
Small-Step Evaluation

Gert Smolka, Saarland University

October 25, 2017

We consider two small-step semantics for expressions. The first one models

single evaluation steps and leaves open which step is taken next if several

steps are possible. The second small-step semantics models a tail-recursive

interpreter for expressions.

1 Values, Operations, and Expressions

We assume a type of values, a type of operations, and an interpretation function for

operations

v : Val

f : Op ϕ : Op→ Val→ Val→ Val

an define expressions

e : Exp ::= v | fe1e2

and evaluation

E : Exp→ Val

Ev := v
E(fe1e2) :=ϕf(Ee1)(Ee2)

2 Rewrite semantics

We will define an inductive predicate

� : Exp→ Exp→ P

called rewrite relation that models single evaluation steps and satisfies the equiva-

lence

e �∗ v ↔ Ee = v (1)

1



We define e � e′ with the following rules:

fv1v2 �ϕfv1v2

e1 � e′1
fe1e2 � fe′1e2

e2 � e′2
fe1e2 � fe1e′2

Note that r � e′ is not functional because in a compound expression either the left

or the right argument expression may be rewritten.

Fact 1 If e � e′, then Ee = Ee′.

Proof Induction on e � e′. �

Fact 2 If e �∗ e′, then Ee = Ee′.

Proof Induction on e �∗ e′ using Fact 1. �

Fact 3 If e1 �∗ e′1 and e2 �∗ e′2, then fe1e2 �∗ fe′1e′2.

Proof It suffices to show fe1e2 �∗ fe′1e2 and fe′1e2 �∗ fe′1e′2. The first claim

follows by induction on e1 �∗ e′1, and the second claim follows by induction on

e2 �∗ e′2. �

Fact 4 e �∗ Ee

Proof Induction on e using Fact 3. �

Theorem 5 e �∗ v ↔ Ee = v .

Proof Follows with Facts 2 and 4. �

3 Iterative Semantics

A tail-recursive evaluator for expressions will maintain a control stack and a value

stack, where the control stack holds expressions and operations. We will model a

tail-recursive evaluator with an inductive predicate

� : L (Exp+Op)→ L (Op)→ P

satisfying the equivalence

[e],nil �∗ nil, B ↔ B = [Ee]

2



We define A,B � A′, B′ with the following rules:

v :: A, B � A, v :: B

fe1e2 :: A, B � e2 :: e1 :: f :: A, B

f :: A, v1 :: v2 :: B � A, ϕfv1v2 :: B

Note the similarity with the execution function R for compiled expressions. We

may say that the tail-recursive rewrite relation inlines the compilation of compound

expressions.

Fact 6 e :: A,B �∗ A,Ee :: B.

Proof Induction on e. �

Fact 7 (Functionality)

1. If A,B � A1, B1 and A,B � A2, B2, then A1 = A2 and B1 = B2.

2. If A,B �∗ nil, B1 and A,B �∗ nil, B2, then B1 = B2.

Proof Claim 1 follows by case analysis on the first assumption and inversion of the

second assumption.

Claim 2 follows by induction on the first assumption, inversion on the second

assumption, and Claim 1. �

Theorem 8 [e],nil �∗ nil, B ↔ B = [Ee].

Proof Follows with Facts 6 and 7. �

4 Termination

We define a size function σ : Exp→ N such that e � e′ implies σe > σe′:

σv := 1

σ(fe1e2) := 2+ σe1 + σe2

Fact 9 If e � e′, then σe > σe′.

Proof Induction on e � e′. �

Fact 9 tells us that the rewriting relation e � e′ terminates.

We want to show that A,B � A′, B′ terminates. For this it suffices to come up

with a size function τ : L (Exp+ Op) → N such that A,B � A′, B′ implies τA > τA′.
We define τ as follows:

τ(nil) := 0

τ(e :: A) := σe+ τA
τ(f :: A) := 1+ τA

3



Fact 10 If A,B � A′, B′, then τA > τA′.

Proof Case analysis on A,B � A′, B′. �

4


	Values, Operations, and Expressions
	Rewrite semantics
	Iterative Semantics
	Termination

