Small-Step Evaluation

Gert Smolka, Saarland University

October 25, 2017

We consider two small-step semantics for expressions. The first one models single evaluation steps and leaves open which step is taken next if several steps are possible. The second small-step semantics models a tail-recursive interpreter for expressions.

1 Values, Operations, and Expressions

We assume a type of values, a type of operations, and an interpretation function for operations

$$v: Val$$

 $f: Op$ $\varphi: Op \rightarrow Val \rightarrow Val \rightarrow Val$

an define expressions

$$e: \mathsf{Exp} ::= v \mid fe_1e_2$$

and evaluation

$$E: \mathsf{Exp} \to \mathsf{Val}$$
$$Ev := v$$
$$E(fe_1e_2) := \varphi f(Ee_1)(Ee_2)$$

2 **Rewrite semantics**

We will define an inductive predicate

$$\succ$$
 : Exp \rightarrow Exp \rightarrow **P**

called rewrite relation that models single evaluation steps and satisfies the equivalence

$$e \succ^* v \iff Ee = v \tag{1}$$

We define $e \succ e'$ with the following rules:

$$\frac{e_1 \succ e'_1}{fv_1v_2 \succ \varphi fv_1v_2} \qquad \frac{e_1 \succ e'_1}{fe_1e_2 \succ fe'_1e_2} \qquad \frac{e_2 \succ e'_2}{fe_1e_2 \succ fe_1e'_2}$$

Note that r > e' is not functional because in a compound expression either the left or the right argument expression may be rewritten.

Fact 1 If e > e', then Ee = Ee'.

Proof Induction on $e \succ e'$.

Fact 2 If e > e', then Ee = Ee'.

Proof Induction on $e \succ^* e'$ using Fact 1.

Fact 3 If $e_1 \succ^* e'_1$ and $e_2 \succ^* e'_2$, then $fe_1e_2 \succ^* fe'_1e'_2$.

Proof It suffices to show $fe_1e_2 \succ^* fe'_1e_2$ and $fe'_1e_2 \succ^* fe'_1e'_2$. The first claim follows by induction on $e_1 \succ^* e'_1$, and the second claim follows by induction on $e_2 \succ^* e'_2$.

Fact 4 $e \succ^* Ee$

Proof Induction on *e* using Fact 3.

Theorem 5 $e \succ^* v \leftrightarrow Ee = v$.

Proof Follows with Facts 2 and 4.

3 Iterative Semantics

A tail-recursive evaluator for expressions will maintain a control stack and a value stack, where the control stack holds expressions and operations. We will model a tail-recursive evaluator with an inductive predicate

 \succ : L(Exp + Op) \rightarrow L(Op) \rightarrow P

satisfying the equivalence

$$[e], \operatorname{nil} \succ^* \operatorname{nil}, B \leftrightarrow B = [Ee]$$

We define A, B > A', B' with the following rules:

$$v :: A, B \succ A, v :: B$$
$$fe_1e_2 :: A, B \succ e_2 :: e_1 :: f :: A, B$$
$$f :: A, v_1 :: v_2 :: B \succ A, \varphi f v_1 v_2 :: B$$

Note the similarity with the execution function R for compiled expressions. We may say that the tail-recursive rewrite relation inlines the compilation of compound expressions.

Fact 6 $e :: A, B >^* A, Ee :: B.$

Proof Induction on *e*.

Fact 7 (Functionality)

1. If $A, B > A_1, B_1$ and $A, B > A_2, B_2$, then $A_1 = A_2$ and $B_1 = B_2$.

2. If $A, B >^*$ nil, B_1 and $A, B >^*$ nil, B_2 , then $B_1 = B_2$.

Proof Claim 1 follows by case analysis on the first assumption and inversion of the second assumption.

Claim 2 follows by induction on the first assumption, inversion on the second assumption, and Claim 1.

Theorem 8 [*e*], nil \succ^* nil, $B \leftrightarrow B = [Ee]$.

Proof Follows with Facts 6 and 7.

4 Termination

We define a size function σ : Exp \rightarrow N such that $e \succ e'$ implies $\sigma e > \sigma e'$:

$$\sigma v := 1$$

$$\sigma(fe_1e_2) := 2 + \sigma e_1 + \sigma e_2$$

Fact 9 If $e \succ e'$, then $\sigma e > \sigma e'$.

Proof Induction on $e \succ e'$.

Fact 9 tells us that the rewriting relation e > e' terminates.

We want to show that A, B > A', B' terminates. For this it suffices to come up with a size function $\tau : L(Exp + Op) \rightarrow N$ such that A, B > A', B' implies $\tau A > \tau A'$. We define τ as follows:

$$\tau(\mathsf{nil}) := 0$$

$$\tau(e :: A) := \sigma e + \tau A$$

$$\tau(f :: A) := 1 + \tau A$$

Fact 10 If A, B > A', B', then $\tau A > \tau A'$.

Proof Case analysis on A, B > A', B'.

