Small-Step Evaluation

Gert Smolka, Saarland University
October 25, 2017

We consider two small-step semantics for expressions. The first one models
single evaluation steps and leaves open which step is taken next if several
steps are possible. The second small-step semantics models a tail-recursive
interpreter for expressions.

1 Values, Operations, and Expressions

We assume a type of values, a type of operations, and an interpretation function for
operations

v :Val
f:0p @ :0p — Val — Val - Vval
an define expressions
e Exp = v | feier
and evaluation
E : Exp — Val
Ev:=v

E(feie2) := @ f(Ee1)(Ee2)

2 Rewrite semantics
We will define an inductive predicate
>: Exp - Exp—P

called rewrite relation that models single evaluation steps and satisfies the equiva-
lence
e>*v - Fe=v (1)



We define e > ¢’ with the following rules:

’ ’

Sfvive > @ fviv; feier >f€'1€2 feier >f€1€'2

Note that v > ¢’ is not functional because in a compound expression either the left
or the right argument expression may be rewritten.

Fact1l If e > ¢/, then Ee = Ee’.

Proof Induction on e > ¢e’. -
Fact 2 If e >* ¢’, then Ee = Ee’.

Proof Induction on e >* e’ using Fact[1] -
Fact 3 If e; >* ¢} and e, >* e5, then fejex >* fe]e.

Proof It suffices to show feje; >* feler and fejex >* feje,. The first claim
follows by induction on e; >* e}, and the second claim follows by induction on
ex >* 6’2. ]
Fact4 e >* Ee

Proof Induction on e using Fact "

Theorem 5 e >* v - Ee = v.

Proof Follows with Facts[2]and -

3 Iterative Semantics

A tail-recursive evaluator for expressions will maintain a control stack and a value
stack, where the control stack holds expressions and operations. We will model a
tail-recursive evaluator with an inductive predicate

>: L(Exp+Op)—L(Op)—P
satisfying the equivalence

[e],nil >* nil,B - B =[Ee]



We define A, B > A’, B’ with the following rules:
viAB > A v:B
feiexA,B > exuer i fAB
fuAvizveuB > A @fvive =B
Note the similarity with the execution function R for compiled expressions. We

may say that the tail-recursive rewrite relation inlines the compilation of compound
expressions.

Fact6 e:: A,B >* A,Ee :: B.
Proof Induction on e. n

Fact 7 (Functionality)

1. If A,B > A1,B; and A,B > A», By, then A; = A» and B; = B».

2. If A,B >* nil,B; and A, B >* nil, B, then By = By.

Proof Claim 1 follows by case analysis on the first assumption and inversion of the
second assumption.

Claim 2 follows by induction on the first assumption, inversion on the second
assumption, and Claim 1. -

Theorem 8 [e],nil >* nil,B <« B = [Ee].

Proof Follows with Facts[6and -

4 Termination

4

We define a size function o : Exp — N such that e > e’ implies oe > ge’:
ov:=1
o(feiex) :=2+0e; +0ep
Fact9 If e > ¢/, then oge > oe’.

Proof Induction on e > ¢e’. n

Fact[J| tells us that the rewriting relation e > ¢’ terminates.

We want to show that A,B > A’,B’ terminates. For this it suffices to come up
with a size function T : L (Exp + Op) — N such that A,B > A’, B’ implies TA > TA'.
We define T as follows:

T(nil) := 0
T(eA) := oe+TA
T(frA) =1+TA



Fact 10 If A,B > A’",B’, then TA > TA'.

Proof Case analysis on A,B > A’,B’.



	Values, Operations, and Expressions
	Rewrite semantics
	Iterative Semantics
	Termination

