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We formalize λ-calculus using de Bruijn terms and show confluence of re-

duction using the TMT method. We postpone the details of substitution by

working with an abstract function for β-reduction. For call-by-value reduction

we show uniform confluence for every β function.

1 Abstract Call-By-Value Calculus

We employ de Bruijn terms as follows:

s, t,u, v ::= x | st | λs (x ∈ N)

Figure 1 defines the reduction relation of an abstract version of the call-by-value

lambda calculus we call abstract λβv . The rule for β-reduction assumes a func-

tion β that given two terms yields a term. The function β hides the subtleties of

substitution.

It is not difficult to show that abstract λβv is uniformly confluent. The informal

reason for uniform confluence is the fact that reduction takes place only at the

leaves of a binary tree (obtained by applications st), and that there is only one

reduction possible per leaf. Thus given s �v t1 and s �v t2, t1 and t2 are obtained

by reduction of the same leaf, in which case they are equal, or t1 and t2 are obtained

by reduction of different leaves, in which case they can be joined by reducing in each

case the leaf from the other reduction.

Fact 1 Abstract call-by-value reduction �v is uniformly confluent for every func-

tion β.

2 Abstract Lambda Beta

Figure 2 defines the reduction relation of an abstract version of the lambda calculus

we call abstract λβ. The rule for β-reduction assumes a function β that given two

terms yields a term.
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abstraction t

(λs)t �v βst
s �v s′

st �v s′t
t �v t′

st �v st′

Figure 1: Definition of abstract call-by-value reduction

(λs)t � βst
s � s′

st � s′t
t � t′

st � st′
s � s′

λs � λs′

Figure 2: Definition of reduction for abstract λβ

A binary relation R on terms is compatible (with the term structure) if it satisfies

the following rules:

Rss′

R(st)(s′t)

Rtt′

R(st)(st′)

Rss′

R(λx.s)(λx.s′)

Fact 2 (Compatibility)

1. s � t is compatible.

2. s �∗ t is compatible.

3. If s �∗ s′ and t �∗ t′, then st �∗ s′t′.

Proof Claim 1 holds by definition. Claims 2 follows by star induction and claim 1.

Claim 3 follows from claim 2. �

3 Confluence of Abstract Lambda Beta

Confluence of abstract λβ can be shown with the TMT method. We will need one

natural assumption about β to show confluence of abstract λβ.

The key idea is the definition of an intermediate relation � ⊆ � ⊆ �∗ known as

parallel reduction. The definitions of parallel reduction � and the accompanying

Takahashi function ρ appear in Figure 3.

Fact 3 (Reflexivity) s � s.

Proof By induction on s. �

Fact 4 (Sandwich) � ⊆� ⊆ �∗.
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s � s′ t� t′

(λs)t� βs′t′ x� x

s � s′ t� t′

st� s′t′
s � s′

λs � λs′

ρ((λs)t) = β(ρs)(ρt)

ρ(st) = (ρs)(ρt) if s not an abstraction

ρ(λs) = λ(ρs)

ρ(x) = x

Figure 3: Parallel reduction and Takahashi function for abstract λβ

Proof The first inclusion follows by induction on � using Fact 3. The second inclu-

sion follows by induction on� using compatibility (Fact 2). �

We say that β is compatible if βst� βs′t′ whenever s � s′ and t� t′.

Fact 5 Let β be compatible. Then ρ is a Takahashi function for�.

Proof Let s � t. We prove t � ρs by induction on s � t. The case for the

β-rule follows with the compatibility of β. No other case needs the compatibility

assumption. The cases for variables and abstractions are straightforward. The final

case is for the compatibility rule for applications. If s = xs′ or s = s1s2s3, the

claim follows with the inductive hypotheses. Otherwise, s = (λs1)s2, t = (λs′1)s′2,

s1 � s′1, and s2 � s′2. We need to show (λs′1)s
′
2 � β(ρs1)(ρs2), which follows with

the induction hypotheses s′1 � ρs1 and s′2 � ρs2. �

Theorem 6 Let β be compatible. Then � is confluent and ρ is a reduction function

for �.

Proof Follows with the TMT theorem using Facts 5 and 4. �

Exercise 7 Give an example that shows that parallel reduction is not transitive.

Exercise 8 (Confluence of SK-Calculus) The SK-calculus employs applicative terms

s, t ::= x | K | S | st (x : N)

obtained with variables, two constants K and S, and application. Reduction in the

SK-calculus is defined as follows:

Kst � s Sstu � su(tu)
s � s′

st � s′t
t � t′

st � st′
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(λs)t ≡ βst
s ≡ s′ t ≡ t′

st ≡ s′t′
s ≡ s′

λs ≡ λs′ s ≡ s
s ≡ t
t ≡ s

s ≡ t t ≡ u
s ≡ u

Figure 4: Equivalence rules for de Bruijn terms

Prove that reduction in the SK-calculus is confluent. Use the TMT method with a

suitably defined parallel reduction.

Some background. SK is also known as combinatory logic and may be seen as a

subsystem of λβ where K = λxy.x and S = λfgx.(fx)(gx). SK can express all

computable functions and has been extensively studied by logicians.

4 Equivalence

Recall that we have defined the equivalence relation accompanying a reduction rela-

tion R as R↔∗. This definition was useful for the proof that confluence of R entails

the Church-Rosser property.

As it comes to equivalence of terms, we would hope that �↔∗ satisfies the equiv-

alence rules shown in Figure 4. This is in fact the case.

Fact 9 Equivalence of terms �↔∗ satisfies the rules in Figure 4.

Proof Reflexivity and transitivity are clear from the definition with star. Since star

preserves symmetry, we also have symmetry. As it comes to compatibility, we first

show that R∗ is compatible if R is compatible. It now suffices to show that �↔
is compatible, which follows from the fact that � is compatible by definition and

that ↔ preserves compatibility. �

We may ask whether the equivalence rules in Figure 4 suffice for proving all term

equivalences. This is in fact the case and can be argued in three steps

s � t → s ≡ t
s �↔ t → s ≡ t
s �↔∗ t → s ≡ t

where ≡ is any relation satisfying the rules in Figure 4. The first implication follows

by induction on s � t, and the third implication follows by star induction. We

summarize our results as follows.

Fact 10 Term equivalence s �↔∗ t agrees with the relation s ≡ t defined inductively

with the rules in Figure 4.
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5 Historical Remarks

The notion of parallel reduction goes back to Curry and Feys [1]. The inductive

definition of parallel reduction and its use for confluence proofs is due to Tait

(1965) and Martin-Löf (1971) (see Hindley and Seldin [2], Appendix A2). Takahashi

functions originated with Takahashi’s [3] confluence proof for λβ.
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