From L to $\lambda\beta$

Gert Smolka, Saarland University

December 4, 2017

We discuss the λ -calculus $\lambda\beta$ assuming that the reader is familiar with the call-by-value λ -calculus L and abstract $\lambda\beta$.

1 Basics

 $\lambda\beta$ may be seen as a generalisation of *L* where equivalence $s \equiv t$ and reduction s > t are meaningful for open terms. Even for closed terms the two systems are different since in $\lambda\beta$ every redex ($\lambda x.s$)t can be replaced with βst while in L the term t must be an abstraction and the redex must not be within an abstraction. In addition, β in $\lambda\beta$ is quite different from β in L.

What $\lambda\beta$ and *L* have in common is the type of terms. Recall that we employ de Bruijn terms that we write informally as Church terms. Moreover, if we have s > t in L and *s* is closed, we also have s > t in $\lambda\beta$. The converse is not true.

 $\lambda\beta$ is best understood as an equational logic, so it is helpful to see equivalence $s \equiv t$ as the primary notion and reduction s > t as the secondary notion.

Term equivalence and reduction in $\lambda\beta$ are generated by

 $(\lambda x.s)t \equiv \beta st$ and $(\lambda x.s)t \succ \beta st$

where *t* can be any term and the function β is different from the function used for *L*. Moreover, replacement can take place anywhere; for instance, we have $\lambda x.II > \lambda x.I$.

You can get intuitions for $\lambda\beta$ from Coq, where β -conversion is realized as in $\lambda\beta$. We may say that $\lambda\beta$ realizes equivalence and reduction as required logically, while L realizes reduction as required by call-by-value functional programming.

Irreducibility is different in $\lambda\beta$ and L. We call a term of the form $(\lambda x.s)t$ a β -redex, and say that a term is β -normal if it contains no β -redex.

Fact 1 A term is irreducible in $\lambda\beta$ if and only if it is β -normal.

Theorem 2 In $\lambda\beta$, reduction is confluent and the Church-Rosser property holds for equivalence and reduction.

Proof The proof has been done for abstract $\lambda\beta$. What remains to be done is to define β and show that is compatible with parallel reduction.

We define

$$K := \lambda x y. x$$

$$S := \lambda f g x. (f x) (g x)$$

Note that K = F. We use K for purposes that are unrelated to booleans. The following fact states important facts about reduction and equivalence in $\lambda\beta$ that are not true for L.

Fact 3 For all terms *s*, *t*, and *u* the following reductions are valid.

$$(\lambda x.s)x \succ s$$

$$(\lambda x.s)t \succ s$$

$$Kst \succ^{2} s$$

$$Sstu \succ^{3} su(tu)$$

if x not free in s

When we write $Kst > (\lambda x.s)t > s$, we can see a crucial point: The variable x must be chosen such that it is not free in s. If terms are formalized as Church terms, β will have to rename bound variables (e.g., $(\lambda x y.x)y > \lambda z.y)$.

2 SK-Normal Form

We call a term an **SK-term** if it can be obtained with variables, *K*, *S*, and applications.¹ It turns out that in $\lambda\beta$ every term is equivalent to an SK-term.

Fact 4

 $\lambda x.x \equiv SKK$ $\lambda x.s \equiv Ks \qquad \text{if } x \text{ not free in } s$ $\lambda x.st \equiv S(\lambda x.s)(\lambda x.t)$

Theorem 5 Every term is equivalent to an SK-term.

Proof From Fact 4 it is clear that for every SK-term *s* the abstraction $\lambda x.s$ is equivalent to an SK-term (follows by induction on *s*). It now follows that every term *s* is equivalent to an SK-term (again by induction on *s*).

¹Example and counterexample: SKK is an SK-term and I is not an SK-term.

3 Recursion Operator

In $\lambda\beta$ it is easy to give a term that can serve as recursion operator.

Fact 6 Let $C := \lambda f g. g(f f g)$ and R := CC. Then $Rs >^2 s(Rs)$ for all terms *s*.

Think of *C* and *f* as *copy term* and of *g* as *template*.

Note that R has no normal form. Hence no term containing R has a normal form. Thus recursive procedures don't have normal forms. This is in contrast to L, where recursive procedures are normal (with respect to reduction in L).

The recursion operator for *L* can be obtained as a refinement of the recursion operator for $\lambda\beta$.

Fact 7 Let $C := \lambda f g.g(\lambda x.f f g x)$ and $\rho s := \lambda x.CCsx$. Then $(\rho u)v >^3 u(\rho u)v$ for all procedures u and v in L.

4 Church Numerals

In $\lambda\beta$, numbers can be represented as β -normal procedures in such a way that the usual arithmetic operations can be realized without recursion. The technique is due to Church and represents a number n as a procedure $\lambda fa.f^na$ iterating a given function n times on a given value. Here is the formal definition:

$$\overline{n} := \lambda f a. f^{n} a$$

$$f^{0} s := s$$

$$f^{n+1} s := f(f^{n} s)$$

Note the use of the auxiliary function $s^n t$. We call the term \overline{n} the **Church numeral** for *n*. Here are the first four Church numerals.

$$\overline{0} = \lambda f a.a$$

$$\overline{1} = \lambda f a.f a$$

$$\overline{2} = \lambda f a.f(fa)$$

$$\overline{3} = \lambda f a.f(f(fa))$$

Note that the Church numerals are β -normal procedures. This ensures that numerals for different numbers are not β -equivalent.

Sometimes it is helpful to think of a numeral \overline{n} as a procedure that applied to a function f yields the function f^n .

Here are procedures for successors, addition, and multiplication:

succ :=
$$\lambda x f a. f(x f a)$$

add := $\lambda x. x$ succ
mul := $\lambda x y. x (add y) \overline{0}$

Fact 8 succ $\overline{n} \equiv \overline{n+1}$.

Proof succ $\overline{n} > \lambda f a. f(\overline{n} f a) >^2 \lambda f a. f(f^n a) = \lambda f a. f^{n+1}a = \overline{n+1}.$

Note that the equality steps account for the auxiliary function. Also note that the proof cannot be done in L because the second reduction is done within an abstraction. It seems that a procedure computing successors of Church numerals cannot be defined in L. On the other hand, the operations for Scott numerals work both in L and $\lambda\beta$.

Fact 9 add $\overline{m} \ \overline{n} = \overline{m+n}$. Proof By induction on m. For m = 0 we have add $\overline{0} \ \overline{n} > \overline{0}$ succ $\overline{n} >^2 \overline{n}$. For m = Sm we have add $\overline{Sm} \ \overline{n} > \overline{Sm}$ succ \overline{n} $>^2 \operatorname{succ}^{Sm} \overline{n}$ $= \operatorname{succ} (\operatorname{succ}^m \overline{n})$ $<^2 \operatorname{succ} (\overline{m} \operatorname{succ} \overline{n})$ $< \operatorname{succ} (\operatorname{add} \overline{m} \ \overline{n})$ $\equiv \operatorname{succ} \overline{m+n}$ by inductive hypothesis $\equiv \overline{Sm+n}$ by Fact 8

Note that the proof of Fact 9 uses bidirectional reasoning. Since reduction in $\lambda\beta$ is confluent and $\overline{m+n}$ is normal, Fact 9 implies via Church-Rosser the reduction add $\overline{m} \overline{n} \geq^* \overline{m+n}$.

Fact 10 mul $\overline{m} \overline{n} \equiv \overline{m \cdot n}$.

Proof By induction on *m* using Fact 9.