
From L to λβ

Gert Smolka, Saarland University

December 4, 2017

We discuss the λ-calculus λβ assuming that the reader is familiar with the

call-by-value λ-calculus L and abstract λβ.

1 Basics

λβmay be seen as a generalisation of L where equivalence s ≡ t and reduction s � t
are meaningful for open terms. Even for closed terms the two systems are different

since in λβ every redex (λx.s)t can be replaced with βst while in L the term t must

be an abstraction and the redex must not be within an abstraction. In addition, β in

λβ is quite different from β in L.

What λβ and L have in common is the type of terms. Recall that we employ de

Bruijn terms that we write informally as Church terms. Moreover, if we have s � t
in L and s is closed, we also have s � t in λβ. The converse is not true.

λβ is best understood as an equational logic, so it is helpful to see equivalence

s ≡ t as the primary notion and reduction s � t as the secondary notion.

Term equivalence and reduction in λβ are generated by

(λx.s)t ≡ βst and (λx.s)t � βst

where t can be any term and the function β is different from the function used for L.

Moreover, replacement can take place anywhere; for instance, we have λx.II � λx.I.
You can get intuitions for λβ from Coq, where β-conversion is realized as in λβ.

We may say that λβ realizes equivalence and reduction as required logically, while L

realizes reduction as required by call-by-value functional programming.

Irreducibility is different in λβ and L. We call a term of the form (λx.s)t a

β-redex, and say that a term is β-normal if it contains no β-redex.

Fact 1 A term is irreducible in λβ if and only if it is β-normal.

Theorem 2 In λβ, reduction is confluent and the Church-Rosser property holds for

equivalence and reduction.

1



Proof The proof has been done for abstract λβ. What remains to be done is to

define β and show that is compatible with parallel reduction. �

We define

K := λxy.x

S := λfgx.(fx)(gx)

Note that K = F. We use K for purposes that are unrelated to booleans. The follow-

ing fact states important facts about reduction and equivalence in λβ that are not

true for L.

Fact 3 For all terms s, t, and u the following reductions are valid.

(λx.s)x � s

(λx.s)t � s if x not free in s

Kst �2 s

Sstu �3 su(tu)

When we write Kst � (λx.s)t � s, we can see a crucial point: The variable x must

be chosen such that it is not free in s. If terms are formalized as Church terms, β
will have to rename bound variables (e.g., (λxy.x)y � λz.y).

2 SK-Normal Form

We call a term an SK-term if it can be obtained with variables, K, S, and applica-

tions.1 It turns out that in λβ every term is equivalent to an SK-term.

Fact 4

λx.x ≡ SKK

λx.s ≡ Ks if x not free in s

λx.st ≡ S(λx.s)(λx.t)

Theorem 5 Every term is equivalent to an SK-term.

Proof From Fact 4 it is clear that for every SK-term s the abstraction λx.s is equiv-

alent to an SK-term (follows by induction on s). It now follows that every term s is

equivalent to an SK-term (again by induction on s). �

1Example and counterexample: SKK is an SK-term and I is not an SK-term.

2



3 Recursion Operator

In λβ it is easy to give a term that can serve as recursion operator.

Fact 6 Let C := λfg.g(ffg) and R := CC . Then Rs �2 s(Rs) for all terms s.

Think of C and f as copy term and of g as template.

Note that R has no normal form. Hence no term containing R has a normal form.

Thus recursive procedures don’t have normal forms. This is in contrast to L, where

recursive procedures are normal (with respect to reduction in L).

The recursion operator for L can be obtained as a refinement of the recursion

operator for λβ.

Fact 7 Let C := λfg.g(λx.ffgx) and ρs := λx.CCsx. Then (ρu)v �3 u(ρu)v for

all procedures u and v in L.

4 Church Numerals

In λβ, numbers can be represented as β-normal procedures in such a way that

the usual arithmetic operations can be realized without recursion. The technique

is due to Church and represents a number n as a procedure λfa.fna iterating a

given function n times on a given value. Here is the formal definition:

n := λfa.fna

f 0s := s

fn+1s := f(fns)

Note the use of the auxiliary function snt. We call the term n the Church numeral

for n. Here are the first four Church numerals.

0 = λfa.a

1 = λfa.fa

2 = λfa.f (fa)

3 = λfa.f (f(fa))

Note that the Church numerals are β-normal procedures. This ensures that numer-

als for different numbers are not β-equivalent.

Sometimes it is helpful to think of a numeral n as a procedure that applied to a

function f yields the function fn.

3



Here are procedures for successors, addition, and multiplication:

succ := λxfa.f (xfa)

add := λx.x succ

mul := λxy.x(addy)0

Fact 8 succ n ≡ n+ 1.

Proof succ n � λfa. f (nfa) �2 λfa. f (fna) = λfa. fn+1a = n+ 1. �

Note that the equality steps account for the auxiliary function. Also note that the

proof cannot be done in L because the second reduction is done within an abstrac-

tion. It seems that a procedure computing successors of Church numerals cannot

be defined in L. On the other hand, the operations for Scott numerals work both in

L and λβ.

Fact 9 add m n ≡ m+n.

Proof By induction on m.

For m = 0 we have add 0 n � 0 succ n �2 n.

For m = Sm we have

add Sm n � Sm succ n

�2 succSm n

= succ (succm n)

≺2 succ (m succ n)

≺ succ (add m n)

≡ succ m+n by inductive hypothesis

≡ Sm+n by Fact 8 �

Note that the proof of Fact 9 uses bidirectional reasoning. Since reduction in λβ
is confluent and m+n is normal, Fact 9 implies via Church-Rosser the reduction

add m n �∗ m+n.

Fact 10 mul m n ≡ m ·n.

Proof By induction on m using Fact 9. �

4


	Basics
	SK-Normal Form
	Recursion Operator
	Church Numerals

