
Big-Step and Small-Step Semantics
for Abstract Imp

Gert Smolka, Saarland University

October 23, 2017

We specify the semantics of a simple imperative language Imp with two com-

plementary techniques known as big-step and small-step semantics and show

that the two semantics agree. Both semantics are realized with inductive

predicates.

1 States, Actions, Tests

We have in mind a simple imperative language that can write and read registers

realized with an abstract memory. All registers hold values of the same type (e.g.,

integers). We abstract away from concrete values and assume the following types

and functions:

s : State : T

a : Action : T α : Action→ State→ State

b : Test : T β : Test→ State→ B

Concrete examples for actions are assignments like x := 2 and x := x + y . Con-

crete examples for tests are comparisons like x > 0 and x ≤ y + z. Note that the

semantics of actions and tests is given by the functions α and β.

For examples it will be useful to assume an action and a test

skip : Action tt : Test

such that α skip s = s and β tt s = true for all states s.

1

2 Commands

The commands of our language Imp are obtained with actions, sequentialisations,

conditionals, and loops:

c : Com ::= a | c1; c2 | if b c | while b c

Commands are executed on states. The execution of a command on a state may

terminate or not terminate. If execution of a command on a state terminates, it

yields a state. We speak of the initial and the final state of an execution. Informally,

we may describe the semantics of commands as follows:

• Action a : The state is transformed with αa.

• Sequentialisation c1; c2 : First execute c1, then execute c2.

• Conditional if b c : If b yields true, execute c, otherwise do nothing.

• Loop while b c : execute c as long as b yields true.

Nontermination comes into play through loops: The loop (while tt skip) does not

terminate.

3 Big-Step Semantics

The big-step semantics of Imp describes a recursive interpreter function that given

a command and a state computes the resulting state. Since type theory admits only

total functions and the interpretation of a command may not terminate, we are

forced to formalize the interpreter function as an inductive predicate. We employ a

predicate

` : State→ Com→ State→ P

which we define with the following rules using the notation s, c ` s′:

s, a ` αas
s, c1 ` s′ s′, c2 ` s′′

s, c1; c2 ` s′′

βbs = true s, c ` s′

s, if b c ` s′
βbs = false

s, if b c ` s

βbs = true s, c ` s′ s′,while b c ` s′′

s,while b c ` s′′
βbs = false

s,while b c ` s

Note that the recursions coming with the rule for sequentialisation and the first

rule for loops are binary. Without the first rule for loops the rules yield an always

terminating interpreter since each recursion step employs a smaller command.

2

Fact 1 (Functionality) If s, c ` s′ and s, c ` s′′, then s′ = s′′.

Proof By induction on s, c ` s′. �

Exercise 2 (Nontermination) Informally, for every command c, execution of the

loop while tt c does not terminate. Prove ¬∃s′. s, while tt c ` s′ for all states s
and all commands c.

4 Small-Step Semantics

We now specify a second semantics for Imp that models single reductions steps and

provides for an iterative interpreter. We do this with an inductive predicate

� : State× L (Com)→ State× L (Com)→ P

for which we use the notation s, C � s′, C′. The list of commands represents a stack

of commands needed so that the binary recursion coming with sequentialisations

and loops can be accounted for iteratively. We will show that the equivalence

s, [c] �∗ s′,nil ↔ s, c ` s′ (1)

where �∗ denotes the reflexive transitive closure of �. The equivalence says that

the small-step semantics s, C � s′, C′ agrees with the big-step semantics s, c ` s′.
We define the inductive predicate realising the small-step semantics with the

following rules:

s, a :: C � αas,C s, c1; c2 :: C � s, c1 :: c2 :: C

βbs = true

s, if b c :: C � c :: C, s

βbs = false

s, if b c :: C � s, C

βbs = true

s,while b c :: C � s, c :: while b c :: C

βbs = false

s,while b c :: C � s, C

We also define the reflexive transitive closure �∗ of � as an inductive predicate:

s, C �∗ s, C
s, C � s′, C′ s′, C′ �∗ s′′, C′′

s, C �∗ s′′, C′′

Fact 3

1. If s, C � s′, C′ and s, C � s′′, C′′, then s′ = s′′ and C′ = C′′.

3

2. If s, C � s′, C′, then s, C �∗ s′, C′,
3. If s, C �∗ s′, C′ and s′, C′ �∗ s′′, C′′, then s, C �∗ s′′, C′′.
4. If s, C � s′, C′, then s, C ++D � s′, C′++D.

5. If s, C �∗ s′, C′, then s, C ++D �∗ s′, C′++D.

5 Agreement

We now show that the small-step semantics agrees with the big-step semantics of

Imp as specified by the equivalence (1). The two directions require different proofs.

The direction from big-step to small-step follows by induction on the big-step pred-

icate if the claim is generalised.

Lemma 4 If s, c ` s′, then s, c :: C �∗ s′, C .

Proof By induction on s, c ` s′ using Fact 3 (2,3). �

The other direction requires an auxiliary predicate s, C ` s′ defined inductively

as follows:

s,nil ` s
s, c ` s′ s′, A ` s′′

s, c :: A ` s′′

Lemma 5 (Inversion)

1. If s,nil �∗ s′, then s = s′.
2. If s, c :: C ` s′, then s, c ` s1 and s1, C ` s′ for some s1.

3. If s, [c] ` s′, then s, c ` s′.

Lemma 6 (Absorption) If s, C � s′, C′ and s′, C′ ` s′′, then s, C ` s′′.

Proof Case analysis on s, C � s′, C′ using Lemma 5. �

Lemma 7 If s, C �∗ s′,nil, then s, C ` s′.

Proof Induction on s, C �∗ s′,nil using Lemma 6. �

Theorem 8 s, c ` s′ if and only if s, [c] �∗ s′,nil.

Proof Follows with lemmas 4, 7, and 5. �

Exercise 9 For Lemma 6, verify the case for while with satisfied test by hand.

4

6 Discussion

The proofs of Lemmas 4 and 6 require the verification of many cases involving

many variables. This is tedious and error-prone if done by hand. With Coq, these

verifications can be done semi-automatically using the eauto tactic supplied with

the relevant inductive predicates. The automation of the inversions needed for the

proof of Lemma 6 requires a custom tactic realising Lemma 5 in generalised form

using Coq’s low-level inversion tactic. See the accompanying Coq development for

more information. There the proof script for Lemma 6 is a one-liner. Doing this

proof in detail by hand will require dozens of lines.

5

	States, Actions, Tests
	Commands
	Big-Step Semantics
	Small-Step Semantics
	Agreement
	Discussion

