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We study the formalization of lambda calculus based on De Bruijn terms.

The most interesting aspect is a system of substitution primitives and an ac-

companying equational theory providing for algebraic proofs. The equational

theory can be presented as a confluent and terminating rewriting system pro-

viding for proof automation. We prove that parallel reduction is strongly

substitutive, the key property needed for the proof of the Church-Rosser the-

orem.

1 The Problem

We consider De Bruijn terms

s, t ::= n | st | λs (n : N)

and study the operation behind β-reduction:

(λs)t � βst

As it turns out, there is a definition of β providing for elegant algebraic proofs of

the relevant properties. The definition of β will be based on a cleverly designed

system of substitution primitives due to Abadi, Cardelli, Curien, and Lévy [1].

Our starting point is the usual informal account of β-reduction using terms with

bound variables:

(λx.s)t � sxt

Recall that sxt is the term obtained from s by replacing all free occurrences of x with

the term t. There is the proviso that the free variables of t must not be captured
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by binders in s. To make this work, bound variables in s may have to be renamed.

Renaming is justified by the assumption that terms are equal if they are equal up to

renaming of bound variables.

De Bruijn terms eliminate local variables and represent argument references as

numbers called indices providing the distance to the binder (i.e., the number of

lambdas to be skipped on the path to the root). Here are examples of De Bruijn

terms and there named counterparts:

λ λ λ 2 1 0 � λfxy. fxy

λ 0 (λ 1 0 (λ 2 1 0)) � λf . f (λx. fx(λy. fxy))

(λ λ (f+2) 0 1) x � (λxy.fyx)x

We now consider β-reduction:

(λs)t � βst � (λx.s)t � sxt

In the De Bruijn representation, the role of the bound variable x is taken by the

index 0. The De Bruijn term βst may be obtained from s and t as follows:

1. In s, replace every free occurrence of the index 0 with the term t.

2. At every position where t replaces 0, raise the free indices in t by the number of

lambdas above the position of the replacement.

3. Lower the free indices of s greater than 0 by 1 to account for the removal of the

lambda above s.

For instance, the informal β-reduction

(λy. x(λz.y))(λy.x) � (x(λz.y)) yλy.x = x(λzy.x)

should translate to the following De Bruijn β-reduction:

(λ(x+1)(λ1)) (λ(x + 1)) � β ((x+1)(λ1)) (λ(x + 1)) = x(λλ(x+2))

2 Substitutions and Instantiation

From the informal description of the operation βst it is clear that all free indices

of s and t are affected by the operation, not just the index 0. We will therefore

work with functions N→ Ter mapping indices (i.e., numbers) to terms. We call such

functions substitutions. The letters σ and τ will always denote substitutions. Here

are two prominent substitutions:

I := λn.n identity substitution

S := λn.n+ 1 successor substitution
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Often, it is helpful to think of substitutions as infinite sequences:

I =̂ (0, 1, 2, . . . )

S =̂ (1, 2, 3, . . . )

σ =̂ (σ0, σ1, σ2, . . . )

We define a cons operation that for a term and a substitution yields a substitution:

s.σ := λn. if n=0 then t else σ(n− 1)

=̂ (s, σ0, σ1, . . . )

We also need an instantiation operation s[σ] for terms and substitutions, which

replaces the free indices of s with the terms specified by σ , where the free indices

of the inserted terms are raised by the number of lambdas above the insertion

position. We characterize in the instantiation operation with three equations:

n[σ] = σn

(st)[σ] = (s[σ])(t[σ])

(λs)[σ] = λ(s[⇑σ])

The operation ⇑σ modifies σ such that it does the right thing below the lambda:

0 is mapped to 0, and n + 1 is mapped to σn, where the free indices in σn are

raised by 1 to account for the enclosing lambda. Formally, we define ⇑σ and an

accompanying composition operation σ ◦ τ based on the instantiation operation:

⇑σ := 0.(σ ◦ S) up

σ ◦ τ := λn. (σn)[τ] composition

It turns out that we have arrived at a recursive definition of the instantiation

operation s[σ]. We argue termination of s[σ] in two steps. We call a substitution σ
a renaming if σn is an atomic term (i.e., an index) for every number n. It is easy to

see that s[σ] terminates if σ is a renaming. Hence we know that (σ ◦τ)n terminates

if τ is a renaming. Thus (⇑σ)n terminates for every substitution σ . Hence s[σ]
terminates for all terms and all substitutions.

We can now define the β-operation:

βst := s[t. I]

=̂ s[t, 0, 1, . . . ]

Note that the free indices in s greater than 0 are in fact lowered by 1.

Exercise 1 (Eta Expansion) Convince yourself that the following facts are true:
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βst = s[t.I] ⇑σ = 0.(σ ◦ S)
(st)[σ] = (s[σ])(t[σ]) 0.S = I

(λs)[σ] = λ(s[⇑σ]) σ ◦ I = σ

0[s.σ] = s I ◦ σ = σ

s[I] = s (σ ◦ τ) ◦ µ = σ ◦ (τ ◦ µ)
s[σ][τ] = s[σ ◦ τ] (s.σ) ◦ τ = s[τ].(σ ◦ τ)

S ◦ (s.σ) = σ

0[σ].(S ◦ σ) = σ

Figure 1: Basic equations

a) The η-expansion of a term t is λ((t[S])0).

b) A term s is an η-redex if and only if there is a term t such that s = λ((t[S])0).

Exercise 2 (One-step reduction for λβη) Give an inductive definition of one-step

reduction s � t for λβη. Formulate the rule for η-reduction without a side condition

(i.e., do not use “0 not free in s”).

3 Basic Equations

We have introduced four substitution operations: cons s.σ , instantiation s[σ], up

⇑σ , and composition σ ◦ ρ. The properties of these operations can be expressed

with equations. It turns out that relatively few equations suffice to show all other

equations. Figure 1 shows a carefully chosen set of equations we call basic equa-

tions. All basic equations are valid (Fact 6). All other equations formulated with

the primitives used in Figure 1 can be shown valid by left-to-right rewriting with the

basic equations [4]. It turns out that rewriting with basic equations is confluent and

terminating [2]. Fact 7 states an interesting equation whose validity follows with

left-to-right rewriting with the basic equations.

To establish the validity of the basic equations for substitutions, we assume

that substitutions are extensional, that is, σ = τ whenever σn = τn for all n.

The extensionality assumption simplifies our presentation but can be removed in

principle.

We prove that the basic equations are valid. As it turns out, only the equations

s[I] = s and s[σ][τ] = s[σ ◦ τ] need inductive proofs, the other basic equations

have straightforward validity proofs given the validity of these two equations.

Fact 3 ⇑I = I.
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Proof By extensionality it suffices to show (⇑I)n = In. This follows by case analysis

n = 0 or n = n+ 1. �

Fact 4 s[I] = s.

Proof By induction on s using Fact 3 for the abstraction case. �

We now come to the validity proof for s[σ][τ] = s[σ ◦ τ]. The amazingly tricky

proof is summarized by the following fact.

Fact 5 Let ξ be a renaming.

1. S◦ ⇑τ = τ ◦ S.

2. ⇑ξ◦ ⇑σ = ⇑(ξ ◦ σ).
3. s[ξ][τ] = s[ξ ◦ τ].
4. ⇑σ◦ ⇑ξ = ⇑(σ ◦ ξ).
5. s[σ][ξ] = s[σ ◦ ξ].
6. ⇑σ◦ ⇑τ = ⇑(σ ◦ τ).
7. s[σ][τ] = s[σ ◦ τ].

Proof 1. By extensionality.

2. By extensionality and case analysis on n.

3. By induction on s using (2) for the abstraction case.

4. By extensionality and case analysis on n. For n = n+ 1, (3) reduces the claim to

instance of (1).

5. By induction on s using (4) for the abstraction case.

6. By extensionality and case analysis on n. For n = n + 1, (3) and (5) reduce the

claim to an instance of (1).

7. By induction on s using (6) for the abstraction case. �

Fact 6 (Validity) All basic equations are valid.

Proof The proof of most of the equations is straightforward, some of them hold

by definition. There are two hard equations, s[I] = s and s[σ][τ] = s[σ ◦ τ],
which require inductive proofs, and whose validity was established with Facts 4

and 5, respectively. There are two further non-obvious equations, σ ◦ I = σ and

(σ◦τ)◦µ = σ◦(τ◦µ). They follow with extensionality from the two hard equations.�

Fact 7 (Distributivity) (βst)[σ] = β(s[⇑σ])(t[σ]).

Proof Both sides normalize to s[t[σ].σ] with the basic equations. �
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Remark The basic equations

S ◦ (s.σ) = σ 0[σ].(S ◦ σ) = σ

look surprising at first. They appear more natural when written as

tl(s.σ) = σ hdσ. tlσ = σ

where the head and tail operations for substitutions are defined as follows:

hdσ := σ0

tlσ := λn.σ(n+ 1) =̂ (σ1, σ2, σ3, . . . )

We have 0[σ] = hdσ and S ◦ σ = tlσ . So you may read S ◦ σ as tlσ .

Exercise 8 Prove the following equations by normalizing with the basic equations:

a) s[σ][S] = s[S][⇑σ].
b) s[⇑σ][t.I] = s[t.σ].
c) s[⇑σ][t[σ].I] = s[t.I][σ].

Exercise 9 Define S0 := I and Sn+1 := S ◦Sn. Prove n = 0[Sn]. Note that this means

that all terms can be expressed with the primitives occurring in the basic equations.

It also means that the basic equations constitute an instantiation algorithm.

Exercise 10 Let s = s[0[S].S]. Convince yourself that the assumption says that 0

is not free in s. Prove s[t.(S ◦σ)] = s[σ] by rewriting with the assumption and the

basic equations.

Exercise 11 (Redundancy of Basic Equations) Derive the basic equations

s[I] = s s[σ][τ] = s[σ ◦ τ] 0[σ].(S ◦ σ) = σ

from the remaining basic equations. Note that left-to-right rewriting with the re-

maining equations does not suffice anymore. The trick is to use the basic equations

0[s.σ] = s (s.σ) ◦ τ = s[τ].(σ ◦ τ)

from right-to-left.

Exercise 12 (Head and Tail) Consider the following equations:

hd (s.σ) = s tl (s.σ) = σ hdσ. tlσ = σ

(st)[σ] = (s[σ])(t[σ]) σ ◦ I = σ (σ ◦ τ) ◦ µ = σ ◦ (τ ◦ µ)
(λs)[σ] = λ(s[hd I.(σ ◦ tl I)]) I ◦ σ = σ (s.σ) ◦ τ = s[τ].(σ ◦ τ)
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a) Express 0, S, βst, and ⇑σ with the primitives used in the equations.

b) Prove that the equations follow from the basic equations if hdσ and tlσ are seen

as abbreviations for 0[σ] and S ◦ σ .

c) Prove that the following equations follow from the above equations.

s[σ][τ] = s[σ ◦ τ] (hdσ)[τ] = hd [σ ◦ τ]
s[I] = s tlσ ◦ τ = tl (σ ◦ τ)

d) Prove that the basic equations follow from the above equations if 0, S, βst, and

⇑σ are seen as abbreviations.

This exercise is based on work of Tobias Tebbi and Steven Schäfer.

4 Strong Substitutivity of Parallel Reduction

To show the confluence of λβ, we need to show that the operation β is compatible

with parallel reduction (Corollary 16). This is a special case of the fact that parallel

reduction is strongly substitutive (Theorem 15). Given our setup for substitution,

proving strong substitutivity of parallel reduction is routine. All we need to know

about substitution are the basic equations and the distributivity law for β (Fact 7).

Recall the definition of parallel reduction s � t :

s � s′ t� t′

(λs)t� βs′t′ x� x

s � s′ t� t′

st� s′t′
s � s′

λs � λs′

Fact 13 (Substitutivity) If s � t, then s[σ]� t[σ].

Proof By induction on s � t using Fact 7 for the beta rule. �

We extend the definition of parallel reduction to substitutions (pointwise):

σ � τ := ∀n. σn� τn

Fact 14 (Compatibility) If σ � τ , then ⇑σ �⇑τ .

Proof Let σ � τ . We show (0.(σ◦S))n� (0.(τ◦S))n. For n = 0 the claim is trivial.

For n = n+ 1 it suffices to show (σ ◦ S)n� (τ ◦ S)n. By definition of ◦ it suffices

to show (σn)[S]� (τn)[S], which follows by Fact 13 and the assumption. �

Theorem 15 (Strong Substitutivity) If s � t and σ � τ , then s[σ]� t[τ].

Proof By induction on s � t using Fact 14 for the lambda rule and Facts 7 and 14

for the beta rule. �

Corollary 16 If s � s′ and t� t′, then βst� βs′t′.
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5 Strong Substitutivity of Star Reduction

We use the opportunity and show that star reduction is strongly substitutive. The

proof is routine and has much in common with the strong substitutivity for parallel

reduction. The main fact needed for substitutions is once more Fact 7 (see Fact 18).

Recall the definition of one step reduction s � t :

(λs)t � βst
s � s′

st � s′t
t � t′

st � st′
s � s′

λs � λs′

Fact 17 (Substitutivity) If s � t, then s[σ] � t[σ].

Proof By induction on s � t using Fact 7 for the beta rule. �

Fact 18 (Substitutivity) If s �∗ t, then s[σ] �∗ t[σ].

Proof By induction on s �∗ t using Fact 17. �

We extend the definition of star reduction to substitutions (pointwise):

σ �∗ τ := ∀n. σn �∗ τn

Fact 19 (Compatibility) If σ �∗ τ , then ⇑σ �∗⇑τ .

Proof Let σ �∗ τ . We show (0.(σ ◦ S))n �∗ (0.(τ ◦ S))n. For n = 0 the claim

is trivial. For n = n + 1 it suffices to show (σ ◦ S)n �∗ (τ ◦ S)n. By definition

of ◦ it suffices to show (σn)[S] �∗ (τn)[S], which follows by Fact 18 and the

assumption. �

Fact 20 (Compatibility) Let s �∗ s′. Then λs �∗ λs′.

Proof By induction on s �∗ s′. �

Fact 21 (Compatibility) Let s �∗ s′ and t �∗ t′. Then st �∗ s′t′.

Proof By induction on t �∗ t′ with nested induction on s �∗ s′. �

Fact 22 (Substitutivity) If σ �∗ τ , then s[σ] �∗ s[τ].

Proof By induction on s using Facts 19, 20 and 21. �

Theorem 23 (Strong Substitutivity) If s �∗ t and σ �∗ τ , then s[σ] �∗ t[τ].

Proof Follows with transitivity of �∗ and Facts 18 and 22. �
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6 Free Variables

All results so far have been obtained without using the notions of free variables

and closed terms. There are different ways to define freeness and closedness. The

following exercises formulate some ideas and ask for proofs. Be warned: Some of

the proofs asked for may need extra lemmas not stated in the exercises.

Exercise 24 (Free Indices) We define the free indices of a term with an inductive

predicate:

free n n

free n s

free n (st)

free n t

free n (st)

free (n+ 1) s

free n (λs)

Prove that ¬free n s if and only if s[1.S] = s.

Exercise 25 (Closed Terms) We define an inductive predicate dclosed ns on num-

bers and terms:

n < d

dclosed d n

dclosed d s dclosed d t

dclosed d (st)

dclosed (d+ 1) s

dclosed d (λs)

Show that the following statements are equivalent:

1. dclosed 0 s

2. ∀n. ¬free ns

3. ∀σ. s[σ] = s
4. s[S] = s

Exercise 26 (Naive Substitution) Consider the naive substitution operation s0
t :

nku := if n = k then u else n

(st)ku := sku tku
(λs)ku := λ(sk+1

u )

Let (λs)t be closed. Prove βst = s0
t .

7 Realization in Coq

Coq’s structural recursion does not admit a direct recursive definition of the instan-

tiation operation. The problem can be solved by defining instantiation in two steps:

First a specialized version for renamings and then a general version using the spe-

cialized version. This impairs some overhead on the proofs of Facts 4 and 5. The
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Coq library Autosubst [5] can generate all substitution operations and the proofs

of the accompanying basic equations automatically, given an inductive definition of

terms where binders are marked. Autosubst comes with a tactic asimpl, which auto-

matically proves equations formed with the primitives used in the basic equations.

Autosubst assumes functional extensionality for substitutions, as we did in this

presentation. It is possible to prove strong substitutivity of parallel and star re-

duction without the extensionality assumption. To do so, one uses equivalence of

substitutions rather than equality and proves that all operations on substitutions

are invariant under equivalence.

8 Notes

The nameless representation of the λ-calculus was invented by De Bruijn [3] for

the computer implementation of a proof checker for the mathematical language

Automath. De Bruijn [3] gives the recursive definition of the instantiation operation

given in these notes. He uses informal notation and does not use explicit operations

for cons and composition. De Bruijn [3] argues that the nameless representation of

the λ-calculus is advantageous for the proof of the Church-Rosser theorem.

The proof assistant Coq is implemented with a De Bruijn representation of terms.

The system of substitution primitives used in these notes and the accompanying

equational theory are from the theory of explicit substitutions [1, 2], which devel-

oped in the 1990’s. Curien, Hardin, and Levy [2] study a confluent and terminating

rewriting system (the σSP-calculus) for expressions

M,N ::= 0 | MN | λM | M[A] | X
A,B ::= I | S | M.A | A ◦ B | ξ

describing terms and substitutions. The letters X and ξ represent variables ranging

over terms and substitutions, respectively. Our basic equations are the rewriting

rules of the σSP-calculus, up to minor details. Schäfer, Smolka, and Tebbi [4] show

that the σSP-calculus decides all valid equations M = N and A = B.

The idea to use the substitution primitives and the basic equations for a formal

development of the λ-calculus seems to appear first in the work of Autosubst [5].
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