
U
N

IV
E R S IT A

S

S
A

R A V I E N S
I S

Assignment 4
Semantics, WS 2009/10

Prof. Dr. Gert Smolka, Dr. Jan Schwinghammer, Christian Doczkal
www.ps.uni-sb.de/courses/sem-ws09/

Hand in by 11.59am, Tuesday, November 17

Send your solutions to Exercises 4.2 and 4.3 in a file named lastname.sml to
doczkal@ps.uni-sb.de, and make sure that the entire file compiles without er-
rors. Use the deep implementation of PCF− in Standard ML from Exercise 3.3:

datatype ty = Nat | P of ty * ty
type var = string
datatype ter = V of var | A of ter * ter | L of var * ty * ter

| O | S of ter | C of ter * ter * ter | F of ter

Exercise 4.1 (Contexts and Redexes) Consider the following PCF terms.

a) pred(succ 0)

b) λx:T .((λy:T .y) x)

c) (λx:T .((λy:T .y) x)) (iszero 0)

d) (0 0) (iszero 0)

For each of these terms t,

• determine if t is reducible, and find all redexes s in t;

• determine all pairs of evaluation contexts C and terms s such that t = C[s];
• determine the reduction context C and reduction redex s of t, if they exist.

Exercise 4.2 (RedContext and split) In Standard ML we can be represent PCF−

contexts as procedures c : ter → ter such that the procedure application c t yields

the context applied to the term t.

a) Write a procedure redContext : ter → (ter → ter) that yields the re-

duction context of a reducible term. For example, if t is the term

(λx:Nat.((λy:Nat.y) x)) (natcase 0 0 λz:Nat.0) then:

> val c = redContext t

val c : ter -> ter = _fn

> val t’ = c O

val t’ : ter = A (L ("x", Nat, A (L ("y", Nat, V "y"), V "x")), O)

b) Now extend this to a procedure split : ter → (ter → ter)∗ ter that yields both

the reduction context and the redex of a reducible term. For instance,

> val (c,r) = split t

val c : ter -> ter = _fn

val t : ter = C (O, O, L ("z", Nat, O))

The procedure isVal from the last assignment may be useful.

2009–11–11 20:47

Exercise 4.3 (Closure semantics) To implement the closure semantics for PCF−,

we represent semantic values as follows:

datatype value = N of int
| Cl of var * ter * env
| RCl of var * var * ter * env

withtype env = var -> value

Write a procedure clEval : ter → value that yields the semantic value of a term,

if it exists. Raise an exception if a term is encountered that does not satisfy

the syntactic restrictions, i.e., that is of the form fix t where t is not a (double)

abstraction or natcase t t1 t2 where t2 is not an abstraction.

Exercise 4.4 (fix terms) Find a closed PCF− term t : (nat → nat)→ nat → nat

such that

• fix t does not converge, but

• (λp.fix(λf .λx.pfx))t converges.

(Here the type annotations are omitted for notational convenience.)

2009–11–11 20:47

