
Call-By-Value Lambda Calculus

Gert Smolka, Saarland University

November 22, 2017

We study a minimal functional programming language L realizing a call-by-

value λ-calculus.

1 Introduction

We study a minimal functional programming language L realizing a call-by-value λ-

calculus. L is an untyped language computing with procedures. In fact, procedures

are the only values L computes with. No further values are needed since values of

inductive data types can be represented as procedures.

From the perspective of full λ-calculus, L restricts β-reduction by disallowing

reductions within abstractions and reductions where the argument term is not an

abstraction. Moreover, L employs a simplified substitution operation that suffices

for the reduction of closed terms.

Full λ-calculus is a deductive system rather than a programming language.

We assume the reader has an informal understanding of λ-terms, free and bound

variables, substitution, and β-reduction. Readers who have worked with Coq will

have this understanding.

We also assume that the reader has an informal understanding of the de Bruijn

representation of terms.

2 De Bruijn Terms

We formalize terms with an inductive type using de Bruijn references:

s, t,u, v,w : Ter ::= n | st | λs (n : N)

We call terms of the form n variables, terms of the form st applications, and terms

of the form λs abstractions. We fix some terms for further use:

I = λx.x T = λxy.x F = λxy.y ω = λx.xx D = λx.ωω
:= λ0 := λ(λ1) := λ(λ0) := λ(00) := λ(ωω)

1

For readability, we will usually write terms with named abstractions, as shown

above.

When we look at a term, we can distinguish between free and bound occurrences

of variables. For instance, given the term λx.xy , there is a bound occurrence of x
and a free occurrence of y . We say that a variable x is free in a term s if x has a

free occurrence in s. We formalize this notion with an inductive predicate free k s:

free k k

free k s ∨ free k t

free k (st)

free (Sk) s

free k (λs)

We define a term s to be closed if there is no variable that is free in s. Moreover, we

define a procedure to be a closed abstraction.

Fact 1 st is closed if and only if s and t are both closed.

Fact 2 A closed term is either an application or a procedure.

Exercise 3 Write a function that converts Church terms

M,N : CTer ::= x | MN | λx.M (x : N)

where abstractions introduce argument names into de Bruin terms as defined above.

Write the function with an additional argument collecting the argument names of

the traversed abstractions in a list. Convince yourself that the function can be used

to obtain a decider for α-equivalence. Two terms are α-equivalent if they are equal

up to consistent renaming of bound variables.

Exercise 4 Design and verify a decider for closedness of terms. One possibility is

to write a boolean test that for s and k checks that all variables free in s are smaller

than k.

3 Simple Substitution

We define a substitution function sku that replaces every free occurrence of a vari-

able k in a term s with a term u. The definition is by recursion on s:

nku = if n=k then u else n

(st)ku = (sku)(tku)

(λs)ku = λ(sSku)

Note that a substitution sku may capture free variables in u; for instance, (λx.y)yx =
λx.x. Note that capture does not happen if u is closed.

When we use substitution for formal reasoning, capturing must not occur. Our

interest in the following is in computational evaluation of closed terms where cap-

ture cannot occur because of closedness.

2

Fact 5 If k is not free in s, then skt = s.

Proof By induction on s. �

Fact 6 If s is closed, then skt = s.

Proof Immediate consequence of Fact 5. �

Lemma 7 Let k be free in snt and t be closed. Then k ≠ n and k is free in s.

Proof By induction on s. �

We fix the notation βst := s0
t . The idea is that a β-redex (λs)t may be reduced

to the term βst. Our definition of β is correct for such a β-reduction if λs and t are

both closed.

Lemma 8 If λs and t are closed, then βst is closed.

Proof Follows with Lemma 7. �

4 Call-By-Value Reduction

The basic computation rule of λ-calculus is β-reduction: A term of the form

(λx.s)t may be rewritten to the term sxt . For L we restrict β-reduction to subterms

(λx.s)(λy.t) that are not within an abstraction.

We formalize β-reduction for L with an inductive predicate s � t defined as

follows:

(λs)(λt) � βs(λt)
s � s′

st � s′t
t � t′

st � st′

We refer to the predicate s � t as one-step reduction. One-step reduction is not

functional since we have (I I)(I I) � I(I I), (I I)(I I) � (I I)I, and I(I I) ≠ (I I)I. Moreover,

one-step reduction is not terminating since we have ωω �ωω.

Fact 9 If s � t and s is closed, then t is closed.

Proof Induction on s � t using Lemma 8. �

A term s is reducible if there exists a term t such that s � t.

Fact 10 A closed term is either a procedure or reducible.

Proof By induction on the term. �

3

Fact 11 If s �∗ s′ and t �∗ t′, then st �∗ s′t′.

Proof It suffices to show st �∗ s′t and s′t �∗ s′t′. The first claim follows by

induction on s �∗ s′, and the second claim follows by induction on t �∗ t′. �

Exercise 12 Prove the following facts about reduction in L in Coq and make sure

you understand the details.

a) ωω �ωω and D(λs) �ωω.

b) F(λs)(λt) � I(λt) � λt.
c) T(λs)(λt) � (λ(λs))(λt) � λ(s1

λt).

Exercise 13 The following reductions are valid for all terms s and t in full

λ-calculus. For each reduction, give minimal conditions for s and t making the

reduction valid in L.

a) Is � s and Ds �ωω.

b) Tst � s and Fst � t.

Exercise 14 In full λ-calculus we have (λx.y)s � y if x and y are different vari-

ables. Explain why this is not true in L even if s is a procedure.

5 Call-By-Value Evaluation

We may reduce a term until we arrive at an irreducible term. Facts 10 and 9 tell

us that such an iterated reduction process started with a closed term yields a

procedure if it terminates. Seen abstractly, this yields an evaluation relation be-

tween closed term and procedures. Since one-step reduction is non-functional, we

don’t know whether the evaluation relation is functional. Moreover, we don’t know

whether the choice of the next reduction step affects termination. In fact, in full

λ-calculus we have both F(ωω) � F(ωω) and F(ωω) � I. Note that F(ωω) � I

does not hold for L.

We start our study of this situation by defining an inductive predicate s . t:

λs . λs

s . λu t . v βuv . w

st . w

We read s . t as s evaluates to t. We say that a term s evaluates and write Es if

s . t for some term t.
The evaluation predicate s . t provides a big-step semantics for L. We will see

that this big-step semantics agrees the small-step semantics given by one-step re-

duction s � t.

4

Fact 15 s . t is functional.

Proof s . t1 → s . t2 → t1 = t2 follows by induction on s . t1. �

Fact 16 If s . t, then t is an abstraction.

Proof By induction on s . t. �

Fact 17 If s . t and s is closed, then t is a procedure.

Proof By induction on s . t using Lemma 8. �

Fact 18

1. Fst evaluates if and only if both s and t evaluate.

2. ωω does not evaluate.

3. Ds does not evaluate.

Proof For (2) one shows the implication ωω . t → ⊥ by induction on ωω . t. �

We now show that the small-step and big-step semantics for L agree. The proofs

are essentially the same as the proofs we did for abstract expressions.

Fact 19 If s . t, then s �∗ t.

Proof By induction on s . t using Fact 11. �

Fact 20 If s � s′ and s′ . t, then s . t.

Proof By induction on s � s′. �

Fact 21 If s �∗ t and t is an abstraction, then s . t.

Proof By induction on s �∗ t using Fact 20. �

Corollary 22 Let s �∗ t1 and s �∗ t2, and let t1 and t2 be abstractions. Then t1 = t2.

Proof Follows with Facts 20 and 15. �

We remark that the agreement between small-step and big-step semantics can be

shown for every substitution function sxt . The reason is that the proofs of the rele-

vant facts (11, 19, 20, 21) do not depend on properties of the substitution function.

Exercise 23 Show that Tst evaluates if s and t evaluate. Note that the proof is

complicated by the fact that we use capturing substitution.

5

6 Uniform Confluence

Fact 24 (Uniform confluence) Let s � t1 and s � t2. Then either t1 = t2 or t1 � u
and t2 � u for some u.

Proof By induction on s � t1.

1. Let s = (λs1)(λs2). Then t1 = t2 since abstractions are irreducible.

2. Let s = s1s2, s1 � s′1, and t1 = s′1s2. Case analysis on s � t2.

a) s1 � s′′1 and t2 = s′′1 s2. The claim follows with the inductive hypothesis for

s1 � s′1.

b) s2 � s′2, and t2 = s1s′2. The claim follows with u = s′1s′2.

3. Analogous to (2). �

The intuitive reason reduction in L is uniformly confluent is that only outermost

β-redexes can be reduced and the reduction of a β-redex is functional (the β func-

tion). Hence, if s � t1 and s � t2, either the same redex is reduced and thus t1 = t2,

or two disjoint redexes u1 and u2 are reduced and thus t1 and t2 can be joined by

reducing the remaining redex u2 in t1 and the remaining redex u1 in t2.

As can be shown generally for abstraction reduction systems, uniform conflu-

ence has the important consequence that every weakly normalising term is strongly

normalising. Moreover, if s �n t and t is irreducible, the length of every reduction

chain issuing from s is bound by n.

7 Step-Indexed Evaluator

The evaluation predicate s . t is functional and partial. We cannot expect that we

can define a total function f : Ter → O(Ter) such that fs = btc ↔ s . t (since exis-

tence of such a function implies decidability of the halting problem for L). However,

we can define a function E : N→ Ter→ O(Ter) such that

s . t ↔ ∃n. Ens = btc

We call such a function a step-indexed evaluator. The step index limits the recur-

sion depth of the evaluator, which provides for termination.

6

We define a step-indexed evaluator E satisfying the following equations:

E n k = �
E n (λs) = bλsc
E 0 (st) = �

E (Sn) (st) = match E n s, E n t with

| bλsc, btc ⇒ E n s0
t

| _ _ ⇒ �

Note that the formal definition of E will have 5 matches.

We show the correctness of E with respect to the evaluation predicate s . t.

Fact 25

1. If E 0 s = btc, then s is an abstraction and t = s.
2. If E ns = btc, then E (Sn) s = btc.
3. If Ems = btc and m ≤ n, then E ns = btc.
4. If s . t, then E ns = btc for some n.

5. If E ns = btc, then s . t.

Proof Claim 1 follows by case analysis on s. Claim 2 follows by induction on n
using (1). Claim 3 follows by induction on m ≤ n using (2). Claim 4 follows by

induction on s . t using (3). Claim 5 follows by induction on n using (1). The

formal proofs of (2), (4), and (5) are clumsy due to the 5 matches in E. �

Theorem 26 (Agreement) s . t ↔ ∃n. Ens = btc.

Proof Immediate with Fact 25. �

We call a predicate p : X → P modest if there is a function (∃x. px)→ (Σx. px).
A basic result about Coq’s type theory says that decidable predicates on countable

types are modest (constructive choice). Using the step-indexed evaluator, we now

show that λt. s . t is modest for every s. In other words, there is a function that

given a term s and a proof that s evaluates yields a term t such that s . t.

Theorem 27 (Modesty of Evaluation) There is a function ∀s. Es → Σt. s . t.

Proof Let Es. Then the predicate λn.∃t. Ens = btc is decidable and satisfiable.

Hence constructive choice fo N gives us an n such that ∃t. Ens = btc. By case

analysis on the option Ens we obtain t with Ens = btc. Now s . t by Theorem 26.�

Exercise 28 (Proof by computation) Prove the following propositions in Coq:

a) (T(F D I)D) I . I

b) ((T(F D I)D) I) ((T(F D I)D) I) . I

Note that straightforward proofs using Theorem 26 exist since verifications

Ens = btc can be done by computation for concrete n, s, and t.

7

8 Scott Encoding of Numbers

Values of inductive data types can be represented as procedures following a scheme

due to Dana Scott.

Consider the inductive data type for natural numbers in Coq:

nat := O : nat | S : nat→ nat

The type provides us with two constructors O and S and a match for numbers. We

may represent the match for numbers with the function

Mnab := match n | O ⇒ a | Sn′ ⇒ bn′

The function represents the two rules of the match with the arguments a and b.

We call these arguments continuations. We have one continuation per constructor

since a basic match has one rule per constructor.

Following this idea, we represent a number n in L as a procedure computing the

function Mn. This gives us the following representation for numbers:

0̂ := λab.a

Ŝn := λab.b n̂

Fact 29 Let n be a number and u and v be procedures.

Then 0̂uv �∗ u and Ŝnuv �∗ v n̂.

Fact 30 For all numbers m and n, the terms m̂ and n̂ are procedures such that

m̂ = n̂ if and only if m = n.

We call the procedures n̂ Scott numerals. We define procedures computing

successors and predecessors of Scott numerals:

Succ := λx. λab.bx

Pred := λx. x 0̂ I

Verifying the correctness of Succ and Pred is straightforward.

Fact 31 Succ n̂ �∗ Ŝn, Pred 0̂ �∗ 0̂, Pred Ŝn �∗ n̂.

Exercise 32 Write procedures P , π1, and π2 such that π1(Pu1u2) �∗ u1 and

π2(Pu1u2) �∗ u2 for all procedures u1 and u2.

Exercise 33 Recall that terms are an inductive datatype with three constructors.

Give the Scott encodings of the terms k, st, and λs.

8

9 Recursion Operator

L can express unguarded recursion. The idea is to obtain a recursive procedure

from a non-recursive procedure serving as template for the recursive procedure.

Given a recursive procedure, a template for the procedure can be obtained by taking

the recursive procedure as argument. Here is a template for a recursive addition

function in Coq:

λfxy. match x [0⇒ y | Sx′ ⇒ S(fx′y)]

Note that in Coq we can translate a template into the accompanying recursive func-

tion by replacing the λ with fix (the symbol for recursive abstractions). Once we

write fix in place of λ, Coq will check that the recursion is structural.

For L we can define a function ρ : Ter → Ter that for every template proce-

dure yields a procedure that simulates the recursive procedure described by the

template. We call ρ a recursion operator for L. The recursion operator will trans-

form every template procedure into a quasi-recursive procedure without checking

whether the recursion expressed by the template is structural.

We may say that ρ yields for a template u a procedure that simulates the recur-

sion described by u. As is well-known from the full λ-calculus, recursion can be

simulated with self-application (as present in λx.xx).

It turns out that there is an elegant formal specification for recursion operators.

Thus when we prove properties of quasi-recursive procedures obtained with a re-

cursion operator, there is no need to know the somewhat technical definition of the

recursion operator.

Fact 34 (Recursion Operator) There is a function ρ from terms to terms such that

ρs is a procedure if s is closed and

(ρu)v �3 u(ρu)v

for all procedures u and v .

Proof ρs := λx.CCsx with C := λxy.y(λz.xxyz) does the job. �

Exercise 35 Consider in Coq the recursive function

double := fix fx. match x [0⇒ 0 | Sx′ ⇒ S(S(fx′))]

a) Write the template function Double for double.

b) Prove Double double x = double x.

c) Prove (∀x. Double f x = fx) → fx = doublex.

Exercise 36 Carefully verify the reduction (ρu)v �3 u(ρu)v from Fact 34.

9

10 Case Study: Addition in L

Programming in L is convenient since we can follow familiar patterns from func-

tional programming. We demonstrate the case with a functional specification

∀mn. add m̂ n̂ �∗ Æm+n
of a procedure add for addition. We say that we are looking for a procedure add

realising the addition function m+n. A well-known recursive specification for an

addition function consists of the equations

0+n = n
Sm+n = S(m+n)

Following the recursive specification, we can realize an addition function in Coq

with a recursive abstraction:

fix fmn. match [0⇒ n | Sm′ ⇒ S(fm′n)]

Using the recursion operator and Scott numerals, we translate the recursive function

into a procedure in L:

Add := λfxy. xy(λx′. Succ(fx′y))

add := ρ Add

Fact 37 add m̂ n̂ �∗ Æm+n.

Proof By induction on m using Fact 34. �

The functional specification of add has the virtue that properties of add like

commutativity follow immediately from properties of the addition function m+n.

Exercise 38 Prove add m̂ n̂ �∗ Æn+m using Fact 37.

Exercise 39 Verify the following reductions for all procedures u, v ,w and all num-

bers m, n:

a) Add w u v �∗ u v (λx. Succ (wxv).

b) add Ŝm n̂ �∗ Succ (add m̂ n̂).

Exercise 40 Realize and verify a procedure double following the recursive specifi-

cation in Exercise 35. Do not use the procedure add.

Exercise 41 Realize and verify a procedure for multiplication of Scott numerals.

Use the procedure add and the correctness result shown for add.

10

11 Discussion

It is very important that one can verify reductions like add m̂ n̂ �∗ Æm+n by

hand. It is a remarkable feature of the λ-calculus that hand verification of such

reductions is straightforward. Use the accompanying Coq development to simulate

hand verifications with tactics.

The call-by-value calculus presented here is from Forster and Smolka [1]. There

you will find references to the relevant literature.

A call-by-value λ-calculus was first studied in the 1970s by Gordon Plotkin [2].

Plotkin also reduces terms of the form (λx.s)y where the argument term is a vari-

able. Moreover, Plotkin defines one-step reduction deterministically by choosing the

left-most redex. Plotkin works with Church terms and non-capturing substitution

renaming bound variables.

References

[1] Yannick Forster and Gert Smolka. Weak call-by-value lambda calculus as a model

of computation in Coq. In ITP 2017, Brasília, Brazil, volume 10499 of LNCS,

pages 189–206. Springer, 2017.

[2] Gordon D. Plotkin. Call-by-name, call-by-value and the lambda-calculus. Theor.

Comput. Sci., 1(2):125–159, 1975.

11

	Introduction
	De Bruijn Terms
	Simple Substitution
	Call-By-Value Reduction
	Call-By-Value Evaluation
	Uniform Confluence
	Step-Indexed Evaluator
	Scott Encoding of Numbers
	Recursion Operator
	Case Study: Addition in L
	Discussion

