From L to Af

Gert Smolka, Saarland University
December 4, 2017

We discuss the A-calculus A assuming that the reader is familiar with the
call-by-value A-calculus L and abstract Af.

1 Basics

AB may be seen as a generalisation of L where equivalence s = t and reduction s > t
are meaningful for open terms. Even for closed terms the two systems are different
since in A every redex (Ax.s)t can be replaced with st while in L the term t must
be an abstraction and the redex must not be within an abstraction. In addition, 8 in
AB is quite different from S in L.

What A and L have in common is the type of terms. Recall that we employ de
Bruijn terms that we write informally as Church terms. Moreover, if we have s > t
in L and s is closed, we also have s > t in Af3. The converse is not true.

AB is best understood as an equational logic, so it is helpful to see equivalence
s =t as the primary notion and reduction s > t as the secondary notion.

Term equivalence and reduction in AS are generated by

(Ax.s)t = PBst and (Ax.s)t > PBst

where t can be any term and the function g is different from the function used for L.
Moreover, replacement can take place anywhere; for instance, we have Ax.II > Ax.I.
You can get intuitions for AS from Coq, where B-conversion is realized as in AB.
We may say that A realizes equivalence and reduction as required logically, while L
realizes reduction as required by call-by-value functional programming.
Irreducibility is different in A and L. We call a term of the form (Ax.s)t a
B-redex, and say that a term is f-normal if it contains no S-redex.

Fact 1 A term is irreducible in AS if and only if it is f-normal.

Theorem 2 In AB, reduction is confluent and the Church-Rosser property holds for
equivalence and reduction.

Proof The proof has been done for abstract Af. What remains to be done is to

define and show that is compatible with parallel reduction. -
We define
K = Axy.x
S = Afgx.(fx)(gx)

Note that K = F. We use K for purposes that are unrelated to booleans. The follow-
ing fact states important facts about reduction and equivalence in Af that are not
true for L.

Fact 3 For all terms s, t, and u the following reductions are valid.

(Ax.s)x > s
(Ax.s)t > s if x not free in s
Kst »2 s

Sstu >3 su(tu)

When we write Kst > (Ax.s)t > s, we can see a crucial point: The variable x must
be chosen such that it is not free in s. If terms are formalized as Church terms, S
will have to rename bound variables (e.g., (Axy.x)y > Az.y).

2 SK-Normal Form

We call a term an SK-term if it can be obtained with variables, K, S, and applica-
tionsE] It turns out that in Af every term is equivalent to an SK-term.

Fact 4

Ax.x = SKK
Ks if x not free in s

AX.S
Ax.st = S(Ax.s)(Ax.t)

Theorem 5 Every term is equivalent to an SK-term.

Proof From Fact[4]it is clear that for every SK-term s the abstraction Ax.s is equiv-
alent to an SK-term (follows by induction on s). It now follows that every term s is
equivalent to an SK-term (again by induction on s). -

IExample and counterexample: SKK is an SK-term and I is not an SK-term.

3 Recursion Operator

In A it is easy to give a term that can serve as recursion operator.

Fact 6 Let C:=Afg.g(ffg) and R := CC. Then Rs > s(Rs) for all terms s.

Think of C and f as copy term and of g as template.

Note that R has no normal form. Hence no term containing R has a normal form.
Thus recursive procedures don’t have normal forms. This is in contrast to L, where
recursive procedures are normal (with respect to reduction in L).

The recursion operator for L can be obtained as a refinement of the recursion
operator for ApB.

Fact 7 Let C:= Afg.g(Ax.ffgx) and ps := Ax.CCsx. Then (pu)v >3 u(pu)v for
all procedures u and v in L.

4 Church Numerals

In AB, numbers can be represented as S-normal procedures in such a way that
the usual arithmetic operations can be realized without recursion. The technique
is due to Church and represents a number n as a procedure Afa.f"a iterating a
given function n times on a given value. Here is the formal definition:

n

Afa.f"a
fO =5
fn+IS = f(fnS)

Note the use of the auxiliary function s"t. We call the term 71 the Church numeral
for n. Here are the first four Church numerals.

Afa.a
Afa.fa
Afa.f(fa)
Afa.f(f(fa))

Wl N = Ol
Il

Note that the Church numerals are f-normal procedures. This ensures that numer-
als for different numbers are not S-equivalent.

Sometimes it is helpful to think of a numeral 72 as a procedure that applied to a
function f yields the function f™.

Here are procedures for successors, addition, and multiplication:

succ = Axfa.f(xfa)
add := Ax.xsucc
mul := Axy.x(addy)0
Fact 8 succnn = n+ 1.
Proof succm > Afa. f(nfa) »2 Afa. f(f"a) =Afa. ff*'la=n+1. -

Note that the equality steps account for the auxiliary function. Also note that the
proof cannot be done in L because the second reduction is done within an abstrac-
tion. It seems that a procedure computing successors of Church numerals cannot
be defined in L. On the other hand, the operations for Scott numerals work both in

L and AB.

Fact9 addmn = m + n.

Proof By induction on m.

For m = 0we have add 0 > Osuccmm >2 7.

For m = Sm we have

add Smn > Smsuccn

>2 succ’™m 7

2

A A

Sm+n

succm+n

succ (succ™ mn)
succ (m succ n)
succ (add m 1)

by inductive hypothesis
by Fact -

Note that the proof of Fact[9|uses bidirectional reasoning. Since reduction in A
is confluent and m + 7 is normal, Fact [9] implies via Church-Rosser the reduction

addmn >* m+n.

Fact10 mulmn = m - n.

Proof By induction on m using Fact[9] -

	Basics
	SK-Normal Form
	Recursion Operator
	Church Numerals

