proposition 4.3.1
v
→ ⊆ →

Proposition 4.3.2 (Preservation) t → t′ ∧ Γ ⊢ t : T =⇒ Γ ⊢ t′ : T

Proof Follows from Compatibility with β-Reduction. �

Preservation says that types are invariants for the terms of a reduction chain

t0 → t1 → t2 → ·· · .

Proposition 4.3.3 (Progress)

0 ⊢ t : T ∧ t not a value =⇒ ∃t′ : t
v
→ t′

Proof By induction on the size of t. �

Progress says that every closed and well-typed term that is not a value is call-

by-value reducible. Together, Preservation and Progress are referred to as type

soundness. Type soundness means that the reduction of a well-typed and closed

term either does not terminate or terminates with a closed value that has the type

of the initial term. Type soundness is a key requirement for typed programming

languages.

Exercise 4.3.4 Make sure that you understand the definitions and the basic

properties of the simply typed λ-calculus. In particular, you should be able to

define or state the following:

a) Types and terms.

b) The typing relation.

c) Inversion.

d) Unique Types, Coincidence, and Relevance.

e) Replacement, Substitution, and Compatibility with β and α.

f) Call-by-value and full reduction.

g) Preservation and Progress.
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T ::= · · · | T × T

i ∈ {1,2}

t ::= · · · | (t, t) | t.i

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ (t1, t2) : T1 × T2

Γ ⊢ t : T1 × T2

Γ ⊢ t.i : Ti

(t1, t2).i →0 ti

v ::= · · · | (v, v)

E ::= · · · | (E, t) | (v, E)

(v1, v2).i
v
→0 vi

Figure 4.1: Extension of the simply typed λ-calculus with product types

4.4 Binary Products and Sums

Consider the following type declaration in Standard ML:

datatype ter = A of ter * ter | L of ter -> ter

It involves several primitives:

• A product type (i.e., ter ∗ ter).

• A function type (i.e., ter → ter).

• A sum type (i.e, (ter ∗ ter) + (ter → ter)).

• Recursion (i.e., type ter is defined recursively).

• Naming at term level (A and L) and at type level (ter).

In this section we will explain product and sum types by adding them to the

simply typed λ-calculus.

4.4.1 Product Types

The values of a product type T1 × T2 are pairs (v1, v2) where v1 has type T1

and v2 has type T2. There are operations t.1 and t.2 called selections that yield

the first and second component of the pair a term t evaluates to. This motivates

the definitions shown in Figure 4.1. The extensions are such that all properties

stated in § 4.2 and § 4.3 remain valid.
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4.4 Binary Products and Sums

T ::= · · · | T + T

i ∈ {1,2}

t ::= · · · | (i, t, T) | case t t t

Γ ⊢ t : Ti

Γ ⊢ (i, t, T1 + T2) : T1 + T2

Γ ⊢ t0 : T1 + T2 Γ ⊢ t1 : T1 → T Γ ⊢ t2 : T2 → T

Γ ⊢ case t0 t1 t2 : T

case (i, t, T) t1 t2 →0 ti t

v ::= · · · | (i, v, T)

E ::= · · · | (i, E, T)

case (i, v, T) t1 t2
v
→0 ti v

Figure 4.2: Extension of the simply typed λ-calculus with sum types

Note that type soundness now really is a non-trivial property. It makes sure

that the reduction of well-typed terms will not lead to terms that select a com-

ponent of a procedure or apply a pair to a procedure.

4.4.2 Sum Types

Sum types provide for the disjoint union of types. The values of a sum type

T1+T2 are triples (i, v, T1+T2) called variants, where the value v of the variant

has the type Ti determined by the tag i ∈ {1,2} and the type T1 + T2 of the

variant. There is a case construct case t0 t1 t2 that applies ti to the value v of

the variant (i, v, T) the term t0 evaluates to. Variants carry their type so that the

unique type property of the simply typed λ-calculus is preserved. This motivates

the definitions shown in Figure 4.2. The extensions are such that all properties

stated in § 4.2 and § 4.3 remain valid. If one is willing to give up the unique type

propertx, the type components of variants can be omitted.

The notational inconvenience of variants carrying types can be avoided by

using constructors as in Standard ML. For instance, for a sum type T1 + T2 we

may introduce the constructors
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let L = λx:T1. (1, x, T1 + T2)

R = λx:T2. (2, x, T1 + T2)

in t

In desugared form, this looks as follows:

(λL:T1 → T1 + T2. λR:T2 → T1 + T2. t)

(λx:T1. (1, x, T1 + T2))

(λx:T2. (2, x, T1 + T2))

4.4.3 Unit and Bool

The potential of sum types becomes apparent once we extend the λ-calculus with

an additional type 1 with exactly one value (). Both the type 1 and the value ()

are pronounced unit. Here are the definitions:

T ::= · · · | 1

t ::= · · · | ()

Γ ⊢ () : 1

v ::= · · · | ()

The type bool can now be expressed as follows:

bool := 1+ 1

false := (1, (),bool)

true := (2, (),bool)

if t0 then t1 else t2 := case t0 (λx:1. t1) (λx:1. t2) where x ∉ FV (t1t2)

4.5 Recursive Types and FPC

The simply typed λ-calculus gains full computational power once it is equipped

with recursive types. The so extended calculus can express the natural numbers

and procedural recursion operators. With recursive types, the simply typed λ-

calculus can also embed the untyped λ-calculus.

Let’s start with some familiar recursive types expressed in Standard ML:
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datatype nat = Z | S of nat

datatype ’a list = N | C of ’a * ’a list

datatype ’a stream = S of ’a * (unit -> ’a stream)

In the λ-calculus we express these types with a type variable (i.e., a base type)

and the µ-operator:

nat := µX. 1+X

listT := µX. 1+ (T ×X)

streamT := µX. T × (1 → X)

Similar to the λ-operator, µ-operator binds the type variable following it. Thus

µX. 1 + X is a closed type and µY . X × (1 → Y) is a type with one free type

variable X.

The values of a recursive type T = µX.S are obtained with a constructor

RT : [X:=T]S → T . For instance, the first three values of nat are obtained as

follows:

zero := Rnat (1, (), 1+ nat)

one := Rnat (2, zero, 1+ nat)

two := Rnat (2, one, 1+ nat)

From Standard ML we know that this awkward notation can be hidden by em-

ploying constructors:

zero := Rnat (1, (), 1+ nat)

succ := λn:nat. Rnat (2, n, 1+ nat)

one := succ zero

two := succ(succ zero)

Now let’s see how we can express the predecessor function. In Standard ML we

use pattern matching to do case analysis and get rid of constructors:

fun pred Z = Z

| pred (S n) = n

In the λ-calculus we use the U-operator to get rid of the R-constructor and do

the case analysis with the case primitive:

pred := λn:nat. case (Un) (λx:1. zero) (λm:nat.m)

Given a recursive type T = µX.S, the operators RT and U realize a bijection

between the recursive type and its unfolding [X:=T]S:
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T ::= · · · | µX.T

t ::= · · · | RT t | U t

Γ ⊢ t : [X:=T]S

Γ ⊢ RT t : T
T = µX.S

Γ ⊢ t : T

Γ ⊢ U t : [X:=T]S
T = µX.S

Γ ⊢ t : T

Γ ⊢ t : T ′
T ∼α T

′

v ::= · · · | RT v

E ::= · · · | RT E | UE

U(RT v)
v
→0 v

Figure 4.3: Extension of the simply typed λ-calculus with recursive types

T = µX.S [X:=T]S

RT

U

For nat = µX. 1+X we obtain the following situation:

nat 1+ nat

Rnat

U

Figure 4.3 summarizes the extension of the simply typed λ-calculus with recur-

sive types. The third typing rule ensures that the typing relation is invariant

with respect to α-equivalence of types. This rule is needed so that the typing

[x := µX.1+X] ⊢ (λy : µY .1+ Y . 1)x : 1 holds.

The simply typed λ-calculus extended with unit, products, sums, and recur-

sive types is known as FPC (fixed point calculus). It seems to have originated

with Plotkin’s lecture notes (1985). FPC preserves the basic properties listed

in § 4.2 and § 4.3 for the pure simply typed λ-calculus: Unique Type, Coinci-

dence, Relevance, Replacement, Substitution, Compatibility with α-equivalence,

Preservation, and Progress.

Exercise 4.5.1 Given a type in FPC whose values represent binary trees whose

nodes are marked with natural numbers.

Exercise 4.5.2 Give a type in FPC that corresponds to the following type of Stan-

dard ML: datatype tree = T of tree list.
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4.5.1 Procedural Recursion Operators

To see how recursive types can express procedural recursion, let’s start with the

definition of the recursion operator in the untyped λ-calculus (we use a variant

of the operator in § 3.5):

Df := λdx. f(dd)x

fix := λf .Df Df

Now let’s look at the types. The goal is that fix provides for the recursive def-

inition of procedures S → T . We know that fix is applied to the scheme for

the recursive procedure (see § 1.5). Hence we know the types of the variables f

and x:

f : (S → T)→ S → T

x : S

Now we come to the type for d. Because of the self application a single type for

d is not good enough. Everything would be fine if we could give d two types,

namely Fix and Fix → S → T . This is not really possible, but let’s look at the

recursive type

Fix := µX. X → S → T where X not free in S or T

With U and R we can go back and forth from Fix to Fix → S → T . This gives us all

we need. We arrange

d : Fix

and augment the definitions of Df and fix with the conversions RFix and U:

Df := λdx. f(Udd)x

fix := λf . Df (RFix Df )

We have now arrived at a well-typed definition of a recursion operator fix. Based

on this definition, it is now straightforward to declare a polymorphic recursion

operation in Standard ML that does not use procedural recursion:

datatype (’a,’b) Fix = R of (’a,’b) Fix -> ’a -> ’b

fun U (R p) = p

fun D f d x = f (U d d) x

fun fix f = D f (R (D f))

val fix : ((α → β) → α → β) → α → β
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Exercise 4.5.3 Here is the untyped recursion operator from § 3.5:

λf . (λd. f(λx.ddx)) (λd. f(λx.ddx)).

a) Translate this term into FPC such that it takes for given types S, T the type

((S → T)→ S → T)→ S → T .

b) Translate this term into a polymorphic procedure in Standard ML that doesn’t

employ procedural recursion.

Exercise 4.5.4 Show that for every type T of FPC there is a closed term t such

that 0 ⊢ t : T .

4.5.2 Embedding the Untyped λ-Calculus

Consider the recursive type

Λ := µX. X → X

The values of this type are procedures that take procedures as arguments and re-

turn procedures as result (up to conversion between Λ and its unfolding Λ→ Λ).

The terms of the pure untyped λ-calculus translate into well-typed terms of

type Λ as follows:

τx = x

τ(st) = U (τs) (τt)

τ(λx.t) = RΛ(λx : Λ. τt)

The translation is such that untyped values are translated into typed values,

and that untyped reductions translate into typed reductions. More specifically,

for an untyped reduction s → t there always exists a typed term s′ such that

τs → s′ → τt. For instance, (λx.x)(λx.x) → λx.x on the untyped side translates

into

U (RΛ(λx : Λ. x)) (RΛ(λx : Λ. x)) → (λx : Λ. x) (RΛ(λx : Λ. x))

→ (RΛ(λx : Λ. x))

So τ gives us a faithful translation of the pure untyped λ-calculus into FPC.

Exercise 4.5.5 Give a closed and well-typed term in FPC whose reduction doesn’t

terminate.

Exercise 4.5.6 Give a translation of the untyped λ-calculus with observable nat-

ural numbers into FPC. Do this by extending the definitions of Λ and τ . Explain

what happens to the stuck untyped terms on the typed side.
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4.6 Curry-Howard Correspondence

4.6 Curry-Howard Correspondence

One can interpret the non-recursive types of the simply typed λ-calculus as

propositional formulas:

• A base type X is a propositional variable that can take the values 0 or 1.

• A functional type T1 → T2 is an implication.

• A product type T1 ∗ T2 is a conjunction.

• A sum type T1 + T2 is a disjunction.

• The type 1 is the formula 1.

This interpretation is of interest since one can show that 0 ⊢ t : T implies that T

is a valid formula (i.e., as a formula, T yields 1 no matter how we choose the

values of its variables). This means that a term t such that 0 ⊢ t : T is a proof

of the validity of the formula T . As it happens, the proof system given by the

typing rules corresponds to a prominent propositional proof system known as

natural deduction (ND) that has been proposed by Gerhard Gentzen in 1935. The

correspondence between simply-typed lambda calculus and natural deduction is

known as Curry-Howard correspondence and was first made explicit in a paper

by Howard that appeared in 1980.

As is, the correspondence is not perfect since the typing rules cannot prove

all valid formulas, and types cannot express the formula 0 and negated formulas.

Both problems can be solved by the following, logically motivated extension:

T ::= · · · | 0

t ::= · · · | δt

Γ ⊢ t : (T → 0)→ 0

Γ ⊢ δt : T

Negations ¬T can now be expressed as implications T → 0, and one can show

that T is valid as a formula if and only if there is term t such that 0 ⊢ t : T .

In fact, a more general correspondence holds: A formula T1 → ·· · → Tn → T is

valid if and only if there exist Γ and t such that Γ ⊢ t : T and Ran Γ = {T1, . . . , Tn}.

Note that the typing rule for δ expresses the logical rule
¬(¬T)

T
.

Figure 4.4 shows the syntax, the typing rules, and the proper reduction rules

for the simply typed λ-calculus ND that corresponds to natural deduction.

Here are examples for straightforward proofs in ND:

1. λx:X.x proves X → X

2. λp:X ∗ Y . (p.2) proves X ∗ Y → Y

3. λn:0. δ(λg:X→0. n) proves 0 → X
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X ∈ TV := N

T ∈ Ty ::= X | T → T | T × T | T + T | 1 | 0

x ∈ Var := N

i ∈ {1,2}

t ∈ Ter ::= x | λx:T . t | t t | (t, t) | t.i | (i, t) as T | case t t t | () | δ t

Γ ∈ Var ⇀ Ty

Γx = T

Γ ⊢ x : T

Γ[x := T] ⊢ t : T ′

Γ ⊢ λx:T . t : T → T ′
Γ ⊢ t1 : T → T ′ Γ ⊢ t2 : T

Γ ⊢ t1 t2 : T ′

Γ ⊢ t1 : T1 Γ ⊢ t2 : T2

Γ ⊢ (t1, t2) : T1 × T2

Γ ⊢ t : T1 × T2

Γ ⊢ t.i : Ti

Γ ⊢ t : Ti

Γ ⊢ (i, t, T1 + T2) : T1 + T2

Γ ⊢ t0 : T1 + T2 Γ ⊢ t1 : T1 → T Γ ⊢ t2 : T2 → T

Γ ⊢ case t0 t1 t2 : T

Γ ⊢ () : 1

Γ ⊢ t : (T → 0)→ 0

δ t : T

(λx:T . t)t′ →0 t[x := t′]

(t1, t2).i →0 ti

case (i, t, T) t1 t2 →0 ti t

Figure 4.4: The simply-typed λ-calculus ND
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We use the abbreviation X := X → 0 for negation. Here is a proof for X +X:

δ(λf . f(2, λx.f(1, x)))

where f : X +X and x : X

To keep the proof readable, we state the types of the argument variables sepa-

rately and omit the types of the variants. The types of the variants can be derived

from the type of f . Both variants have the type X +X.

For ND we employ full reduction as defined by the proper reduction rules

in Figure 4.4. Since Preservation holds for ND, we can use reduction to simplify

proof terms. In fact, Gentzen’s so-called cut elimination is reduction in disguised

form.

We summarize the Curry-Howard correspondence as follows:

• Types are propositional formulas.

• Closed well-typed terms are proofs for the validity of formulas.

• The typing rules are proof verification rules.

• Proofs identify the formula whose validity they prove (Unique Type).

• Reduction normalizes proofs. Preservation means that a reduced proof of T

is still a proof of T .

As it turns out, the Curry-Howard correspondence extends to formulas with

quantifiers. For this one has types with quantifiers. Quantified types turn out

to be computationally significant. They provide for polymorphism and abstract

types. The standard system for quantified types is the polymorphic λ-calculus,

which we shall study later.

Exercise 4.6.1 (Natural Deduction) Find ND-proofs for the following formulas:

a) ((X → Y)×X)→ Y

b) (X + Y)→ X × Y

c) (X × Y)→ X + Y

d) X ×X

e) X + Y → (X × Y)

f) (X × Y)→ X + Y

g) 0→ X

h) (X → Y)→ (Y → X)

Exercise 4.6.2 (Peirce’s Law) Peirce’s Law is the Boolean formula

((X → Y)→ X)→ X
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This formula is valid. Hence it can be proven in ND. One can show that every

proof for Peirce’s law in ND must involve a subterm formed with δ. This is

somewhat surprising since Peirce’s law just employs implication while δmust be

used with terms whose type involves 0.

a) Find a proof for Peirce’s Law in ND.

b) Read the Wikipedia entry for Peirce’s law.

Exercise 4.6.3 (Fix) If we extend ND with a recursion operator fix with the usual

typing rule
Γ ⊢ t : T → T

Γ ⊢ fix t : T

we can prove everything.

a) Let T be a type. Find a proof for T in ND extended with fix.

b) Let T be a type. Find a proof for T in ND extended with fix that applies fix

only to terms of the form λx1:T1. λx2:T2. t.

Exercise 4.6.4 (Proof Checker) A SML interpreter provides a proof checker

for ND. Type variables, procedure types, products and 1 (unit) are built in. Sum

types can be obtained with

datatype (’a,’b) sum = L of ’a | R of ’b

The type 0 can be realized as follows:

datatype null = N of null

val delta : ((’a -> null) -> null) -> ’a = fn _ => raise Match

Now we have a proof checker for ND. First we try a proof for 0 → X:

fn n:null => delta (fn f:’a->null => n)

fn : null → α

Since SML has type reconstruction, proofs can be written without type annota-

tions:

fn n => delta (fn _ => n)

fn : null → α

If we bind the proof to an identifier p

val p = fn n => delta (fn _ => n)

val p : null → α

we obtain a polymorphic proof of 0 → T for all types T . Here is a proof for

((X + Y) × (X + Z)) → (Y + Z) that exploits SML’s pattern matching and the

polymorphic proof p:
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4.7 Simple Type Theory

X ∈ Sor := N sort

T ∈ Ty ::= B | X | T → T type

x ∈ Nam := N× Ty name

t ∈ Ter ::= x | t = t | t t | λx.t term

x : T
x = (n, T)

t1 : T t2 : T

t1 = t2 : B

t1 : T2 → T t2 : T2

t1t2 : T

x : T1 t : T2

λx.t : T1 → T2

Figure 4.5: The simply-typed λ-calculus STT

fn (R y, _) => L y

| (_, R z) => R z

| (L x, L f) => p (f x)

fn : (α, β) sum * (α → null, γ) sum → (β, γ) sum

Write your proofs for Exercise 4.6.1 in SML and check them with an interpreter.

4.7 Simple Type Theory

Simple type theory is an expressive logic language that takes a simply typed

λ-calculus as its syntactic base. We employ the calculus STT shown in Fig-

ure 4.5. STT comes with a special base type B (read Boole) and special terms

s = t called equations. There are base types different from B that are called

sorts. The variables of STT are called names and come with a built-in type. This

way, abstractions don’t need to specify their argument type and the typing rela-

tion can be defined without type environments (as done in Figure 4.5). A term

t is well-typed if there is a type T such that t : T . Every well-typed term has

exactly one type. For the purposes of simple type theory only well-typed terms

are considered.

The types of STT are interpreted as non-empty sets. Every interpretation

must interpret B as the set {0,1}. A function type S → T must be interpreted as

the set of all total functions from the interpretation of S to the interpretation of

T . Hence an interpretation is determined for all types if it is determined for all

sorts.

A well-typed term is interpreted as an element of the set that is the interpre-

tation of its type. An interpretation is determined for all terms if it is determined
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for all sorts and all names.

Given an interpretation, we say that a syntactic object denotes its interpreta-

tion. Moreover, we call the interpretation of a syntactic object its denotation.

An equation s = t denotes 1 if s and t denote the same value, and 0 otherwise.

An application st denotes the value obtained by applying the function denoted

by s to the value denoted by t. Finally, an abstraction λx.t denotes the total

function from the set denoted by the type of x to the set denoted by the type

of t that for a value v yields the value denoted by t if the argument variable x is

interpreted as v .

It is not difficult to formalize the notion of interpretation. We require that Ty

and Ter are disjoint sets and that Sor ⊆ Ty and Nam ⊆ Ter . Now an interpreta-

tion is a function I such that:

1. Dom I = Ty ∪ Nam

2. I B = {0,1}

3. I(S → T) = {ϕ |ϕ function IS → IT } for all types S, T

4. x : T =⇒ Ix ∈ IT for all names x and all types T

Exercise 4.7.1 Which condition of the above definition ensures that sorts are

interpreted as non-empty sets?

Proposition 4.7.2 (Coincidence) Two interpretations are equal if they agree on

all sorts and all names.

Given an interpretation I , a name and a type x : T , and a value v ∈ IT , we

use Ix,v to denote the interpretation I[x:=v].

Proposition 4.7.3 (Evaluation) For every interpretation I there exists exactly one

function Î such that:

1. Dom Î = Ter

2. t : T =⇒ Ît ∈ IT for all terms t and all types T

3. Îx = Ix for all names x

4. Î(s = t) = if Îs = Ît then 1 else 0 for all equations s = t

5. Î(st) = (Îs)(Ît) for all applications st

6. Î(λx.t) = λv∈IT . Îx,vt for all abstractions λx.t and types x : T

A formula is a term of type B. An interpretation I satisfies a formula t if

Ît = 1. A formula is valid if it is satisfied by every interpretation. A formula is

satisfiable if it is satisfied by at least one interpretation.
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4.7.1 Boolean Connectives and Quantifiers

There are closed terms that denote in every interpretation the Boolean connec-

tives and the quantifiers. We start with the truth values (0 and 1) and the negation

function:

⊤ := (λx.x) = (λx.x) where x : B

⊥ := (λx.x) = (λx.⊤) where x : B

¬ := λx.x = ⊥ where x : B

Let T be a type. A property for T is a term of type T → B. The universal

quantifier ∀T : (T → B) → B checks whether a property holds for all elements

of T , and the existential quantifier ∃T : (T → B) → B checks whether a property

holds for at least one element of T . The quantifiers can be expressed in STT as

follows:

∀T := λf . f = (λz.⊤) where f : T → B

∃T := λf .¬(f = (λz.⊥)) where f : T → B

The usual notation is recovered as follows:

∀x.t := ∀T (λx.t) where x : T

∃x.t := ∃T (λx.t) where x : T

Now its easy to express conjunction, disjunction and implication:

∧ := λxy.∀g. gxy = g⊤⊤ where g : B→ B→ B

∨ := λxy.¬(∀g. gxy = g⊥⊥) where g : B→ B→ B

→ := λxy.¬(∀g. gxy = g⊤⊥) where g : B→ B→ B

We say that an interpretation interprets a name C : (T → B) → T as choice for T

if it satisfies the formula f(Cf) = ∃Tf . Choices are useful if we want to describe

an object by a property that characterizes it uniquely. For instance, if we know

that N is interpreted as N, + : N → N → N as addition, and C as choice for N ,

we can describe 0 as C(λx.x = x + x).

Exercise 4.7.4 (Numbers) Let I be an interpretation that interprets the sort N

and the names +, · : N → N → N as the natural numbers with addition and

multiplication. In addition, assume that I interprets C as choice for N . Find

terms that denote in I the following:

a) The number 0.

b) The number 1.
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c) Subtraction − : N → N → N . For x < y , you can choose x −y as you like.

d) Integer division ÷ : N → N → N . You can choose x ÷ 0 as you like.

e) Less or equal ≤ : N → N → B.

Exercise 4.7.5 (Conditional) Let I be an interpretation. Find a term that denotes

in I the function λb∈B. λu∈IX. λv∈IX. if b then u else v.

a) Assume that I interprets C as choice for N .

b) Assume that I interprets C as choice for B→ N → N → N .

Exercise 4.7.6 (Termination) Find a formula that is satisfied by an interpreta-

tion if and only if it interprets the name r : T → T → B as a terminating relation.

A relation terminates if there is no infinite sequence a0, a1, a2, . . . such that the

pair (ai, ai + 1) is in the relation for all i ∈ N. You formula should not use the

natural numbers. Hint: Specify non-termination of r first.

4.7.2 Specification of the Natural Numbers

We can specify the natural numbers with a formula. For this we choose a sort N

and names 0 : N and σ : N → N . Now the specifying formula t should satisfy the

following conditions:

1. Every interpretation that interprets N as N, 0 as 0, and σ as λn∈N. n + 1

satisfies t.

2. If an interpretation satisfies t, then it interprets N as N, 0 as 0, and σ as

λn∈N. n+ 1 (up to isomorphism).

The “up to isomorphism” relaxation of the second condition accounts for the

fact that there are many equivalent constructions of the natural numbers.

A specification of the natural numbers was first given by Peano in 1889. It

consists of three conditions:

1. Every element of N is reachable from 0 by finitely many applications of σ .

2. σ is an injective function.

3. σ never yields 0.

The second and third condition are easy to formalize:

∀xy. (σx = σy) = (x = y)

¬(∃x. σx = 0)

The first condition is formalized as the famous induction axiom, which says

that a property that holds for 0 and is closed under σ must hold for all natural

numbers:

∀f . f0∧ (∀x.fx → f(σx)) → ∀x.fx
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The induction axiom forces the reachability condition since the reachable ele-

ments of N yield a property that holds for 0 and is closed under σ .

It’s easy to extend the specification of the natural numbers with addition and

multiplication since these operations can be defined by recursion with respect

to 0 and σ . For addition the specifying formula looks as follows:

∀xy. 0+y = y ∧ σx +y = x + σy

If there is a choice C for N → N → N available, there is even a term that denotes

addition:

C(λf . ∀xy. f0y = y ∧ f(σx)y = fx(σy))

Exercise 4.7.7 (Multiplication)

a) Give a formula that specifies multiplication. You may use 0, σ and +.

b) Give a term that denotes multiplication. You may use 0, σ , + and a choice C

for N → N → N .

Exercise 4.7.8 (Pairs) Let the sorts X, Y , Z and the names pair : X → Y → Z,

fst : Z → X , snd : Z → Y be given. Find a formula that is satisfied by an inter-

pretation if and only if Z denotes (up to isomorphism) the cartesion product

of the denotations of X and Y , and pair, fst, and snd denote the pairing and

projection functions.

4.7.3 Semantic equivalence

Semantic equivalence of terms is defined as follows:

s ∼ t :⇐⇒ ∃T : s : T ∧ t : T ∧ s = t valid

Proposition 4.7.9 Semantic equivalence ∼ satisfies the following properties:

1. ∼ is an equivalence relation on the set of well-typed terms

2. s ∼ t =⇒ C[s] ∼ C[t] if C[s] : T and C[t] : T

3. s ∼ t =⇒ θs ∼ θt if ∀x : x : T =⇒ θx : T

4. (λx.s)t ∼ [x:=t]s if (λx.s)t well-typed

5. λx.tx ∼ t if x ∉ FV t and tx well-typed

6. λx.t ∼ λy. [x:=y]t if y ∉ FV t, x and y have same type, and t well-typed

Proposition 4.7.10 Semantic equivalence is not semi-decidable.

Proof Follows from the fact that simple type theory can specify Turing machines

and the halting problem. �
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4.7.4 Historical Remarks

Simple type theory originated with Church [1940] and was further developped by

Henkin [1950, 1963]. A recent textbook is Andrews [2002]. Simple type theory is

the logical base of the interactive theorem provers HOL and Isabelle.

Church didn’t like types. His goal was to develop the untyped λ-calculus into

a foundation for both computation and logic. Church wanted this foundation to

be defined without the use of set theory. In 1934 his students Kleene and Rosser

published a paper showing that Church’s original set-up of logic was inconsis-

tent. They showed that for any term ¬ representing negation there is a term t

such that t and ¬t are deductively equivalent, which is logically inconsistent.

The problem is caused by terms whose reduction doesn’t terminate. Hence it

goes away in the simply typed lambda-calculus STT.

In retrospect, what Kleene and Rosser discovered is a trivialiy. They took

Russel’s antinomy that had been used before to show the inconsistency of Can-

tor’s and Frege’s systems and translated it into λ-calculus. Russell’s antinomy is

based on the assumption that {x | x ∉ x } is a set (which it is not in modern set

theory). The claimed set translates to the term λx.¬(xx) in the λ-calculus. The

rest we leave as an exercise.

If you want to know more, you may read J. Barkley Rosser’s paper Highlights

of the History of the Lambda-Calculus [1982].

Exercise 4.7.11 Let s be a term of the untyped λ-calculus. Find a term t such

that t reduces in one step to st.

4.8 Termination

Theorem 4.8.1 (Termination) Reduction in the pure simply typed λ-calculus ter-

minates.

62 2008/2/18



5 Computational Effects: State, I/O &

Friends

So far, we have investigated semantics and types of various ‘pure’ languages,

which we took as idealized models of functional programming. Purity manifests

itself in the principle of referential transparency that was valid in all the pre-

vious lambda calculi that we considered: identifiers can be freely replaced by

their respective bindings. Essentially, referential transparency boils down to the

following property:

t ⇓ v =⇒ t ∼ v (5.1)

which means that evaluation of terms has no observable effect.

Most practical languages include also ‘impure’, ’side-effecting’ features to ac-

cess the underlying machine state or communicate with the outside world. Ex-

amples of such computational effects are

• mutable state

• I/O

• exceptions, jumps, and continuations

• synchronization and non-determinism, as arising from concurrency

and generally they will invalidate (5.1). Sometimes even divergence is consid-

ered a computational effect: it makes the difference between various reduction

strategies observable.

In this chapter we will see how the framework of lambda calculus can be

extended to capture computational effects. We look at the case of an output op-

eration first, and then consider mutable state in the form of ML-style references.

Further examples include a nondeterministic choice operator and a simple con-

current lambda calculus. Finally we will consider control flow operators.

Since (most) computational effects make the order of evaluation observable,

it is useful to have a form of sequencing. Recall that in the lambda calculus,

sequencing is already available as ‘syntactic sugar’:

let x = t in t′ for (λx:T .t′)t (appropriate T )

t; t′ for let x = t in t′ (x ∉ FV (t′))
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Required Reading: Pierce, TAPL, Chapters 13 and 14. Introduces reference types

and exceptions. Provides further discussion of design decisions.

5.1 Printing

Fix a finite set Σ (the alphabet) and let σ range over Σ∗ (finite strings over Σ).

By ǫ we denote the empty string, and σ · σ ′ (or simply σσ ′) stands for the

concatenation of σ,σ ′ ∈ Σ∗.

We now extend the set of lambda terms by new terms print σ , one for each

σ ∈ Σ∗:

t ::= . . . | print σ

(The sets of types and values do not change.) The intended behaviour is that

print σ simply returns (), but in addition outputs the string σ . Thus, while

both print σ ; print σ ′ and print σ ′; print σ return (), their semantics generally

differs because the former outputs σσ ′ whereas the latter prints σ ′σ .

Exercise 5.1.1 Argue similarly that the terms

let x = print σ in (x; x) and let x = (λy:1.print σ) in (x(); x())

behave differently although they both evaluate to (). (Contrast this with the case

of, e.g. PCF, where let x = t in (x; x) ∼ let x = (λy:1.t) in (x(); x()) holds for all t.)

Semantics

We extend the semantics to record the output that occurs during evaluation.

To this end, the big-step semantics t ⇓ v becomes a ternary relation between

terms, values and strings which we write t ⇓ v|σ . It is defined inductively by the

rules in Figure 5.1. Note how the rules for values and applications are obtained

straightforwardly from those of simply typed lambda calculus. Also observe how

the case t1t2 ⇓ v|σ now determines the left-to-right evaluation of applications –

this was unspecified in the corresponding rule.

It is also possible to give a small-step semantics to the language. This is most

naturally given in the form of a relation t|σ → t′|σ ′ between pairs of terms and

strings. The second component of these ‘configurations’ t|σ can be thought of

as collecting the output that has already occurred. The proper reduction rules

that define top-level reduction are:

(λx:T .t)v|σ →0 [x := v]t|σ

print σ ′|σ →0 ()|σσ
′
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print σ ⇓ ()|σ v ⇓ v|ǫ

t1 ⇓ λx:T .t|σ1 t2 ⇓ v2|σ2 [x := v]t ⇓ v|σ3

t1t2 ⇓ v|σ
σ = σ1σ2σ3

Figure 5.1: Big-step semantics for printing

and the reduction relation is obtained with the help of evaluation contexts:

t|σ → t′|σ ′ :⇐⇒ ∃s, s′, E : t = E[s] ∧ s|σ →0 s
′|σ ′ ∧ E[s′] = t′

The big-step and small-step semantics are both deterministic, and agree in

the following sense:

Proposition 5.1.2 (Coincidence) For every term t, string σ and every value v ,

we have t ⇓ v|σ if and only if t|ǫ → ·· · → v|σ .

Exercise 5.1.3 Prove Proposition 5.1.2.

To obtain a natural notion of semantic equivalence of programs that may

print, we refine contextual equivalence to take the output into account:

s ∼print t :⇐⇒ ∀C∀σ : (∃v : C[s] ⇓ v|σ ⇐⇒ ∃v : C[t] ⇓ v|σ)

That is, s and t have the same termination behaviour and generate the same

output, in all contexts C .

Exercise 5.1.4 Give separating contexts for the following programs:

a) print σ and print σ ′, where σ ≠ σ ′

b) x() and x();x()

Show that t ⇓ v|σ ⇒ t ∼print v does not hold.

Typing and Type Safety

Consider the evident typing rule

Γ ⊢ print σ : 1

suggested by the semantics of print σ . With its help we can prove progress

and type preservation, as straightforward adaptations of the previously stated

propositions for PCF and the simply typed lambda calculus. Together they yield

type safety.
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Proposition 5.1.5 (Progress) Every closed and well-typed term t is either a value,

or else for any σ there exists σ ′, t′ such that t|σ → t′|σ ′.

Proposition 5.1.6 (Type Preservation) For all σ and σ ′, if Γ ⊢ t : T and t|σ →

t′|σ ′, then Γ ⊢ t′ : T .

Exercise 5.1.7 Modify the language so that strings are a basic type:

T ::= . . . | String and t ::= . . . | σ | print t | t · t

For this language, state

• the big-step semantics,

• an equivalent small-step semantics, and

• the rules defining the typing relation.

Exercise 5.1.8 Suggest a way of modelling user input.

5.2 References

This section complements Chapter 13 of TAPL. The combination of dynamically

created references and higher-order functions gives rise to an expressive and

semantically rich language, as the following exercises show.

Exercise 5.2.1 (Sequence generators in SML) By a generator for a sequence of

natural numbers a = (ai)i∈N we mean a procedure of type unit → int which re-

turns ai upon the i-th call. In Standard ML, implement the following procedures:

a) a generator squares for the sequence of square numbers 0,1,4,9,16, . . .

b) a (non-recursive) generator fac for the factorial numbers 1,1,2,6,24, . . .

c) a generator fibs for the sequence of Fibonacci numbers 0,1,1,2,3, . . .

d) a procedure newGen : (int → int)→ unit → int that returns a generator for the

sequence f 0, f 1, f 2, . . . when given f .

We can approximate some aspects of object-oriented programming:

Exercise 5.2.2 (Resettable counters in SML)

a) Complete the following SML declaration

val (count, inc, reset) =

such that it yields an encapsulated counter with initial value 0 and three pro-

cedures to access and modify the counter as follows:

• count : unit → int returns the value of the counter.

• inc : unit → unit increases the value of the counter by one.
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T ∈ Ty ::= . . . | Ref T

l ∈ Loc

v ∈ Val ::= . . . | l

t ∈ Ter ::= . . . | ref t | t := t | !t

E ∈ EC ::= . . . | ref E | E := t | v := E | !E

Figure 5.2: Syntax of lambda calculus with references

• reset : unit → unit resets the counter to its initial state.

b) Write a procedure

newCounter : int → (unit → int)× (unit → unit)× (unit → unit)

such that each call with argument n yields a new counter with initial value n.

Small-step Semantics

The semantics of lambda calculus with references can be given in the form of

proper reduction rules and evaluation contexts. Similar to the printing case,

→ becomes a relation between ‘configurations’, which in this case are pairs of

terms and stores. The extension to the syntax of terms and evaluation contexts

are summarized in Figure 5.2. Stores are modelled as finite maps µ from Loc

to Val, and the proper reduction rules associated with the store operations are

given by

ref v|µ →0 l|µ[l := v] l ∉ Dom(µ)

l:= v|µ →0 ()|µ[l := v] l ∈ Dom(µ)

!l|µ →0 µ(l)|µ l ∈ Dom(µ)

The reduction relation is obtained from these by

t|µ → t′|µ′ :⇐⇒ ∃s, s′, E : t = E[s] ∧ s|µ →0 s
′|µ′ ∧ E[s′] = t′

Note that the side-condition of the first proper reduction rule can always be

satisfied because Dom(µ) is a finite subset of the infinite set Loc. Also note

that reduction is now non-deterministic, due to the arbitrarily chosen location

l ∉ Dom(µ). However, this non-determinism is benign and does not cause any

problems when proving type safety. In fact it could be avoided, e.g. by taking

Loc = N and then always choosing the smallest l ∈ N such that l ∉ Dom(µ).
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(The situation would be different in a language with pointer arithmetic, where

the non-deterministic allocator becomes observable.)

As for printing, we need to make a small modification to the definition of con-

textual equivalence. Here it is due to the fact that generally evaluation depends

on an initial store. However, since we are only interested in the equivalence of

programs written in the ‘surface’ language , we can restrict attention to terms

(and contexts) that do not contain locations. Since such programs never access

the store (outside the region allocated by the program itself), it suffices to define

the observations with respect to the empty store. We define t ⇓ to mean that

there exist v and µ such that t|0 ⇓ v|µ, and let

t ∼ref t
′ :⇐⇒ ∀C : Locs(C[t]) = 0 = Locs(C[t′]) ⇒ (C[t] ⇓ ⇐⇒ C[t′] ⇓)

Exercise 5.2.3 (Semantics of lambda calculus with references)

a) Make sure that you can state the proper reduction rules, reduction contexts,

contextual equivalence, typing relation and the progress and preservation

properties for the lambda calculus with references.

b) Give an equivalent big-step semantics.

c) Give an example of a well-typed, closed term such that its evaluation creates

a heap µ with a cycle µ(l) = λx:Unit.(!l)x, for some l.

d) Find Γ , µ, and Σ1 ≠ Σ2 such that Γ |Σi ⊢ µ holds for i = 1,2.

e) At some types it is not necessary to add the comparison operator r = s on

references as a new primitive: give a closed term t (depending on r , s) such

that t evaluates to true if r and s are bound to the same location, and to false

otherwise, where

• r and s have type Ref Int;

• r and s have type Ref Bool.

Use SML to test your terms.

Exercise 5.2.4 (Recursion)

a) Show that the reduction relation is not normalizing on well-typed terms of

the lambda calculus with references. Hint: Use a reference to a location of

type 1→ 1. Test your term using SML.

b) Let T be any type. Find a well-typed term Fix : ((T → T) → T → T) → T → T

that evaluates to a procedure that behaves like a recursion operator. Hint: for

any type T it is possible to allocate a reference of type (T → T) Ref . Use SML

to test your terms.

c) Consider the simply typed lambda calculus extended with only Unit refer-

ences, (i.e. where the types are given by T ::= Unit | Int | T → T | Ref Unit).
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t ∈ Ter ::= . . . | t ⊕ t

E ∈ EC ::= . . . | E ⊕ t | v ⊕ E

v1 ⊕ v2 →0 v1

v1 ⊕ v2 →0 v2

Γ ⊢ t1 : T Γ ⊢ t2 : T

Γ ⊢ t1 ⊕ t2 : T

Figure 5.3: Lambda calculus with choice

Show that reduction is normalizing. Hint: You may assume that reduction

is normalizing in the simply typed lambda calculus over base types Unit and

Int. Use this to simulate reduction steps in the calculus with references.

Exercise 5.2.5 (Contextual equivalence) Consider the simply typed lambda cal-

culus with pairs and references, over base types Int and Bool. Find separating

contexts for the following expressions.

a) (ref 0, ref 0) and (λr .(r , r)) (ref 0)

b) r := 1; s := 2 and s := 2; r := 1

c) r := 1; r :=!s and r :=!s

d) let r = ref 0 in let s = ref 0 in λx.if x = r then r else s and

let r = ref 0 in let s = ref 0 in λx.if x = s then r else s

Note that the last inequivalence is interesting, since contexts (initially) have no

access to the locally declared references r and s. It is due to Andy Pitts and Ian

Stark.

5.3 Nondeterminism and Concurrency

Extending the lambda calculus with a nondeterministic choice construct intro-

duces observable nondeterminism. Figure 5.3 summarizes syntax, operational

semantics and typing of such an extension. There are few surprises: we have 2

new proper reduction rules, which entail that → is no longer deterministic. Since

either branch t1, t2 may be the result of the choice t1⊕t2, the typing rule ensures

that the respective types agree. Note however that the branches t1, t2 must be

fully evaluated before the choice is taken (i.e., we do not discard computations
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but only values).

For example, the term

t := (λx:1.false)⊕ (λx:1.true)

may reduce to either the constantly true or constantly false function of type

1 → Bool. Consequently, t() can yield either true or false. Similarly,

λx:T .λy :T .x ⊕ y

is a procedure that returns either its first or second argument.

Exercise 5.3.1 Develop an equivalent big-step operational semantics for lambda

calculus with choice.

Next, let us consider the definition of contextual equivalence. If we adopted

the usual notion this would lead to an inconsistency: let Ω be a divergent term,

and consider the term

t := ((λx:1.true)⊕ (λx:1.Ω))()

Depending on the choice, this term may reduce to the result true. So we have

t ∼ true (5.2)

But t may also reduce to Ω, and thus

t ∼ Ω (5.3)

Combining these equivalences (by transitivity of ∼), we obtain true ∼ Ω. But

clearly this latter equivalence does not make sense. The solution is to refine

the notion of convergence so that it becomes appropriate for a nondeterministic

setting: we write t ↓ if t may converge, i.e. if there is some finite reduction

sequence t → . . .→ t′ where t′ is irreducible, and we write t ⇓ if t must converge,

i.e. if there is no infinite reduction sequence t = t0 → t1 → t2 → . . . starting from

t. We can then define both may- and must-contextual equivalence,

t ∼may t
′ :⇐⇒ ∀C : C[t] ↓ ⇐⇒ C[t′] ↓

t ∼must t
′ :⇐⇒ ∀C : C[t] ⇓ ⇐⇒ C[t′] ⇓

and obtain contextual equivalence t ∼ t′ as their intersection:

t ∼ t′ :⇐⇒ t ∼may t
′ ∧ t ∼must t

′
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Note that (5.2) no longer holds because the terms are not must-contextually

equivalent, and that (5.3) fails because the terms are not may-contextually equiv-

alent. Moreover, note that this definition is a generalization of the one from PCF,

since in deterministic languages may- and must-convergence coincide.

The introduction of nondeterminism may seem like a needless complication,

but it arises quite naturally if one extends the lambda calculus with primitives

for concurrent computation. There, concurrently running threads will usually

compete for access to some shared ‘resources’. A simple example is obtained by

extending the lambda calculus with references by a construct

cobegin t1‖ . . .‖tn end

The intended meaning is that upon entering the block, t1, . . . , tn are reduced

concurrently. One possible formalization is in terms of interleaving, e.g. by

introducing evaluation contexts

cobegin t1‖ . . .‖ti−1‖E‖ti+1‖ . . .‖tn end

for i = 1, . . . , n. If all ti have been fully reduced, we simply replace the whole

block by ().

Exercise 5.3.2 Several alternatives to this decision are similarly sensible. Dis-

cuss (and formalize) a few of them.

Exercise 5.3.3 Give a typing rule for cobegin t1‖ . . .‖tn end.

Exercise 5.3.4 Give an example that shows how nondeterminism arises. Hint:

consider a block where the ti have access to a shared reference.

5.4 Exceptions and Continuations

This section contains some additional observations, extending TAPL, Chapter

14. If you want to know more about type and effect systems have a look at

the book Principles of Program Analysis by Nielson, Nielson and Hankin. More

on continuations and their connection to classical logic can be found in Robert

Harper’s lecture notes.

5.4.1 Error Propagation and Exceptions

The intuition that error propagates by popping frames from the control stack

can be made precise by considering stack frames

F ∈ Frm ::= [] t | v []
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which are the minimal building blocks for evaluation contexts. It is easily seen

that the proper reduction rules for error given in TAPL are exactly those of the

form

F[error]→0 error

The advantage of using frames is that this formulation more directly extends to

richer languages.

Exercise 5.4.1 Show that every evaluation context E can be uniquely decom-

posed into frames F1, . . . , Fn such that E = Fn[Fn−1[. . . [F1] . . .]], for some n ≥ 0.

Exercise 5.4.2 Define the set of stack frames corresponding to the evaluation

contexts of the lambda calculus with pairs.

An alternative semantics of error could be to ‘throw away’ the evaluation

context in one go, rather than popping off individual stack frames one by one.

More precisely, one defines

t → t′ :⇐⇒ ∃s, s′, E : t = E[s] ∧ s →0 s
′ ∧ E[s′] = t′ (5.4)

∨ ∃E ≠ [] : t = E[error] ∧ t′ = error (5.5)

Exercise 5.4.3 Once exceptions can be handled (ie. after adding the try t with t′

construct), not every context is ‘propagating’. Adapt (5.4) accordingly, by defin-

ing which evaluation contexts propagate error and exceptions raise v, respec-

tively. Reduction shall remain deterministic.

Exercise 5.4.4 (Semantics of exceptions) Consider the simply typed lambda cal-

culus extended with exceptions that carry values.

a) Make sure that you can state the (proper) reduction rules, typing rules, and

the revised progress property.

b) State the inference rules that define an equivalent big-step semantics t ⇓ r

for this language. Here r is a result, which can either be a value or a term

of the form raise v. Take care to treat exceptions correctly in the rule for

applications.

c) Let T1, T2 be any types. Find a well-typed term that evaluates to a procedure

that behaves like a recursion operator fix : ((T1 → T2) → T1 → T2)→ T1 → T2 .

Use SML to test your term.

Exercise 5.4.5 (Recursion) Consider the simply typed lambda calculus extended

with exceptions that carry values.

a) Show that reduction is not normalizing on well-typed terms of this calculus.
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b) Let T1, T2 be any types. Find a well-typed term that evaluates to a procedure

that behaves like a recursion operator fix : ((T1 → T2)→ T1 → T2)→ T1 → T2 .

Use SML to test your terms.

5.4.2 Exception Analysis: A Type and Effect-System

As we’ve seen already, the presence of computational effects invalidates many

useful program transformations. For example, the dead code elimination

let x = t1 in t2, x ∉ FV (t2) 7 -→ t2

is valid only if evaluation of t1 is effect-free. Consequently, one is often inter-

ested in establishing the absence of effects. In the case of exceptions, we may

therefore ask:

Are any exceptions raised during evaluation of term t? And if so, which

ones?

Like most such questions, this is undecidable in general, and we will have to look

for a (safe) approximation: a set ε of exception names such that

1. if t raises exn then exn ∈ ε,

2. ε may possibly contain more exceptions.

We will obtain such an approximation by refining the type system for exceptions

with information about possibly raised exceptions, defining a relation

Γ ⊢ t : T : ε

where, intuitively, 0 ⊆ ε ⊆ Texn. (For simplicity, let us assume that Texn =

< exn1 : T1, . . . , exnn : Tn >, i.e., Texn corresponds to the sum type T1 + . . . + Tn

and we will write the injection of t : Ti into the i-th component simply as exni t;

see TAPL, Chap. 11.10.) This gives us an effect system, which is roughly a type

system with additional annotations. The benefit of this approach is that

• the analysis is compositional: effect information about a compound term is

derived from effect information of its component terms, i.e., it is structurally

inductive just like a type system; and

• the soundness of the analysis may be established with the methods we al-

ready know: it follows from preservation and progress properties.

Figure 5.4 presents the rules that define the effect system. Formally, (effect)

annotations and annotated types are given by the grammar

ε ::= 0 | {exni} | ε∪ ε
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Γ ⊢ true : Bool : 0

(x, T) ∈ Γ

Γ ⊢ x : T : 0

Γ[x := T] ⊢ t : T ′ : ε

Γ ⊢ λx:T .t : T
ε
→ T ′ : 0

Γ ⊢ t1 : T ′
ε
→ T : ε1 Γ ⊢ t2 : T : ε2

Γ ⊢ t1t2 : T : ε1 ∪ ε2 ∪ ε

Γ ⊢ t : Bool : ε Γ ⊢ t1 : T : ε1 Γ ⊢ t2 : T : ε2

Γ ⊢ if t then t1 else t2 : T : ε∪ ε1 ∪ ε2

Γ ⊢ t : Ti : ε

Γ ⊢ raise t : T : ε∪ {exni}

Γ ⊢ t1 : T : ε1 Γ ⊢ t2 : Texn
ε
→ T : ε2

Γ ⊢ try t1 with t2 : T : ε2 ∪ ε

Γ ⊢ t : T : ε ε ⊆ ε′

Γ ⊢ t : T : ε′

Figure 5.4: Effect system for exception analysis

T ::= X | T
ε
→ T | T + T | . . .

Since values are already fully evaluated, they cannot raise any exceptions. This

explains why we can soundly set ε = 0 in the case of basic values like true,

false,. . . Similarly, since in a call-by-value language variables will only be bound

to values, ε = 0 also in the case of variables. The case for abstractions is more

interesting, as any exceptions that may be raised when evaluating the procedure

body will not occur until the time when the procedure is applied. Thus the func-

tion type is equipped with an additional annotation to transfer this information

from the point of definition to the point of use of the function. In fact, this re-

finement of function types is characteristic of effect systems (not only the one

for exception analysis).

The rule for applications t1t2 collects not only the exceptions that may be

raised by evaluation of the components, i.e., those of t1 and t2, but also the set

of exceptions ε arising from evaluating the function body. Similarly, the rule for

conditionals collects the information obtained by the component terms t, t1, t2.

In order to obtain the preservation property, we must add (why?) a rule for

‘subeffecting’,

Γ ⊢ t : T : ε ∧ ε ⊆ ε′ =⇒ Γ ⊢ t : T : ε′

The rule for raise t is the only one where the set ε is actually extended. Dually, ε

may become smaller when passing through a handler: any exception raised by t1

in try t1 with t2 will be captured, so it need not appear in the annotation unless

it is re-raised during the evaluation of the handler.
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Exercise 5.4.6 (Exception analysis) Prove soundness of the inference system

for exception analysis: Suppose 0 ⊢ t : T : ε. Then

t → . . .→ t′ where t′ is irreducible =⇒ t′ ∈ Val ∨ ∃v : (t′ = exniv ∧ exni ∈ ε)

You will need to adapt the Progress and Preservation theorems accordingly.

Exercise 5.4.7 Complete the effect system by stating rules for

a) the case-construct

b) the fix-construct, for recursive function definitions

Extend the soundness proof accordingly.

Exercise 5.4.8 (Conservativity) Show that the effect system conservatively ex-

tends the type system: Let us write |T | for the simple type obtained by stripping

off all annotations, and extend this to contexts and terms in the evident way.

Then Γ ⊢ t : T : ε for some ε if and only if |Γ | ⊢ |t| : |T |.

5.4.3 Abstract Machine and Continuations

In order to discuss control flow and continuations it is helpful to consider an

execution model for the lambda calculus that is slightly closer to an implemen-

tation. In order to make explicit the search for the next redex position (i.e., the

splitting of a reducible term t into E and s such that t = E[s] and s is the left

hand side of a proper reduction rule), we will consider an abstract machine that

performs this operation explicitly.

The machine operates on configurations (t, k) ∈ Ter × Stk where t is a term

and k is a list of stack frames Fn:: . . . ::F1::nil. We may sometimes use list notation

[Fn, . . . F1] for this. As a consequence of Exercise 5.4.1, such lists are in one-one

correspondence with evaluation contexts. The initial state of the machine will be

configurations of the form (t,nil), the final ones those of the form (v,nil). A key

difference to the previous operational semantics is that now every reduction rule

is proper.

Obviously we would like a good fit between the earlier semantics, and the new

one given by the abstract machine:

Proposition 5.4.9 (Coincidence of small-step and abstract machine semantics)

For all t and v , t ⇓ v iff (t,nil)֏ . . .֏ (v,nil).

Exercise 5.4.10 Prove Proposition 5.4.9.

• For ‘⇒’, you need to prove the more general property that if t ⇓ v then

∀k : (t, k)֏ . . .֏ (v, k).
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Types, terms and stacks

T ∈ Ty ::= X | T → T

t ∈ Ter ::= x | tt | λx:T .t

v ∈ Val ::= λx:T .t

F ∈ Frm ::= [] t | v []

k ∈ Stk ::= nil | F :: k

Reduction

(t t′, k)֏ (t, ([] t′)::fs)

(v, ([] t)::fs)֏ (t, (v [])::fs)

(v, ((λx:T .t) [])::fs)֏ ([x := v]t, fs)

Typing (in addition to the usual inference rules for terms)

Γ ⊢ nil : T

Γ ⊢ k : T ′ Γ ⊢ F : T ⊸ T ′

Γ ⊢ F :: k : T

Γ ⊢ t : T

Γ ⊢ [] t : (T → T ′) ⊸ T ′
Γ ⊢ v : T → T ′

Γ ⊢ v [] : T

Γ ⊢ t : T Γ ⊢ k : T

Γ ⊢ (t, k) : ok

Figure 5.5: An abstract machine for lambda calculus

• For ‘⇐’, define the ‘dismantling’ k • t of a stack k onto a term t inductively

by nil • t := t and (F ::k) • t := k • F[t]. Then prove (1) that t → t′ implies

∀k : k • t → k • t′, and (2) that ∀k : (t, k) ֏ (t′, k′) then k • t → . . . → k′ • t′.

You can then use the coincidence result between small-step and big-step se-

mantics to infer the proposition.

There are typing rules for all syntactic categories:

• Γ ⊢ t : T for terms (which is standard and omitted in Figure 5.5),

• Γ ⊢ F : T ⊸ T ′ for frames,

• Γ ⊢ k : T for stacks, and

• Γ ⊢ (t, k) : ok for states of the machine.

For terms, T describes the type result type whereas for stacks, T describes the
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type of the ‘hole’ of the evaluation context represented by the stack. The result

type of the stack is not needed for our purposes; intuitively because nothing

is returned after passing control to the stack. Correspondingly a state (t, k) is

well-typed, written Γ ⊢ (t, k) : ok whenever both Γ ⊢ t : T and Γ ⊢ k : T match,

for some type T . The result type of the overall computation is not important,

because it is never plugged into another context.

As for the other semantics of simply typed lambda calculus, we can infer type

safety from preservation and progress properties:

Theorem 5.4.11 (Type safety)

1. If Γ ⊢ (t, k) : ok and (t, k)֏ (t′, k′) then Γ ⊢ (t, k) : ok.

2. If 0 ⊢ (t, k) : ok and (t, k) 6֏ then (t, k) is a final state.

It is easy to extend the machine with the abort primitive error considered

earlier: The set of terms is now t::= . . . | error , and there is a single new

reduction

(error , F :: k) ֏ (error , k)

that propagates error by popping frames off the stack. Alternatively, the stack

may be discarded at once:

(error , F :: k) ֏ (error ,nil)

Note that without the restriction to non-empty stacks on the lhs, reduction on

error-states would not be terminating.

Exercise 5.4.12 Extend the abstract machine to error handling.

Exercise 5.4.13 (Abstract machine for PCF and control)

a) Simulate (using pencil and paper) the abstract machine on the terms

• (λxy.y)(λxy.x) and

• (λxy.y)(callcc(λk.throw(λxy.x, k))).

b) We implement terms and frames of the pure λ calculus in SML as follows:

type var = int

datatype ter = V of var | A of ter * ter | L of var * ter

and frm = AppL of ter | AppR of ter (* [] t and v [], resp *)

Write a procedure run : ter ∗ frm list → ter ∗ frm list that implements reduc-

tion in the abstract machine for λ calculus.

c) Extend your implementation from (b) to PCF.

d) Extend your implementation with error and error handling.
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Many control constructs can be expressed in terms of continuations (in par-

ticular, jumps, exceptions, backtracking, coroutines). Roughly, a continuation is

a ‘reified’ control stack, i.e., a representation of the control stack can be used as

an ordinary value. In particular, it can be

• stored and passed around,

• duplicated or discarded, and

• restored.

As Harper puts it, they provide a means of "unlimited time travel". To look at the

semantics of continuations, we’ll extend the abstract machine model by reified

stacks cont k, a new operator callcc t to bind the current continuation in the

term t, and a construct throw(t1, t2) to restore the continuation represented by

t2, with (the value of) t1:

v ∈ Val ::= . . . | cont k

t ∈ Ter ::= . . . | callcc t | throw(t1, t2)

F ∈ Frm ::= . . . | callcc [] | throw([], t) | throw(v, [])

There are 3 new rules that simply coordinate the evaluation of the subterms of

callcc and throw(t1, t2):

(callcc t, k)֏ (t, callcc []::k)

(throw(t, t′), k)֏ (t, throw([], t′)::k)

(v, throw([], t)::k)֏ (t, throw(v, [])::k)

The rule

(cont k, throw(v, [])::k′)֏ (v, k)

replaces the current stack k′ by the continuation k. The rule for callcc

(λx:T .t, (callcc [])::k)֏ ([x := cont k]t, k)

binds the variable x to the continuation k that is currently in use.

Example 5.4.14

1. The term t = callcc(λh.(λx.y)(throw(λz.z, h))) yields λz.z.

2. The term λx.throw(x, cont nil) behaves like a value-carrying version of

error . �

The set of types is extended with a type of ‘T -continuations’:

T ∈ Ty ::= . . . | Cont T
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Γ ⊢ k : T

Γ ⊢ cont k : Cont T

Γ ⊢ t : (Cont T) → T

Γ ⊢ callcc t : T

Γ ⊢ t1 : T Γ ⊢ t2 : Cont T

Γ ⊢ throw(t1, t2) : T ′

Γ ⊢ callcc [] : ((Cont T)→ T) ⊸ T

Γ ⊢ t : Cont T

Γ ⊢ throw([], t) : T ⊸ T ′

Γ ⊢ v : T

Γ ⊢ throw(v, []) : Cont T ⊸ T ′

Figure 5.6: Typing rules for control

They will stand for the continuations that correspond to contexts where values

of type T may be plugged into the hole. Figure 5.6 contains the typing rules for

the new terms and frames.

Continuations and their typing have interesting connections to classical logic,

via the Curry-Howard isomorphism. Indeed, with the intuition that unlike with

function calls, when reinstating a continuation via throw no value is returned,

one may identify the type Cont T with T → 0. Sometimes, for emphasis, Cont T

is also written ¬T . One then sees that the type of callcc is Peirces Law! A tight

connection to classical logic can be obtained by also introducing the type 0 and

considering an ‘abort’ operatorA t that has arbitrary type T , whenever Γ ⊢ t : 0.

It can be seen as a proof of the fact that from false we can conclude anything. Its

operational behaviour is given by

(v, (A[])::k) ֏ (v,nil)

so that it behaves like the second term from Example 5.4.14 (with argument type

restricted to 0). (Closed) terms that do not contain stacks can then be viewed as

proof terms for an inference system of propositional logic.

Exercise 5.4.15 (Control operators and Curry-Howard correspondence) Use

the lambda calculus with callcc to obtain proof terms for the following proposi-

tions, where for emphasis we write ¬T for Cont T :

a) (¬T → T)→ T

b) (¬T → ¬T ′)→ T ′ → T

c) (T → T ′)→ ¬T ′ → ¬T

d) 0 → T

e) ¬(¬T) → T
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Let S be the simply typed lambda calculus introduced in Section 4.1. We have

considered several extensions of S:

PCF = S(bool,nat,fix)

FPC = S(1,×,+, µ)

ND = S(1,×,+,0, δ)

PCF and FPC are Turing-complete programming languages and ND is a complete

proof system for propositional logic. ND is terminating, PCF and FPC are not.

We will now extend S with procedures that take types as arguments. Such pro-

cedures are called polymorphic. The resulting calculus is known as polymor-

phic lambda calculus and was invented by the French logician Jean-Yves Girard

[1972]. Girard’s goal was the extension of the Curry-Howard correspondence to

logics with quantifiers. The polymorphic lambda calculus was reinvented by the

American computer scientist John Reynolds [1974] who wanted to explain poly-

morphic procedures in programming languages. Polymorphic lambda calculus

contributes to the foundational theory of ML. When work on ML started in 1974,

the connection with the polymorphic lambda calculus was not known.

6.1 System F

We start with the first-order polymorphic lambda calculus, which is known as

System F. Procedures taking types as arguments have types of the form ∀X.S

where the type variable X is bound. If a procedure of type ∀X.S is applied to a

type T , it yields a result of type SXT , where SXT is obtained from S by capture-free

replacement of X with T .

Figure 6.1 shows the definition of System F. The notation sxt stands for

[x := t]s. The constraint t ∼α t
′ of Rule Equiv says that the terms t and t′

are equal up to α-renaming of bound type variables. Likewise, T ∼α T
′ of Rule

Equiv says that the types T and T ′ are equal up to α-renaming of bound type

variables. Here are examples of terms and types:

id := λX.λx:X.x : ∀X. X → X

id′ := id(X→X)(id X) : X → X
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X,Y ::= N type variable

S, T ::= X | T → T | ∀X.T type

x,y ::= N term variable

s, t ::= x | tt | λx:T . t | λX.t | tT term

Γ is function x ֏ T type environment

(λx.s)t →0 s
x
t

(λX.s)T →0 s
X
T

Γ ⊢ x : T
Γx = T

Γ ⊢ t1 : S → T Γ ⊢ t2 : S

Γ ⊢ t1 t2 : T

Γ[x := S] ⊢ t : T

Γ ⊢ λx:S. t : S → T

Γ ⊢ t : T

Γ ⊢ λX.t : ∀X.T
X not free in Γ

Γ ⊢ s : ∀X.S

Γ ⊢ sT : SXT

Equiv
Γ ⊢ t : T

Γ ⊢ t′ : T ′
t ∼α t

′ ∧ T ∼α T
′

Figure 6.1: System F

twice := λX.λf :X→X.λx:X. f(fx) : ∀X. (X → X)→ (X → X)

quad := λX.λf :X→X. twice (X→X)(twice (X→X)f) : ∀X. (X → X)→ (X → X)

Obviously, F is an extension of S. Although F is much more expressive than S,

it still has all the essential properties of S:

• unique types (up to alpha equivalence)

• type preservation

• progress

• termination

F can type the Church encodings of the types 1, bool andnat as well as the

encodings of products and sums of types. In other words, the respective types

can be expressed in F. Figure 6.2 shows how this is done. The single value () of 1

can be expressed as follows: () = λX.λx:X.x. We leave the expression of the

other values as exercises. If you need help, you may consult [Pierce].
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1 := ∀X. X → X

bool := ∀X. X → X → X

nat := ∀X. (X → X)→ X → X

S × T := ∀X. (S → T → X)→ X where X not free in S → T

S + T := ∀X. (S → X)→ (T → X)→ X where X not free in S → T

Figure 6.2: Basic types and basic type operations in F

Exercise 6.1.1 (Booleans) Express the following values in F:

false : bool

true : bool

if : ∀X Y. bool → (1 → X)→ (1→ X)→ X

Exercise 6.1.2 (Natural Numbers) Express the following values in F:

0 : nat

succ : nat → nat

iter : ∀X. nat → (X → X)→ X → X

plus : nat → nat → nat

power : nat → nat → nat

Exercise 6.1.3 (Lists) Express lists in F. First find a type construction list S and

then express the following operations:

nil : ∀X. list X

cons : ∀X. X → list X → list X

foldl : ∀X Y. (X → Y → Y)→ Y → list X → Y

length : ∀X. list X → nat

Exercise 6.1.4 (Products) Express the following values in F:

pair : ∀X Y. X → Y → X × Y

fst : ∀X Y. X × Y → X

snd : ∀X Y. X × Y → Y
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Exercise 6.1.5 (Sums) Express the following values in F:

inl : ∀X Y. X → X + Y

inr : ∀X Y. Y → X + Y

case : ∀X Y Z. X + Y → (X → Z)→ (Y → Z)→ Z

Exercise 6.1.6 (Freshness Constraint) Consider the closed term

t = λX. λx:X. λX. λf :X→X. fx

a) Convince yourself that t is ill-typed.

b) Convince yourself that the term becomes well-typed if the freshness con-

straint “Y not free in Γ or t” in the typing rule for polymorphic procedures is

dropped.

c) Convince yourself that t bool true nat succ →∗ succ true. Why does this re-

duction show that t must be ill-typed?

Exercise 6.1.7 (Equiv) Explain why the rule Equiv is needed to derive the well-

typedness of the term λX. λx:X.λX. λf :X→X. λx:X. fx .

6.2 Curry-Howard Correspondence

We discussed the Curry-Howard correspondence for the simply-typed λ-calculus

ND in Section 4.6. The correspondence also holds for F. A polymorphic type

∀X.S represents a universally quantified propositional formula where X ranges

of the two truth values 0 and 1. We have allready seen that F can express 1 (true),

× (conjunction) and + (disjunction). For false we take

0 := ∀X.X

As before one can show that 0 ⊢ t : T implies that T is valid. Hence F is a proof

system for quantified propositional formulas. Due to the De Morgan dualism F

can also express existential quantification:

∃X.S := ¬∀X.¬S

With the current set-up, F cannot prove all valid formulas. It can only prove

the so-called intuitionistic fragment. However, if we assume that ¬¬X → X is

valid, which intuitionisticly it is not, F can prove all (classically) valid formulas.

A term t such that 0 ⊢ t : T is called an intuitionistic proof of T , and a term t

such that δ : ∀X.¬¬X → X ⊢ t : T is called an classic proof of T .
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Theorem 6.2.1 A type of F is valid as a formula if and only if it has a classic

proof in F.

The difference between classical and intuitionistic proofs can be seen as fol-

lows. There is a straightforward intuitionistic proof for (S + T) → (T + S).

Disjunction can also be expressed as S ∨ T := S → T . We now observe that

(S ∨ T) → (T ∨ S) has a classic proof but no intuitionistic proof. So the two

codings of disjunction, S + T and S ∨ T , lead to radically different proofs. While

S + T is an intuitionistic coding of disjunction, S ∨ T is a classical coding. The

built-in sums of ND are intuitionistic.

F is a very expressive system. As is it provides a complete proof system

for quantified propositional formulas. This is in sharp contrast to the simply

typed λ-calculus, where even for unquantified propositional formulas numerous

extensions are needed (Calculus ND in Figure 4.4).

Exercise 6.2.2 (Intuitionistic Proofs) Find intuitionistic proofs for the following

formulas:

a) 0→ X

b) (∀X.S) → SXT

c) SXT → ∀X.S

d) (S + T)→ (T + S)

e) ((X → Y)×X)→ Y

f) (X + Y)→ X × Y

g) (X × Y)→ X + Y

h) X × X

i) X + Y → (X × Y)

j) (X × Y)→ X + Y

Exercise 6.2.3 (Classic Proofs) Find classic proofs for the following formulas:

a) ∀X. X +X

b) (X → Y)→ (Y → X)

c) ((X → Y)→ X)→ X

6.3 System Fω

Consider the type constructor list: Given a type T it returns a type list T . Thus

list may be modelled as a function from types to types. If we take the idea of

type functions serious, a type sytem for types is needed. Let’s call the types of
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types kinds. We shall use the following kinds:

K ::= ∗ | K → K

The kind ∗ represents the ordinary types we are already used to. Kinds of the

form K → K represent type functions. For instance, the type functions that yield

list types and product types have the following kinds:

list : ∗ → ∗

product : ∗ → ∗ → ∗

It is common to call everything that has a kind a type. Types of kind ∗ are

called proper. We call a type functional if it is has the form S → T or if it has

a functional kind. Note that our definition is such that there are proper and

non-proper functional types.

The higher-order polymorphic lambda calculus Fω is obtained from F by

admitting type functions. There are three consequences:

• Binding occurences of type variables must be qualified with a kind.

• The syntax for types must provide for application and abstraction of types.

• There is a non-trivial equivalence of types. For instance, (λX:K.X)X and X

are equivalent types.

There are several possibilities for the definition of type equivalence. We use

T ∼αβ T
′, which holds if and only if T and T ′ have the same β-normal form

up to α-equivalence. The β-normal form of a type is obtained by applying the

β-rule (λX.S)T → SXT as long as it is applicable and wherever it is applicable. One

can prove that this process terminates and yields a result that is unique up to

α-equivalence.

The definition of Fω appears in Figure 6.3. We write λX.t, λX.T and ∀X.T

as abbreviations for the terms λX:∗. t, λX:∗. T and ∀X:∗.T .

Exercise 6.3.1 (Well-Formed Environments) F has environments that map type

variables to kinds and term variables to types. An environment is well-formed if

the types of the term variables are well-kinded with respect to the kinds of the

type variables. Give a formal definition of well-formed finite environments. Use

recursion on the size of the environment (number of variables introduced).

Exercise 6.3.2 (Polymorphic Lists) Express the following objects in Fω:

list : ∗ → ∗

nil : ∀X. list X

cons : ∀X. X → list X → list X

foldl : ∀X Y. (X → Y → Y)→ Y → list X → Y

length : ∀X. list X → nat
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K ::= ∗ | K → K kind

X,Y ::= N type variable

S, T ::= X | T → T | ∀X:K.T | T T | λX:K. T type

x,y ::= N term variable

s, t ::= x | t t | λx:T .t | λX:K.t | tT term

Γ is a function X ֏ K and x ֏ T environment

(λx.s)t →0 s
x
t

(λX.s)T →0 s
X
T

Γ ⊢ T : ∗

Γ ⊢ x : T
Γx = T

Γ ⊢ t1 : S → T Γ ⊢ t2 : S

Γ ⊢ t1 t2 : T

Γ ⊢ S : ∗ Γ[x:=S] ⊢ t : T

Γ ⊢ λx:S. t : S → T

Γ ⊢ s : ∀X:K.S Γ ⊢ T : K

Γ ⊢ sT : SXT

Γ[X:=K] ⊢ t : T

Γ ⊢ λX:K.t : ∀X:K.T
X ∉ Dom Γ

Equiv
Γ ⊢ t : T

Γ ⊢ t′ : T ′
t ∼α t

′ ∧ T ∼αβ T
′ ∧ Γ ⊢ T ′ : ∗

Γ ⊢ X : K
ΓX = K

Γ ⊢ s : ∗ Γ ⊢ T : ∗

S → T : ∗

Γ[X:=K] ⊢ T : ∗

Γ ⊢ ∀X:K.T : ∗
X ∉ Dom Γ

Γ ⊢ S : K′ → K Γ ⊢ T : K′

Γ ⊢ S T : K

Γ[X:=K] ⊢ T : K′

Γ ⊢ λX:K. T : K → K′
X ∉ Dom Γ

Figure 6.3: System Fω
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6.4 Abstract Data Types

One of the cornerstones of Software Engineering is the notion of an abstract

data type (ADT). One distinguishes between implementations and users of an

ADT, where the interface between the two is specified through a signature. As

example we take an ADT NAT providing natural numbers. The signature of NAT

specifies four objects:

Nat : ∗

0 : Nat

S : Nat → Nat

iter : ∀X. Nat → (X → X)→ (X → X)

From the signature it is clear what implementations of NAT have to provide and

what users of NAT can expect. Type checking ensures that users can access an

implementation only to the extend that is licensed by the signature, and that

implementations provide the required objects in the form announced by the sig-

nature.

We have used the kinds and types of Fω for the specification of the objects of

NAT. We shall now see that Fω can express the entire signature as a type function

and users and implementations as procedures. The basic idea is to express users

of an ADT as procedures that take the objects declared by the signature of the

ADT as arguments. With this idea we can model a signature as a type function

Sig : ∗ → ∗

that for a type T yields the type of a user that yields a result of type T . For

instance, the signature of NAT is represented as the following type function:

λZ. ∀N. N → (N → N)→ (∀X. N → (X → X) → (X → X))→ Z

An implementation of an ADT is expressed as a procedure that takes a user (i.e.,

a procedure) as argument and applies it to the implementations of the objects

declared by the signature:

impl : ∀Z. Sig Z → Z

For instance, an implementation impl0 of NAT can be obtained as follows:
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nat0 := ∀X. (X → X)→ X → X

impl0 := λZ. λuser : Sig Z.

user nat0

(λX. λf :X→X. λx:X. x)

(λn:nat0. λX. λf :X→X. λx:X. nXf(fx))

(λX. λn:nat0. nX)

In summary, we have

Sig : ∗ → ∗

user : Sig T

impl : ∀Z. Sig Z → Z

code = impl T user

where code is a term that connects an implementation impl with a user user .

Exercise 6.4.1 (Lists over nat) Consider an ADT that implements lists over nat:

list : ∗

nil : list

cons : nat → list → list

foldl : list →∀Z. (nat → Z → Z)→ Z → Z

a) Represent the signature of the ADT as a type function.

b) Write a procedure impl that implements the ADT. Use the objects from exer-

cise 6.3.2.

Exercise 6.4.2 (Polymorphic Lists) Consider an ADT that implements polymor-

phic lists as in Exercise 6.3.2 (omit length).

a) Represent the signature of the ADT as a type function.

b) Write a procedure impl that implements the ADT. Use the objects from exer-

cise 6.3.2.
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7 A Calculus of Primitive Objects

In this chapter we will take a closer look at the semantic foundations of object-

oriented languages. Their combination of recursion (both on the level of terms

and types), subtyping, polymorphism, and internal state draws on many of the

ideas that we’ve seen already.

There are two alternatives to proceed:

1. explain object-oriented features by translation into sufficiently rich λ-calculi,

which we already understand and where a set of tools is available (type safety,

methods for establishing contextual equivalences,. . . )

2. develop a calculus where objects are primitive, and study object-oriented fea-

tures more directly.

Since the known encodings of objects into λ-calculi are fairly intricate, we’ll fol-

low the second alternative. This has the additional benefit that we can see how

most of the techniques that we developed for λ-calculi carry over to similar for-

mal systems.

The article A Theory of Primitive Objects (Untyped and First-order Systems) by

M. Abadi and L. Cardelli, is recommended for further reading. It is available from

http://lucacardelli.name/Papers/PrimObj1stOrder.A4.pdf.

7.1 Untyped Sigma Calculus

The calculus we consider is called ς-calculus, and was introduced by Martín

Abadi and Luca Cardelli [1994]. It takes objects as primitive, and directly sup-

ports invocation and overriding of methods. Syntactically it is very simple: the

terms are given by the grammar

x,y ::= N term variables

a, b ::= x terms

| [li = ς(xi)bi
i=1...n] object

| a.l method invocation/field selection

| a.l⇐ ς(y)b method override/field update

An object [li = ς(xi)bi
i=1...n] is a collection of methods ς(xi)bi, with associated

names li. The variable xi is bound in the method body bi by the self binder
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7 A Calculus of Primitive Objects

v ::= [li = ς(xi)bi
i=1...n] values

E ::= [] | E.l | E.l⇐ ς(y)b evaluation contexts

a.lj →0 [xj := a]bj

where a = [li = ς(xi)bi
i=1...n] and 1 ≤ j ≤ n

a.lj ⇐ ς(y)b →0 [lj = ς(y)b, li = ς(xi)bi
i=1...n|i≠j]

where a = [li = ς(xi)bi
i=1...n] and 1 ≤ j ≤ n

Figure 7.1: Operational semantics of ς-calculus

ς(·). The intended meaning is that, dynamically, xi refers to the host object

of the method. It models the self parameter that is found in realistic object-

oriented languages, where it is usually called this or self.

Since ς(·) is a binder, the same issues about α-renaming apply as for λ-bound

variables in λ-calculus. It may be a useful exercise to give formal definitions of

the set FV(a) of free variables of a, and of the capture-avoiding substitution

[x := a]b of a for x in b. (Note that Abadi and Cardelli use the notation b{x ←

a} in their article.)

The operational semantics of method invocation makes this dependence of

methods on the host object explicit. The self parameter is substituted by the

complete host object: if a is [li = ς(xi)bi
i=1...n] and 1 ≤ j ≤ n, then

a.lj → [xj := a]bj

Method override simply replaces an old by a new method:

a.lj ⇐ ς(y)b → [lj = ς(y)b, li = ς(xi)bi
i=1...n|i≠j]

There are 2 points to note here: firstly, method override assumes that a method

named lj exists already, so objects are not extensible. Secondly, method override

has a functional interpretation, i.e., it creates a new object.

The operational semantics is given formally in Fig. 7.1. Objects are the only

values, and the proper reduction rules are the two rules for invocation and up-

date described above. Our choice of evaluation contexts then gives rise to a

deterministic reduction relation →. As usual, we do not permit reductions under

binders.

Notation. We may view fields as methods that do not use their self parameter.

It is sometimes convenient to use the notation [l = b, . . .] and a.l := b to denote
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the field l containing b, and field update of l by b, resp. Keep in mind that this

is just shorthand for [l = ς(x)b, . . .] and a.l⇐ ς(x)b where x ∉ FV(b).

Exercise 7.1.1 (Big-step operational semantics) Give an equivalent big-step se-

mantics.

7.2 Examples

Despite being small, the ς-calculus is very expressive. For instance, by making

the self parameter available in method bodies one has a means of implementing

(mutual) recursion. That is, a method may invoke any of its sibling methods, as

well as call itself:

[l = ς(x)x.l]

Note that this expression is a value, but upon invoking its l-method it will result

in a diverging computation.

We will discuss some further examples below.

Objects with backup Consider objects of the form

[retrieve = ς(x)x,backup = ς(x)x.retrieve ⇐ ς(y)x, . . .]

The object allows us to store the object in its current form, by calling backup,

and afterwards to restore this version, by calling retrieve. In fact, this can be

iterated: we may store a whole trail, and then move back to previous versions by

repeated calls to retrieve. The technique relies on two features of the ς-calculus:

the ability to return self (i.e., the use of x in the retrieve methods), and the

ability to have several self parameters in scope (i.e., the use of both x and y in

the backup method).

Booleans The idea behind many encoding in object calculus is to treat data as

“active”, similar to the Church encodings of various datatypes in untyped lambda

calculus. For instance, to represent booleans, the constants true and false will

take the decision of which branch to use when placed inside a conditional:

true := [then = ς(x)x.then, else = ς(x)x.else, val = ς(x)x.then]

false := [then = ς(x)x.then, else = ς(x)x.else, val = ς(x)x.else]

if t then a else b := ((t.then := a).else := b).val

The method then = ς(x)x.then (and similarly else) is used simply as a way to

initialize the object. Any method body would have done, but the choice above

has the advantage of integrating smoothly with types (see Exercise 7.3.2 below).
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Natural numbers We will represent natural numbers as objects that support

3 operations: iszero, pred, and succ. Here is the representation of 0 (using the

notation for fields, and booleans as introduced in the previous example):

zero := [iszero = true,prev = ς(x)x, succ = ς(x)(x.iszero := false).pred := x]

Untyped lambda calculus We restricted the calculus to methods that take self

as the only argument. To see that this is no restriction, we show how lambda

calculus can be expressed inside the ς-calculus – methods with additional pa-

rameters can then be written as ς(x)λx1 . . .λxn.a. The encoding is given as a

translation (·)∗ that maps untyped lambda terms to object calculus terms:

x∗ := x

(t1t2)
∗ := (t∗1 .arg := t∗2 ).val

(λx.t)∗ := [arg = ς(x)x.arg, val = ς(x)([x := x.arg]t∗)]

The basic idea is to use an additional field to pass the argument. The (translated)

function body can access this argument through self.

Exercise 7.2.1 (Beta reduction on values) Verify that ((λx.x)y)∗ → . . .→ y∗.

Exercise 7.2.2 (Untyped natural numbers objects)

Extend the object-oriented natural numbers by

a) a method add = ς(x)λ(n). . . that adds another number to the number repre-

sented by the object;

b) a method mult = ς(x)λ(n). . . that multiplies another number to the number

represented by the object;

c) a method fac = ς(x) . . . that returns the factorial of the number represented

by the object.

Feel free to use booleans and lambda notation as shorthand whenever necessary.

7.3 Simply Typed Sigma Calculus

In the basic system, there is just one way of forming types:

A,B ::= [li : Ai
i=1...n] object type

An object type [li : Ai
i=1...n] describes the set of objects that provide methods

named li that return values of type Ai, resp., for all i = 1, . . . , n. The syntax

of terms is changed slightly: in order to obtain the unique typing property for
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(x,A) ∈ Γ

Γ ⊢ x : A

∀i = 1, . . . , n : Γ[xi := A] ⊢ bi : Ai

Γ ⊢ [li = ς(xi:A)bi
i=1...n] : A

(A = [li : Ai
i=1...n])

Γ ⊢ a : [li : Ai
i=1...n]

Γ ⊢ a.lj : Aj
(1 ≤ j ≤ n)

Γ ⊢ a : A Γ[x := A] ⊢ b : Aj

Γ ⊢ a.lj ⇐ ς(x:A)b : A
(A = [li : Ai

i=1...n] ∧ 1 ≤ j ≤ n)

Figure 7.2: Simple types for ς-calculus

[li : Ai
i=1...n+k] <: [li : Ai

i=1...n]

A <: A

A <: C C <: B

A <: B

Γ ⊢ a : A A <: B

Γ ⊢ a : B

Figure 7.3: Subtyping for ς-calculus

ς-calculus, binding occurrences of each variable must be annotated with a type.

(Recall that we did the same when moving from untyped to typed λ calculus.)

The typing rules are collected in Fig. 7.2, where Γ is a finite map from term

variables to object types. The rules in Fig. 7.3 extend the system with subtyping.

The subtype relation is generated by a single rule that allows us to “forget” the

existence of methods in an object. Additionally, there are rules to ensure that <:

is transitive and reflexive.1 As usual, subtyping is then connected to the typing

relation through a subsumption rule.

It is possible to prove a substitution lemma analogous to the one for lambda

calculus:

Proposition 7.3.1 (Substitution)

1 One could also introduce a top type Top without causing problems.
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(∀x ∈ FV a : Γ ′ ⊢ θx : Γx) ∧ Γ ⊢ a : A =⇒ Γ ′ ⊢ θa : A

From this, it is not difficult to show progress and preservation lemmas, resulting

in a statement of type safety for ς-calculus.

Exercise 7.3.2 (Simple types)

a) Show that 0 ⊢ [l = ς(x:A)x.l] : [l:A], for any type A.

b) Assume that the ς-calculus has been extended with a base type int, and let

P1 := [x : int] and P2 := [x : int, y : int] be the types of 1- and 2-dimensional

points, resp. Show 0 ⊢ [x = 1] : P1 and 0 ⊢ [x = 1, y = 1] : P2.

c) Assume that arithmetic operations +, ( )2 and sqrt are given, with their usual

types. Convince yourself that, for B := [p : P2,dist : int],

0 ⊢ [p = [x = 1, y = 1], dist = ς(s:B)sqrt((s.p.x)2 + (s.p.y)2)] : B

d) Use (b) and (c) to show that (covariant) subtyping in depth is not sound:

Ai <: Bi ∀i = 1 . . .n

[li:Ai
i=1...n+k] <: [li:Bi

i=1...n]
(wrong!!!)

Exercise 7.3.3 (Encoding simply typed lambda calculus) Show that the encod-

ing of lambda terms as objects carries over to the typed case, where S → T is

translated to (S → T)∗ = [arg : S∗, val : T∗]. More precisely, prove that the en-

coding maps well-typed terms of the simply typed lambda calculus to well-typed

terms of ς-calculus.

Is the statement also true for simply typed lambda calculus with subtyping?

7.4 Representing Classes and Inheritance
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