
Abstract Reduction Systems

Gert Smolka, Saarland University

November 15, 2019

We study abstract reduction systems and obtain results concerning conflu-

ence and normalisation.

1 Relations

Given a type X, we call predicates X → X → P relations. The letters R and S will

range over relations. Inclusion and equivalence of relations are defined as follows:

R ⊆ S := ∀xy. Rxy → Sxy
R � S := R ⊆ S ∧ S ⊆ R

Reflexivity, symmetry, transitivity, and functionality of relations are defined as fol-

lows:

reflexive R := ∀x. Rxx
symmetric R := ∀xy. Rxy → Ryx
transitive R := ∀xyz. Rxy → Ryz → Rxz

functional R := ∀xyz. Rxy → Rxz → y = z

2 Reflexive Transitive Closure

Let R : X → X → P. We define the reflexive transitive closure R∗ of R as an

inductive predicate:

R∗xx

Rxx′ R∗x′y

R∗xy

We refer to the induction lemma for R∗ as star induction. Moreover, we refer to the

constructor mapping R to R∗ as star.

1



Fact 1

1. R∗ is reflexive and transitive.

2. Expansion R ⊆ R∗.

3. Monotonicity If R ⊆ S, then R∗ ⊆ S∗.

4. Completeness If R ⊆ S and S is reflexive and transitive, then R∗ ⊆ S.

5. Idempotence R∗∗ � R∗.

Proof Transitivity, monotonicity, and completeness follow with star induction.

Idempotence is a straightforward consequence of expansion, completeness, and

transitivity. �

Note that Fact 1 tells us that R∗ is the least reflexive and transitive relation

containing R.

Exercise 2 There are several equivalent definitions of the reflexive transitive clo-

sure of a relation. Consider the inductive predicate R# defined by the following

rules:

Rxy

R#xy R#xx

R#xy R#yz

R#xz

Prove R# � R∗.

Exercise 3 Define composition R ◦ S and powers Rn of relations and prove Rn+1 �
R ◦ Rn � Rn ◦ R and R∗xy ↔ ∃n. Rnxy .

3 Basic Confluence

Let R : X → X → P. We define:

joinable Rxy := ∃z. Rxz ∧ Ryz
diamond R := ∀xyz. Rxy → Rxz → joinable Ryz

confluent R := diamond R∗

semi-confluent R := ∀xyz. Rxy → R∗xz → joinable R∗yz

Fact 4 (Diamond) R is semi-confluent if R satisfies the diamond property.

Proof Let R satisfy the diamond property. Let Rxy1 and R∗xy2 We show by induc-

tion on R∗xy2 that y1 and y2 are joinable. If x = y2, the claim is trivial. Otherwise,

we have Rxx′ and R∗x′y2. By the diamond property, we have Ry1u and Rx′u for

some u. By the inductive hypothesis for R∗x′y2, we have joinable R∗uy2. The

claim follows. �

2



Note that Fact 4 says that star preserves the diamond property (i.e., R∗ satisfies

the diamond property if R satisfies the diamond property).

Fact 5 (Semi-Confluence) R is confluent iff R is semi-confluent.

Proof The direction from confluence to semi-confluence is obvious. For the other

direction, let R be semi-confluent, R∗xy1 and R∗xy2. We show by induction on

R∗xy1 that y1 and y2 are joinable. If x = y1, the claim is trivial. Otherwise,

let Rxx′ and R∗x′y1. By semi-confluence of R, we have R∗x′u and R∗y2u for

some u. By the inductive hypothesis for R∗x′y1, we have joinable R∗y1u. The

claim follows. �

We now define the prediamond property:

prediamond R := ∀xyz. Rxy → Rxz → y=z ∨ Ryz ∨ Rzy ∨ joinable R y z

The prediamond property is weaker than the diamond property but still implies

semi-confluence.

Fact 6 (Prediamond)

1. If R satisfies the diamond property, then R satisfies the prediamond property.

2. If R satisfies the prediamond property, then R is confluent.

Proof Claim 1 is trivial. For Claim 2 it suffices by Fact 5 to show that R is semi-

confluent. This follows with a straightforward adaption of the proof of Fact 4. �

Example 7 It does not seem possible to further relax the prediamond property

without loosing confluence. For instance, R12, R21, R10 and R23 is a relation that

is not confluent.

4 Evaluation and Normal Forms

Let � : X → X → P. We define reducible and normal points as follows:

reducible x := ∃y. x � y
normal x := ¬reducible x

Normal points may also be called irreducible or terminal points.

The evaluation relation for � is defined as follows:

x . y := x �∗ y ∧ normal y

If x . y , we say that x evaluates to y or that y is a normal form of x. Moreover,

we say that x is weakly normalizing if it has a normal for.

We now show that confluence ensures uniqueness of normal forms.

3



Fact 8 If x �∗ y and x is normal, then x = y .

Proof Case analysis on x �∗ y . �

Fact 9 If � is confluent, then . is functional.

Proof Follows with Fact 8. �

5 Step-Indexed Evaluator

A step-indexed evaluator for a reduction relation � is a function E : N→ X → O(X)
such that:

1. x . t ↔ ∃n. Enx = ◦y .

2. Enx = ◦y → E(Sn)x = ◦y .

The lambda calculus is a system for which one can construct a step-indexed evalua-

tor. However, one cannot construct an unindexed interpreter X → O(X) for lambda

calculus since it is undecidable whether a term is normalizing.

We will obtain step-indexed interpreters from so-called reduction functions. A

reduction function for � is a function ρ : X → X such that x �∗ ρx and x . y →
∃n. ρnx = y for all x and y .

Fact 10 Let ρ be a reduction function. Then ρnx = x if x is normal.

Proof By induction on n using Fact 8. �

From ρx = x is does not necessarily follow that x is normal. For instance, we

may have x � x with x the single element of X.

Let normality for � be decidable. We define a function

E : (X → X)→ N→ X → O(X)

satisfying the equations

Eρ0x = �

Eρ(Sn)x = if normal x then ◦x else Eρn(ρx)

Fact 11 Let ρ be a reduction function for � and let normality be decidable. Then:

1. If ρnx normal, then Eρ(Sn)x = ◦ρnx.

2. If Eρnx = ◦y , then x . y .

3. Eρ is a step-indexed evaluator for �.

Proof Claim 1 follows by induction on n using Fact 10. Claim 2 follows by induction

on n. Claim 3 follows with claims 1 and 2. �

Exercise 12 Let ρ be a reduction function. Show that x . y if and only if y is

normal and ρnx = y for some n.

4



6 Strong Normalisation

Informally, termination may be defined as the absence of infinite paths. This char-

acterization doesn’t say much constructively. However, there is an elegant inductive

definition of termination that provides a strong induction lemma and thus works

constructively.

We define an inductive predicate SNR x:

∀y. Rxy → SNR y

SNR x

We say that x is strongly normalizing in R if SNR x. Moreover, we say that R is

terminating if SNR x for every x.

Fact 13 SNR x if x is normal in R.

Fact 14 (Unfolding) SNR x ↔ ∀y. Rxy → SNR y .

Fact 15 (SN induction)

(∀x. SNR x → (∀y. Rxy → py)→ px)→ (∀x. SNR x → px).

As one can see from the proposition formulating SN induction, the use of SN

induction is very natural since it simply adds the inductive hypothesis for all suc-

cessors to the proof goal. Incidentally, the induction lemma Coq generates for SN

replaces the premise SNR x with the equivalent premise ∀y. Rxy → SNR y .

Fact 16 Let SNR x and R∗xy . Then SNR y .

Proof By induction on R∗xy . �

Fact 17 (Morphism) Let R be a relation on X and S be a relation on A. Let f : X → A
be a function such that S(fx)(fy) whenever Rxy . Then SNR x if SNS(fx).

Proof Let p := λa.∀x. fx=a→ SNR x. We prove SNS a→ pa for all a by induction

on SNS a. We assume IH : ∀b. Sab → pb and prove pa. We assume fx = a and

prove SNR x. By unfolding, we assume Rxy and prove SNR y . We have Sa(fy) by

the assumption. By IH, we have p(fy). The claim SNR y follows. �

The morphism lemma is very useful in practice. For instance, if one wants to

show that SN(st) implies SN s in a λ-calculus, one can simply apply the morphism

lemma with the morphism fu := ut.
Constructively, one cannot show in general that a strongly normalizing point

has a normal form. A relation is classical if reducibility is logically decidable (i.e., a

point is either reducible or irreducible).

5



Fact 18 In a classical relation, strongly normalizing points are weakly normalizing.

Proof By SN induction. �

Fact 19 (Transitive closure) Let R+xy := ∃x′. Rxx′ ∧ R∗x′y .

Then SNR x ↔ SNR+ x.

Proof Both directions follow by SN induction. We show the direction from left to

right, the other direction is routine.

Let SNR x. We show SNR+ x by induction on SNR x. By unfolding of SNR+ x we

assume R+xy and prove SNR+y . Case analysis.

1. Rxy . Thus SNR+y by the inductive hypothesis.

2. Rxx′ and R+x′y for some x′. The SNR+ x′ by the inductive hypothesis. Thus

SNR+y by unfolding. �

Exercise 20 Give a relation on {0,1} such that 0 has a normal form but is not

strongly normalizing.

Exercise 21 Let SNR x. Prove ¬Rxx.

Exercise 22 Let R ⊆ S and SNSx. Prove SNR x.

Exercise 23 A common but limited technique for proving that a relation R is termi-

nating is to give a function f such that Rxy → fx > fy for all x and y .

a) Prove that the relation m > n on N is terminating.

b) Prove that a relation R is terminating if there is a function f : X → N such that

Rxy → fx > fy for all x and y . Use the morphism lemma.

c) Consider the following inductively defined relation R on O(N):

R ◦Sn ◦n R� ◦n

i) Draw R as a graph.

ii) Prove that R is terminating.

iii) Prove that there is no function f : O(N)→ N such that Rxy → fx > fy .

7 Newman’s Lemma

We define local confluence of relations as follows:

locally confluent R := ∀xyz. Rxy → Rxz → joinable R∗y z

6



Clearly, relations satisfying the prediamond property are locally confluent. We may

ask whether locally confluent relations are always confluent. It turns out that there

are finite locally confluent relations that are not confluent. Example 7 provides such

a counterexample. On the positive side, we can show that every terminating relation

is confluent if it is locally confluent. This fact is known as Newman’s lemma. There

is an elegant proof of Newman’s lemma using SN induction.

Fact 24 (Well-founded induction) Let R be terminating. Then px if

∀x. (∀y. Rxy → py)→ px.

Proof Follows with Fact 15. �

Fact 25 (Newman’s Lemma)

Let R be terminating and locally confluent. Then R is confluent.

Proof Let px := ∀yz. R∗xy → R∗xz → ∃u. R∗yu ∧ R∗zu. It suffices to

prove px for all x. By well-founded induction we have the inductive hypothesis

∀y. Rxy → py .

By definition of p we assume R∗xy and R∗xz and prove that y and z are join-

able in R∗. If x = y or x = z, the claim is trivial. Otherwise we have Rxx1, R∗x1y ,

Rxx2, and R∗x2z. We will use the inductive hypothesis for both x1 and x2.

By local confluence we have R∗x1u and R∗x2u for some u. By the inductive

hypothesis for x2 we have some v such that R∗uv and R∗zv . By the inductive

hypothesis for x1 and transitivity of R∗ we have R∗yw and R∗vw for some w.

Joinability of y and z now follows by transitivity of R∗. �

8 Uniform Confluence

We define uniform confluence of relations as follows:

uniformly_confluent R := ∀xyz. Rxy → Rxz → y=z ∨ joinable R y z

Fact 26

1. Every functional relation is uniformly confluent.

2. Every relation satisfying the diamond property is uniformly confluent.

3. Every uniformly confluent relation satisfies the prediamond property and thus

is confluent.

We will show that for a uniformly confluent relation all reductions of a given

point to a normal form have the same length.

We define graded reduction Rnxy as follows:

R0xx

Rxx′ Rnx′y

RSnxy

7



Fact 27

1. Rn ⊆ R∗ and R1 � R.

2. If R∗xy , then Rnxy for some n.

3. If Rmxy and Rnyz, then Rm+nxz.

4. If Rnxy and x is normal in R, then n = 0 and x = y .

We define graded joinability as follows:

graded_joinable Ryzmn := ∃ukl. Rkyu∧ Rlzu∧m+ k = n+ l∧ k ≤ n∧ l ≤m

Fact 28 The following statements are equivalent:

1. R uniformly confluent.

2. ∀xyzn. Rxy → Rnxz → graded_joinable Ryz1n.

3. ∀xyzmn. Rmxy → Rnxz → graded_joinable Ryzmn.

Proof We prove 1→ 2→ 3→ 1. The implication 3→ 1 is straightforward.

• 1 → 2. The proof refines the proof of Fact 4. Assume (1) and Rxy and Rnxz.

We prove by induction on n that Rkyu and Rlzu for some u, k ≤ n and l ≤ 1

such that 1 + k = n + l. If n = 0, then x = z and the claim follows with u = y
and l = 1. Otherwise, we have Rxx′ and Rn−1x′z. Case analysis using (1).

– y = x′. The claim follows with u = z, k = n− 1, and l = 0.

– Rxv and Rx′v for some v . By the inductive hypothesis, we obtain u, k′ ≤
n − 1 and l′ ≤ 1 such that Rk′vu, Rlzu, and 1 + k′ = n − 1 + l. The claim

follows with k = 1+ k′.
• 2 → 3. The proof refines the proof of Fact 5, direction semi-confluence to

confluence. Assume (2) and Rmxy and Rnxz. We prove byinduction on m that

Rkyu and Rlzu for some u, k ≤ n and l ≤ 1 such that m+ k = n+ l. If m = 0,

then x = y and the claim follows with u = z, k = n, and l = 0. Otherwise, we

have Rxx′ and Rm−1x′y . By (2) we obtain v , l′ ≤ 1, and k′ ≤ n such that Rk′x′v ,

Rl′zv , and 1+k′ = n+ l′. By the inductive hypothesis for Rm−1x′y we obtain u,

k ≤ k′, and l′′ ≤ m − 1 such that Rkyu, Rl′′vu, and m − 1 + k = k′ + l′′. The

claim follows with l = l′ + l′′. �

Fact 29 (Uniform normalization) Let R be uniformly confluent, Rmxy , Rnxz,

and z be normal for R. Then m ≤ n and Rn−myz.

Proof Follows with Facts 28 and 27. �

Fact 30 Let R be uniformly confluent. Then every point that has a normal form is

strongly normalizing.

8



Proof Let R∗xy and y be normal. Then Rnxy for some n by Fact 27. We prove

SNR x by induction on n. For n = 0, we have x = y and the claim follows by Fact 13.

Otherwise, we have Rxx′ and Rn−1x′y for some x′. By unfolding of the claim, we

assume Rxx′′ and prove SNR x′′. By the inductive hypothesis, it suffices to show

Rn−1x′′y , which follows by uniform normalization (Fact 29). �

Fact 31 Let �: X → X → P be uniformly confluent and ρ : X → X satisfy x �∗ ρx
and ρx = x → normal x for x. Then ρ is a reduction function for �.

Exercise 32 Give a confluent relation � and a function ρ satisfying the conditions

of Fact 31 that is not a reduction function for �.

9 TMT Method

The confluence of λ-calculi where reduction is possible within abstractions can be

shown with a clever method building on work of Tait, Martin-Löf, and Takahashi.

We speak of the TMT method. The TMT method factorises in three part:

1. An abstract part not making assumptions about terms. The abstract part yields

confluence and a reduction function.

2. An intermediate part using terms but keeping substitution abstract.

3. A concrete part dealing with the concrete substitution used.

We present the abstract part in the following. The key idea is to show the confluence

of a relation R by identifying a suitable auxiliary relation S such that R ⊆ S ⊆ R∗
and S has the diamond property.

Fact 33 (Sandwich) Let R ⊆ S ⊆ R∗. Then:

1. R∗ � S∗.

2. If S has the diamond property, then R is confluent.

Proof Claim 1 follows with monotonicity and idempotence of star. Claim 2 follows

with (1) and the fact that star preserves the diamond property. �

A Takahashi function for � is a function ρ : X → X such that x � y → y � ρx
for all x and y .

Fact 34 (Takahashi) Let ρ be a Takahashi function for �. Then:

1. Diamond If x � y1 and x � y2, then y1 � ρx and y2 � ρx.

2. Soundness If � is reflexive, then x � ρx.

3. Preservation If x � y , then ρx � ρy .

4. Cofinality If x �∗ y , then y �∗ ρnx for some n.

9



Proof Claim 1: Immediate from the Takahashi property of ρ.

Claim 2: Given x, we have x � x by reflexivity. Thus x � ρx.

Claim 3: Let x � y . Then y � ρx � ρy .

Claim 4: Let x �∗ y . We prove ∃n. y �∗ ρnx by induction on x �∗ y . The

first subgoal is trivial. In the second subgoal we have x � x′ �∗ y �∗ ρnx′ for

some n using the inductive hypothesis. By Claim 3 we have ρnx � ρnx′. Thus

ρnx′ � ρ(ρnx). Hence y �∗ ρSnx. �

Theorem 35 (TMT) Let � and � be predicates X → X → P such that � ⊆ � ⊆ �∗
and � is reflexive. Moreover, let ρ be a Takahashi function for �. Then � is

confluent and Eρ is a step-indexed evaluator for �.

Proof Follows with Facts 33, 34, 8, and 11. �

10 Equivalence Closure

General λ-calculi are best understood as deductive systems where one or several

reduction rules generate an equivalence relation s ≡ t on terms. If the reduction

relation s � t generated by the rules is confluent, as is typically the case for λ-

calculi, there is a beautiful and useful connection between equivalence (deduction)

and reduction (computation) known as Church-Rosser property:

s ≡ t → ∃u. s �∗ u∧ t �∗ u

From the Church-Rosser property one obtains the rule

normal t → s ≡ t → s . t

which makes it possible to verify a computational claim s . t by showing the equiv-

alence s ≡ t by means of undirected equational reasoning. This is exploited for the

verification of programming techniques for λ-calculus (e.g., encoding of inductive

data types and recursion).

We first study the connection between reduction and equivalence in the abstract

and then apply the results to abstract λβ.

An equivalence relation is a relation that is reflexive, symmetric, and transitive.

We define the symmetric closure R↔ of a relation R as follows:

R↔ := λxy. Rxy ∨ Ryx

We write R↔∗ for (R↔)∗ and call R↔∗ the equivalence closure of R.

Fact 36

10



1. R ⊆ R↔ and R↔ is symmetric.

2. R∗ ⊆ R↔∗.

3. If R is symmetric, then R∗ is symmetric.

4. R↔∗ is an equivalence relation.

5. If R ⊆ S and S is an equivalence relation, then R↔∗ ⊆ S.

Note that Fact 36 tells us that R↔∗ is the least equivalence relation containing R.

We define the Church-Rosser property for relations as follows:

Church-Rosser R := ∀xy. R↔∗xy → joinable R∗xy

Fact 37 R is Church-Rosser if and only if R is confluent.

Proof The direction from Church-Rosser to confluence is obvious since R∗ ⊆ R↔∗
(monotonicity of star).

For the other direction we assume that R is semi-confluent and that R↔∗xy . We

show joinable R∗xy by star induction on R↔∗xy . If x = y , the claim is trivial.

Otherwise, let R↔xx′ and R↔∗x′y . We have R∗x′z and R∗yz for some z by the

inductive hypothesis. Case analysis on R↔xx′. If Rxx′, the claim follows. Other-

wise, we have Rx′x. By semi-confluence of R we obtain some u such that R∗xu
and R∗zu. Thus R∗yu by transitivity. The claim follows. �

Fact 38 Let R be a confluent relation, and let x . y and x ≡ y be the accompanying

evaluation and equivalence relations. Then:

1. x ≡ y → normal y → x . y .

2. x ≡ y → normal x → normal y → x = y .

3. x ≡ y → (x . z ↔ y . z).
4. x . a→ y . b → a ≠ b → x 6≡ y .

Proof Follows with Facts 37 and 8. �

Exercise 39 There are several equivalent definitions of the equivalence closure of a

relation. Consider the inductive predicate ≡R defined by the following rules:

Rxy

x ≡R y x ≡R x
x ≡R y
y ≡R x

x ≡R y y ≡R z
x ≡R z

Prove ≡R � R↔∗.

11



11 Historical Remarks

The study of abstract reduction systems originated with Newman [6]. The notions

of confluence, semi-confluence, diamond property, and uniform confluence all ap-

pear in Newman [6] (see Theorems 1–3). The modern, relational view of abstract

reduction systems is due to Huet [4]. Baader and Nipkow’s textbook [1] on term

rewriting starts with a chapter on abstract reduction systems.

Newman’s lemma appears as Theorem 3 in [6]. The constructive proof based on

well-founded induction is due to Huet [4]. Newman’s original proof is not construc-

tive and does not employ well-founded induction. Newman’s lemma was one of the

first proofs done with Coq [2].

Newman’s lemma is an example of a result where the constructive proof is

shorter and clearer than the classical proof. Newman defined termination as the

absence of infinite paths. That well-founded induction is valid for relations disal-

lowing infinite paths was first observed by Emmy Noether. This fact can only be

shown with excluded middle.

The inductive definition of strong normalization seems to originate with Co-

quand and Huet’s [2] definition of noetherian relations and Huet’s [4] use of well-

founded induction (noetherian induction) for the proof of Newman’s lemma. New-

man [6], Huet [4], and Baader and Nipkow [1] define strong normalization as the

absence of infinite paths, thus foregoing a constructive proof of well-founded in-

duction.

The formulation of the abstract TMT method presented here is based on the

literature on λ-calculus. There the sandwiched relation S is known as parallel re-

duction (see Hindley and Seldin [3], Appendix A2). Takahashi functions originated

with Takahashi’s [9] confluence proof for the lambda calculus.

The name uniform confluence is from [8, 7]. Niehren [7] observes that the call-

by-value λ-calculus is uniformly confluent. Dal Lago and Martini [5] prove Fact 28

for the call-by-value λ-calculus.

References

[1] Franz Baader and Tobias Nipkow. Term rewriting and all that. Cambridge Uni-

versity Press, 1998.

[2] Thierry Coquand and Gérard Huet. Constructions: A higher order proof system

for mechanizing mathematics. In Proc. of EUROCAL’85, Linz, Austria, volume

203 of LNCS, pages 151–184. Springer, 1985.

[3] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators, an

Introduction. Cambridge University Press, 2008.

12



[4] Gérard Huet. Confluent reductions: Abstract properties and applications to term

rewriting systems. Journal of the ACM (JACM), 27(4):797–821, 1980.

[5] Ugo Dal Lago and Simone Martini. The weak lambda calculus as a reasonable

machine. Theor. Comput. Sci., 398(1-3):32–50, 2008.

[6] Maxwell Herman Alexander Newman. On theories with a combinatorial defini-

tion of "equivalence". Annals of Mathematics, 43(2):223–243, 1942.

[7] Joachim Niehren. Uniform confluence in concurrent computation. J. Funct. Pro-

gram., 10(5):453–499, 2000.

[8] Joachim Niehren and Gert Smolka. A confluent relational calculus for higher-

order programming with constraints. In Jean-Pierre Jouannaud, editor, CCL,

volume 845 of LNCS, pages 89–104. Springer, 1994.

[9] Masako Takahashi. Parallel reductions in λ-calculus. Inf. Comput., 118(1):120–

127, 1995.

13


	Relations
	Reflexive Transitive Closure
	Basic Confluence
	Evaluation and Normal Forms
	Step-Indexed Evaluator
	Strong Normalisation
	Newman's Lemma
	Uniform Confluence
	TMT Method
	Equivalence Closure
	Historical Remarks

