
Semantics of Abstract Imp

Gert Smolka, Saarland University

October 28, 2019

We study a simple imperative language Imp computing with abstract states.

We consider three complementary semantic disciplines for Imp: Big-step se-

mantics, small-step semantics, and step-indexed semantics. We show that the

three semantics agree. Big-step and small-step semantics are obtained with

recursive inductive predicates and require interesting inductive proofs.

1 States, Actions, Tests

We have in mind a simple imperative language that can write and read registers

realized with an abstract memory. All registers hold values of the same type (e.g.,

integers). We abstract away from concrete values and assume the following types

and functions:

s : State : T

a : Action : T α : Action→ State→ State

b : Test : T β : Test→ State→ B

Concrete examples for actions are assignments like x := 2 and x := x + y . Con-

crete examples for tests are comparisons like x > 0 and x ≤ y + z. Note that the

semantics of actions and tests is given by the functions α and β.

For examples it will be useful to assume an action and a test

skip : Action tt : Test

such that α skip s = s and β tt s = T for all states s.

2 Commands

The commands of Imp are obtained with actions, sequentialisations, conditionals,

and loops:

c : Com ::= a | c1; c2 | if b c | while b c

1

Commands are executed on states. The execution of a command on a state may

terminate or not terminate. If execution of a command on a state terminates, it

yields a state. We speak of the initial and the final state of an execution. Informally,

we may describe the semantics of commands as follows:

• Action a : The state is transformed with αa.

• Sequentialisation c1; c2 : First execute c1, then execute c2.

• Conditional if b c : If b yields T, execute c, otherwise do nothing.

• Loop while b c : execute c as long as b yields T.

Nontermination comes into play through loops: The loop (while tt skip) does not

terminate.

3 Big-Step Semantics

The big-step semantics of Imp describes a recursive interpreter that given a com-

mand and a state computes the resulting state. Since the interpretation of a com-

mand does not necessarily terminate, we formalize the interpreter with an inductive

predicate

` : State→ Com→ State→ P

defined with the following rules (using the notation s, c ` s′):

s, a ` αas
s, c1 ` s′ s′, c2 ` s′′

s, c1; c2 ` s′′

βbs = T s, c ` s′

s, if b c ` s′
βbs = F

s, if b c ` s

βbs = T s, c ` s′ s′,while b c ` s′′

s,while b c ` s′′
βbs = F

s,while b c ` s

Note that the recursions coming with the rule for sequentialisation and the first

rule for loops are binary. Without the first rule for loops the rules yield an always

terminating interpreter since each recursion step employs a smaller command.

Fact 1 (Functionality) If s, c ` s′ and s, c ` s′′, then s′ = s′′.

Proof By induction on s, c ` s′. �

Exercise 2 (Nontermination) Informally, for every command c, execution of the

loop while tt c does not terminate. Prove ¬∃s′. s, while tt c ` s′ for all states s
and all commands c.

2

4 Small-Step Semantics

We specify a second semantics for Imp that models single execution steps and pro-

vides for an iterative interpreter. The iterative interpreter may be seen as a machine

operating on a state and a stack of commands. The machine stops if the stack is

empty. Otherwise, the first command on the stack is executed, possibly updating

the state and the stack. We describe the atomic execution steps of the machine with

an inductive predicate

� : State→ L(Com)→ State→ L(Com)→ P

defined with the following rules (using the notation s, C � s′, C′).

s, a :: C � αas, C

s, c1; c2 :: C � s, c1 :: c2 :: C

s, if b c :: C � s, c :: C if βbs = T

s, if b c :: C � s, C if βbs = F

s, while b c :: C � s, c :: while b c :: C if βbs = T

s, while b c :: C � s, C if βbs = F

To iterate execution steps s, C � s′, C′, we define the reflexive transitive closure

�∗ of � as an inductive predicate:

s, C �∗ s, C
s, C � s′, C′ s′, C′ �∗ s′′, C′′

s, C �∗ s′′, C′′

Informally, we may describe �∗ as follows:

s, C �∗ s′, C′ ↔ s, C � · · · � s′, C′

To show that the small-step semantics agrees with the big-step semantics, we

will prove the equivalence

s, [c] �∗ s′, [] ↔ s, c ` s′ (1)

in the next section. Note that � is a non-recursive inductive predicate. So all re-

cursion of the small-step semantics is in the extension �∗ to the reflexive transitive

closure.

Fact 3

1. Subsumption: If s, C � s′, C′, then s, C �∗ s′, C′,
2. Transitivity: If s, C �∗ s′, C′ and s′, C′ �∗ s′′, C′′, then s, C �∗ s′′, C′′.

3

Proof Subsumption is straightforward. Transitivity follows by induction on s, C �∗
s′, C′. �

Exercise 4 Prove the following properties of the small-step semantics.

a) Functionality: If s, C � s′, C′ and s, C � s′′, C′′, then s′ = s′′ and C′ = C′′.
b) Adjunction: If s, C � s′, C′, then s, C ++D � s′, C′++D.

c) Adjunction: If s, C �∗ s′, C′, then s, C ++D �∗ s′, C′++D.

5 Agreement of Small-Step with Big-Step Semantics

We now show that the small-step semantics agrees with the big-step semantics

of Imp as specified by the equivalence (1). The two directions require different

proofs. Both directions are interesting and provide an excellent opportunity to get

acquainted with proofs based on inductive predicates, both on paper and with Coq.

The direction from big-step to small-step semantics

s, c ` s′ → s, [c] �∗ s′, []

follows by induction on the big-step predicate `. To use the inductive hypothesis,

one needs the adjunction property (c) from Exercise 4. The proof can be simplified

if one proves the more general claim

s, c ` s′ → ∀C. s, c :: C �∗ s′, C

building in the adjunction property.

Lemma 5 If s, c ` s′, then s, c :: C �∗ s′, C .

Proof By induction on s, c ` s′ using Fact 3, where C is quantified in the inductive

hypothesis. �

The direction from small-step to big-step semantics

s, [c] �∗ s′, [] → s, c ` s′

follows by induction on the reflexive transtive closure �∗. For the induction to go

through, we need to generalize to

s, C �∗ s′, [] → s, C ` s′

where the generalized big-step predicate s, C ` s′ for command stacks C is defined

as one would expect:

s, [] ` s
s, c ` s′ s′, C ` s′′

s, c :: C ` s′′

The step case of the induction follows with the following lemma.

4

Lemma 6 (Absorption) s, C � s′, C′ → s′, C′ ` s′′ → s, C ` s′′.

Proof Case analysis on s, C � s′, C′ with inversion of s′, C′ ` s′′ (Exercise 9). For

instance, we have the case s, c1; c2 :: C � s, c1 :: c2 :: C for sequentialization, where

we have to prove

s, c1 :: c2 :: C ` s′′ → s, c1; c2 :: C ` s′′

which is straightforward. �

Lemma 7 s, C �∗ s′, [] → s, C ` s′.

Proof Induction on s, C �∗ s′, [] using Lemma 6. �

Theorem 8 s, c ` s′ if and only if s, [c] �∗ s′, [].

Proof Follows with Lemmas 5 and 7. �

Exercise 9 Verify the following inversion lemmas:

a) If s, [] �∗ s′, then s = s′.
b) If s, c :: C ` s′, then s, c ` s1 and s1, C ` s′ for some s1.

c) If s, [c] ` s′, then s, c ` s′.

Exercise 10 For Lemma 6, verify the case for loops where the test is satisfied.

6 Step-Indexed Semantics

The big-step predicate s, c ` s′ describes a recursive interpreter for Abstract Imp.

The interpreter can be realized as a procedure Com→ State→ State in programming

languages. Since constructive type theory can only express total functions, such a

function cannot be expressed in type theory, however. Neither, a total function

Com→ State→ O(State)

deciding non-termination can be expressed in type theory

since termination is undecidable in general for Abstract Imp. However, we can

express a step-indexed interpretation function

N→ Com→ State→ O(State)

that yields the final state if it can be computed with the recursion depth given as

first argument.

Figure 1 shows the definition of the step-indexed interpreter. We have given

it a higher-order formulation separating the handling of the step index (the first

5

σ : N→ Com→ State→ O(State)

σ 0 := λcs.�

σ (Sn) := σ ′(σ n)

σ ′ : (Com→ State→ O(State))→ Com→ State→ O(State)

σ ′ Fa s := ◦αas

σ ′ F(c1; c2)s := seq (Fc1) (Fc2) s

σ ′ F(if b c)s := if βbs then Fcs else ◦s

σ ′ F(while b c)s := if βbs then seq (Fc) (F(while b c)) s else ◦s

seq : (State→ O(State))→ (State→ O(State))→ State→ O(State)

seqfgs := match fs [�⇒ � | ◦s′ ⇒ gs′]

Figure 1: Step-indexed interpreter

argument) and the interpretation of commands. Note that for a given step index a

command is interpreted as a function State → O(State) where a result � indicates

that the final state could not be computed with the given step index. The auxiliary

function seq handles sequentialization of two functions State→ O(State), a feature

used for the interpretation of sequentializations and loops.

We will prove that the step-indexed interpreter agrees with the big-step seman-

tics

s, c ` s′ ↔ ∃n. σncs = ◦s′

We will also prove that the step-indexed interpreter is monotone :

σncs = ◦s′ → σ(Sn)cs = ◦s′

Lemma 11 σncs = ◦s′ → s, c ` s′.

Proof By induction on n with c, s, and s′ quantified followed by case analysis on c
in the successor case. Each case is straightforward. Direction → of Exercise 16 is

useful. �

Lemma 12 σncs = ◦s′ → σ(Sn)cs = ◦s′.

Proof By induction on n with c, s, and s′ quantified followed by case analysis on c
in the successor case. Each case is straightforward. Direction → of Exercise 16 is

useful. �

6

Theorem 13 (Monotonicity) m ≤ n → σmcs = ◦s′ → σncs = ◦s′.

Proof By induction on n. The successor case follows with Lemma 12. �

Lemma 14 s, c ` s′ → ∃n. σncs = ◦s′.

Proof Induction on s, c ` s′ using monotonicity (Theorem 13) for sequentialization

and loops. Direction ← of Exercise 16 is useful. �

Theorem 15 (Agreement) s, c ` s′ ↔ ∃n. σncs = ◦s′.

Proof Lemmas 14 and 11. �

Exercise 16 Prove seq fgs = ◦s′ ↔ ∃s′′. f s = ◦s′′ ∧ gs′′ = ◦s′′. Note that both

directions of this lemma are useful in the Coq proofs.

Exercise 17 Prove σmcs = ◦s1 → σncs = ◦s2 → s1 = s2.

Exercise 18 Define a step-indexed big-step semantics s, c `n s′ such that

s, c `n s′ ↔ σncs = ◦s′

Prove the equivalence.

7 Remarks

Several of the proofs (e.g., Lemmas 5 and 6) require the verification of many cases

involving many variables. This is tedious and error-prone if done by hand. With

Coq, the verifications can be done semi-automatically using the eauto tactic. The

automation of the inversions needed for Lemma 6 requires a custom tactic applying

inversion lemma (b) from Exercise 9 to the assumptions. See the accompanying Coq

development for more information, where the proof script for Lemma 6 is a one-

liner. Doing this proof in detail by hand requires dozens of lines.

7

	States, Actions, Tests
	Commands
	Big-Step Semantics
	Small-Step Semantics
	Agreement of Small-Step with Big-Step Semantics
	Step-Indexed Semantics
	Remarks

