

Assignment 13 Semantics, WS 2013/14

Prof. Dr. Gert Smolka, Steven Schäfer www.ps.uni-saarland.de/courses/sem-ws13/

Read in the lecture notes: Chapter 5

Do not use tactics in the following exercises.

Exercise 13.1 Define the eliminator for *nat* as a function in Coq.

Exercise 13.2 Define dependent pair types ($\Sigma x : A.B$) with π_1 and π_2 as eliminators in Coq.

Exercise 13.3 (Non-Dependent Pair Types)

- a) Define the (non-dependent) pair type $A \times B$ with π_1 and π_2 .
- b) Show that you can define the match eliminator for pair types using π_1 and π_2 .
- c) Convince yourself that you cannot prove the η -law $p = (\pi_1 p, \pi_2 p)$.
- Do not use matches except when defining π_1 and π_2 .

Exercise 13.4 (Dependent Pair Types)

- a) Define dependent pair types (Σx : *A*.*B*) with the match eliminator *elim* in Coq.
- b) Define π_1 and π_2 using *elim*.
- c) Give the typing rule for *elim*.
- d) Prove the η -law $s = (\pi_1 s, \pi_2 s)$ using *elim* (Leibniz equality).
- e) Convince yourself that you cannot define *elim* using the projections.
- f) Show that *elim* is definable using π_1 , π_2 , and the η -law.
- Do not use matches except when you define *elim*.