
Introduction to Lambda Calculus

Gert Smolka, Saarland University

November 29, 2019

We give an informal introduction to untyped λ-calculus assuming that the

reader is familiar with abstract reduction systems. We show how λ-calculus

can encode inductive data types and functional recursion. We also cover sim-

plified versions of the λ-calculus known as call-by-value calculus and the SK-

Calculus.

1 Introduction

Untyped lambda calculus is a basic logical system everyone should know. It pro-

vides syntactic descriptions of computable functions and can express all com-

putable functions. Untyped lambda calculus is a minimal system with only three

primitives: variables, application, and functional abstraction. Untyped lambda cal-

culus was invented by Alonzo Church in the 1930s.

Untyped lambda calculus covers basic aspects of programming languages and

logical languages with bound variables. There are various refinements of untyped

lambda calculus, many of them involving types.

Untyped lambda calculus models a class of functions operating on functions.

There are no other objects but functions. Functions take functions as arguments

and return functions as results. No other objects are needed since data objects like

numbers and pairs can be represented as functions in the untyped lambda calculus.

Untyped lambda calculus is a model of computation that appeared before Tur-

ing machines. Turing himself showed that computability formalized by Turing ma-

chines agrees with computability formalized by untyped lambda calculus.

Coq encompasses a typed version of the lambda calculus. Familiarity with Coq

is very helpful in understanding the untyped lambda calculus. W e assume that the

reader is familiar with Coq.

Untyped lambda calculus is the basic theoretical model for the study of syn-

tactic expressions with bound variables and substitution. Expressions with bound

variables and substitution are part of every programming language and are used

1

informally in all of mathematics; for instance, {n ∈ N | n2 < 100n } is an expres-

sion describing a set using a bound variable n. As it turns out, the formalization

of syntactic expressions with bound variables and substitution takes considerable

effort.

A textbook introducing untyped lambda calculus is Hindley and Seldin [6]. An

advanced presentation of untyped lambda calculus is Barendregt [1].

2 Terms

Untyped lambda calculus comes with syntactic objects called terms. Terms can be

described with the following grammar:

s, t,u, v ::= x | st | λx.s (x ∈ N)

We speak of variables, applications, and abstractions. An abstraction λx.s de-

scribes a function taking an argument x. Within λx.s, x is a bound variable pro-

viding a reference to the argument of the function described. For instance, the term

λx.x describes the identity function that simply returns its argument.

Bound variables may be understood as local variables that are only visible within

the abstraction in which they are introduced. We speak of the scope of a bound

variable and say that λ is a variable binder. A variable x is called free in a term s
if it appears in s at a position that is not in the scope of a binder λx. A term is

open if some variable occurs free in it, and closed if no variable occurs free in it.

For instance, λx.x is a closed term and λx.(fx)y is an open term with two free

variables f and y .

Closed terms are called combinators, and closed abstractions are called proce-

dures. Combinators are self-contained descriptions of functions. Open terms are

partial descriptions of functions. Partial terms can be refined into closed terms by

replacing their free variables with closed terms.

We adopt common notational conventions for terms:

stu � (st)u

λxy.s � λx.λy.s

λx.st � λx.(st)

Here is a list of prominent combinators we will use in the following:

I := λx.x ω := λx.xx

K := λxy.x Ω := ωω

S := λfgx.fx(gx) B := λfgx.f (gx)

C := λfxy.fyx

2

The combinator B can be seen as a composition operator. We may write s ◦ t for the

term Bst.
Technically, the functions of the lambda calculus take only one argument. Since

the result of a function application is again a function, we can write arbitrarily

long application chains st1 . . . tn. Informally, it is often convenient to speak of

functions with several arguments. For instance, we may speak of the combinator S
as a function with three arguments.

We assume that two terms are identical if their presentations are equal up to con-

sistent renaming of bound variables. We refer to this assumption as α-assumption.

For instance, λx.x and λy.y are assumed to be identical terms even if x and y
are different variables. Consistent renaming of bound variables is known as α-

renaming.

We distinguish between pre-terms and proper terms, where pre-terms are not

affected by the α-assumption. Pre-terms can be formalized with an inductive type

realizing the grammar given above, and proper terms may be understood as equiv-

alence classes of pre-terms. The equivalence relation relating pre-terms that are

equal up to α-renaming is known as α-equivalence. Given this setup, two pre-terms

represent the same term if and only if they are α-equivalent.

In this demo we will not give a formal definition of terms satisfying the α-

assumption. Giving such a definition and establishing its basic properties takes

considerable effort. Interestingly, the higher-level properties of λ-calculus can be

argued informally without knowing the formal definition of terms.

Exercise 1 Formalize pre-terms with an inductive type in Coq. Moreover, formalize

the notion of free variables of pre-terms with an inductive predicate free x s.

3 Reduction and Equivalence

There is a single reduction rule for terms

(λx.s) t � sxt

known as β-reduction. The notation sxt stands for the term that is obtained from s
by replacing all free occurrences of the variable x with the term t. One speaks of a

substitution. Terms of the form (λx.s)t are called β-redexes. Here are examples

3

for reductions:

Iω � ω
KIω � (λx. I)ω � I

ωω � ωω
KK(ωω) � (λx. K) (ωω) � K
K(ωω) � λx.ωω � λx.ωω

Note the following:

• The terms ωω and λx.ωω have no normal form.

• The term Iω is strongly normalizing.

• The term KK(ωω) is normalizing but not strongly normalizing.

The reduction relation s � t is obtained from β-reduction by allowing β-reduction

at every subterm position. Thus no term containing a subterm that is not strongly

normalizing is strongly normalizing. An inductive definition of the reduction rela-

tion s � t looks as follows:

(λx.s)t � sxt

s � s′

st � s′t
t � t′

st � st′
s � s′

λx.s � λx.s′

We write s ≡ t for the equivalence closure of the reduction relation s � t. A main

result about the λ-calculus says that the reduction relation is confluent.1 Thus we

can use equivalence s ≡ t to reason about evaluation and more generally about

computation in the λ-calculus.

A binary relation R on terms is compatible (with the term structure) if it satisfies

the following rules:

Rss′

R(st)(s′t)

Rtt′

R(st)(st′)

Rss′

R(λx.s)(λx.s′)

The reduction relation s � t is compatible by definition (it is defined as the com-

patibility closure of top-level β-reduction). Moreover, the equivalence relation s ≡ t
is compatible since it is defined as �↔∗ and the closure operators ↔ and ∗ both

preserve compatibility.

Fact 2 Reduction s � t is confluent. Thus:

1. s ≡ t → normal t → s . t.
2. s ≡ t → normal s → normal t → s = t.

1 The confluence result is often referred to as Church-Rosser theorem, a name honoring Church and
Rosser who proved it first.

4

3. s ≡ t → s . u↔ t . u.

Proof Claims 1-3 are abstract consequences of the Church-Rosser property, and the

Church-Rosser property is an abstract consequence of confluence. We do not give a

confluence proof here. �

We now formulate our method of choice for proving that two terms are not

equivalent.

Corollary 3 (Disequivalence) s 6≡ t provided there are terms u1, . . . , un and normal

terms v ≠ w such that su1 . . . un . v and tu1 . . . un . w. We refer to u1, . . . , un
as separating arguments for s and t..

Proof Suppose s ≡ t. Then su1 . . . un ≡ tu1 . . . un and thus v ≡ w. Since v and w
are normal, we have v = w. Contradiction. �

Fact 4 If s � t and s is closed, then t is closed.

We remark that reduction and equivalence are stable under substitution. We say

that a binary relation R on terms is stable under substitution if Rst → R(sxu)(txu)
for all s, t, x, and u.

Fact 5 s � t, s �∗ t, and s ≡ t are stable under substitution.

Proof Stability of s �∗ t and s ≡ t follow from stability of s � t. We do not give a

stability proof for s � t here. �

Exercise 6 Show the following:

a) K 6≡ I.
b) s ≡ t → sts ≡ tst.
c) Give a non-normalizing term D where each reduction step increases the size,

that is, if D �∗ s � t, then the term t is larger than the term s.

4 Substitution Laws

The following examples explain the substitution operation sxt . We assume that f ,

x, y , g, and z are distinct variables.

(fxy)xy = fyy

(fxyx)xz = fzyz

((λx.x)x)xz = (λx.x)z

(λxy.fxy)fg = λxy.gxy

(λxy.fxy)fgz = λxy.gzxy

(λxy.fxy)fgx = (λzy.fzy)fgx = λzy.gxzy

5

Note that only free occurrences of x are affected by a substitution sxt . Also note the

last example, which shows that for a substitution sxt we may have to rename bound

variables of s to avoid capturing of free variables of t. Capturing cannot occur if t
is closed. If a free occurrence of x in s is in the scope of a bound variable z and z
occurs free in t, the bound variable z has to be renamed in s.

Here are laws that must be satisfied by the substitution operation:

xyu = x if x ≠ y

yyu = u

styu = syu t
y
u

(λx.s)yu = λx.syu if x ≠ y and x not free in u

(λy.s)yu = λy.s

λx.s = λy. sxy if y not free in s

syu = s if y not free in s

sxx = s

We will refer to these laws as substitution laws.

5 Scott Encoding of Numbers

To encode numbers, we need encodings of the constructors 0 and S and of match

on numbers. The basic idea of the Scott encoding is to encode numbers as func-

tions that act as matches for the numbers they encode. It in fact suffices to find

combinators satisfying the equivalences

zero uv ≡ u
succ suv ≡ vs

for all terms s, u, and v . The two equivalence are enough to show that the construc-

tors zero and succ are disjoint and that succ is injective. The equivalences suggest

the following definitions of zero and succ:

zero := λab.a

succ := λxab.bx

We define iterated application snt for terms as follows:

s0t := t sSnt := s(snt)

We take the combinators succn zero as representations of numbers. Since these

combinators are strongly normalizing, we can represent every number n uniquely

6

with a normal combinator n. We have:

0 = λab.a = zero

1 = λab. b 0 ≡ succ zero

2 = λab. b 1 ≡ succ2 zero

Sn = λab. bn ≡ succSn zero

Exercise 7 Let zero and succ be combinators satisfying the two characteristic equiv-

alences given above. Show disjointness and injectivity of zero and succ:

a) ∀s. ¬(zero ≡ succ s).

b) ∀st. succ s ≡ succ t → s ≡ t.

Exercise 8 Represent pairs with a normal combinator pair. Give the characteristic

equivalence for pair and verify that your definition satisfies it. Define the projec-

tions π1 and π2 and show their correctness.

Exercise 9 Represent the booleans with two normal combinators true and false.

Give the characteristic equivalences for true and false and verify that your defini-

tions satisfies them.

6 Recursive Functions as Fixed Points

For addition we need a combinator add satisfying the following equivalences for all

terms s and t:

add zero t ≡ t
add (succ s) t ≡ succ (add st)

The definition of add can be carried out following a fixed scheme using a fixed point

combinator R satisfying the equivalence

R s ≡ s (R s)

for all terms s. Note that the equivalence says that R maps every function s to a

fixed point of s.2 We postpone the definition of R and first give the definition of

add:

Add := λfxy. xy(λx′. succ (fx′y))

add := R Add

2 A fixed point of a function f : X → X is an x such that fx = x.

7

Verifying that the combinator add satisfies the equivalences given above is straight-

forward. From the addition example we can see that the fixed point combinator R
can express arbitrary recursion. We refer to Add as unfolding function for add.3

Note that the fixed point combinator maps the unfolding function to a fixed point

of the unfolding function.

For the definition of R so-called self-application is essential. Here is our definition

of R:

C := λfg. g(ffg)

R := CC

Verifying R s �2 s(R s) for all terms s is straightforward. Think of C as copy function

and of f as argument variable for the copy function. The argument variable g
represents the unfolding function.

Note that the combinator R is not normalising. We have R � λg.g(Rg) and this

the only reduction that applies to R.

Hindley and Seldin [6] say that the fixed point combinator R was invented by

Alan Turing in 1937.

Exercise 10 (Correctness of add) Prove

add (succm zero) (succn zero) ≡ (succm+n zero)

using the equivalences for add, succ, and zero. Note that the proof is purely equa-

tional and does not involve substitution of terms.

Exercise 11 (Killer) Give a combinator K such that Ks �∗ K.

Exercise 12 (Procrastinator) Give a combinator P such that Pst �∗ Pts.

Exercise 13 (Lists) Represent lists with two normal combinators nil and cons. Give

the characteristic equivalences for nil and cons and verify that they are satisfied

with your definition. Give a combinator append that appends two lists. Give the

characteristic equivalences for append and verify that they are satisfied by your

definition.

7 Call-By-Value Lambda Calculus

As a computational system, full λ-calculus is an overkill. In particular, reduc-

tion within abstractions is not needed for functional computation. If we just

3 Unfolding functions are also called functionals in the literature.

8

disallow reduction below abstractions, we obtain a non-confluent system. For in-

stance, K(II) �∗ λx.I and K(II) �∗ λx.II. The problem goes away if we restrict

β-reduction such that the argument term must be an abstraction.

We define call-by-value reduction s �v t as follows:

abstraction t

(λx.s)t �v sxt

s �v s′

st �v s′t
t �v t′

st �v st′

Thus β-redexes (λx.s)t can only be reduced if t is an abstraction or the reduction

takes place within t. Furthermore, reduction is not possible within abstractions

λx.s. Note that our definitions ensure that call-by-value reduction is subsumed by

ordinary reduction (i.e., �v ⊆ �).

Call-by-value reduction is confluent. In fact it satisfies a stronger confluence

property known as uniform confluence. Uniform confluence ensures that every nor-

malizing term is also strongly normalizing, and that all reductions s �∗ t where t
is normal have the same length.

Call-by-value equivalence ≡v is defined as before as

s ≡v t := (s �↔∗v t)

Since call-by-value reduction is confluent, the Church-Rosser property and the re-

sulting properties (as stated by Fact 2) hold for call-by-value equivalence.

As it comes to computation, it turns out that call-by-value reduction of closed

terms suffices. The representation of inductive datatypes stays unchanged. The en-

coding of recursion needs to be changed, however. For an abstraction s we still have

Rs �2
v s(Rs), but this means that no term Rst1 . . . tn is call-by-value normalizing.

The problem can be fixed with a function ρ from terms to terms satisfying

(ρs)t �3
v s(ρs)t

ρs is a procedure

for all procedures s and t. Such a recursion operator ρ can be defined as

C := λfg. g(λx.ffgx)

ρs := λx.CCsx

The verification of the reduction (ρs)t �3
v s(ρs)t for procedures s and t proceeds

as follows:

(ρs)t �v CCst �v (λg. g(λx.CCgx))st �v s(λx.CCsx)t = s(ρs)t

Using ρ, the addition function can be defined as

add := ρ(Add)

9

where the unfolding function Add remains unchanged. The characteristic equiva-

lences for addition also hold for call-by-value equivalence.

As a computational system, the call-by-value calculus has the advantage that ab-

stractions are always irreducible. This way the addition function can be represented

as a normal term, which is not the case in the full lambda calculus.

All computable functions on inductive data types (e.g., numbers) can be defined

in the call-by-value λ-calculus. In fact, the call-by-value λ-calculus can serve as a

model of computation for which the usual undecidability results can be shown [4].

8 Translation to SK-Terms

We return to the full λ-calculus. It turns out that every term can be transformed

into an equivalent term using λ-abstractions only within the combinators

S := λxyz.xz(yz)

K := λxy.x

We call such terms SK-terms. Formally, we define SK-terms inductively:

1. Variables are SK-terms.

2. K and S are SK-terms.

3. st is an SK-term if s and t are SK-terms.

We will make use of the SK-term

I := SKK

The reuse of the name I is motivated by the equivalence SKK ≡ λx.x.

We show how general terms can be transformed into SK-terms. For this we need a

method that translates a term λx.s where s is an SK-term into an SK-term. Given this

method, we can eliminate all abstractions not appearing within the combinators S
and K following a bottom up strategy. A single elimination step can be performed

by rewriting with the following equivalences from left to right:

λx.x ≡ I

λx.s ≡ Ks if x not free in s

λx.st ≡ S(λx.s)(λx.t)

The equivalences are enough to translate a term λx.s where s is an SK-term to an

equivalent SK-term. Here are examples:

λx.xx ≡ S(λx.x)(λx.x) ≡ SII

λxy.xx ≡ λx.K(xx) ≡ S(KK)(λx.xx) ≡ S(KK)(SII)

10

Theorem 14 Every term s can be transformed into an equivalent SK-term t such

that every free variable of t is a free variable of s.

Exercise 15 (Single Combinator Base) We define X := λx.xSK and I := λx.x. Ver-

ify the following:

a) XX �∗ I.
b) X(XX) �∗ SK.

c) X(X(XX)) �∗ K.

d) X(X(X(XX))) �∗ S.

e) Every combinator is equivalent to a term just obtained with X and application.

One says that X is a single combinator base for the lambda calculus. See Gold-

berg [5] for more about single combinator bases.

9 Weak Reduction

We have

Kst �∗ s
Sstu �∗ su(tu)

The motivates the definition of two weak reduction rules

Kst �w s

Sstu �w su(tu)

We have

Is = SKKs �w Ks(Ks) �w s

We also have that full reduction subsumes weak reduction:

Fact 16 s �∗w t → s �∗ t.

It turns out that Scott encodings and recursion can be modelled with just SK-

terms and weak reduction. In fact, there are SK-terms zero, succ, and copy satisfying

the following weak reductions:

zerouv �∗w u

succ suv �∗w vs

copy st �∗w t(sst)

11

For zero we use

zero := K

For succ and copy we rely on the outlined translation method. To end up with

readable SK-terms, we fix two further SK-terms

B := S(KS)K

C := S(S(KB)S)(KK)

which satisfy

Bstu �∗w s(tu)

Cstu �∗w sut

From the reductions we can see that B and C act as special versions of S. We can

now optimize the translation to SK-terms with the following equivalences:

λx.st ≡ Bs(λx.t) if x not free in s

λx.st ≡ C(λx.s)t if x not free in t

Using these additional equivalences, we translate the terms for succ and copy in the

full λ-calculus as follows:

λxyz.zx ≡ λxy.CIx ≡ λx.K(CIx) ≡ BK(B(CI)I)

λfg.g(ffg) ≡ λf .SI(B(ff)I) ≡ B(SI)(C(λf .B(ff))I) ≡ B(SI)(C(BB(SII))I)

Following this translation, we define

succ := BK(B(CI)I)

copy := B(SI)(C(BB(SII))I)

We can now verify the required weak reductions

succ suv �∗w K(CIs)uv �∗w CIsv �∗w Ivs �∗w vs

copy st �∗w SI(B(ss) I)t �∗w t(sst)

We have now discovered a computational system known as SK-calculus that is

simpler than the λ-calculus but still Turing complete. The terms of the SK-calculus

s, t,u, v ::= S | K | st

12

are obtained with two constants S and K and with binary application. There are

no variables and no abstractions. Reduction in the SK-calculus is defined with two

reduction rules

Kst �w s

Sstu �w su(tu)

One can show that reduction in the SK-calculus is confluent. As it comes to the

structure of reduction SK-calculus is similar to λ calculus. One may consider a call-

by-value version of SK-calculus, which is similar to call-by-value λ-calculus, and in

particular is uniformly confluent.

SK-calculus is much simpler than λ-calculus since it comes without variables and

does not require substitution. Programming in the SK-calculus is feasible provided

one first programs in the λ-calculus and then compiles down to the SK-calculus.

The theory of SK-like systems is know as combinatory logic [6]. The initial ideas

for S and K are from Schönfinkel [7]. Combinatory logic and λ-calculus were studied

extensively by Haskell Curry and his students [2, 3].

Exercise 17 Give terms of the SK-calculus as follows:

a) A term that doesn’t have a normal form.

b) A normalising term that is not strongly normalising.

c) A term K such that Ks �∗w K.

d) A term P such that Pst �∗w Pts.

Exercise 18 Show that SK-calculus is not uniformly confluent.

Exercise 19 Let zero and succ be the terms of the SK-calculus defined above. Show

disjointness and injectivity of zero and succ in the SK-calculus:

a) ∀s. ¬(zero ≡ succ s).

b) ∀st. succ s ≡ succ t → s ≡ t.

10 Eta Law

We may take the view that a closed term s describes the same function as the term

λx.sx. We can formalize this view by defining an equivalence relation on terms that

realizes the η-law

λx.sx ≡ s if x is not free in s

in addition to the β-law. We speak of βη-equivalence and write s ≡βη t. We can

also have η-reduction

λx.sx � s if x is not free in s

13

in addition β-reduction. We speak of βη-reduction and write s �βη t. The Church-

Rosser theorem remains true for untyped λ-calculus with βη-equivalence and βη-

reduction.

Coq’s convertibility relation accommodates both β and η. In fact, in Coq two

terms are definitionally equal if they are βη-equivalent. While β-reduction is explicit

in Coq, η-equivalence is implicit (in the same way α-equivalence is implicit). Coq’s

type discipline ensures that β-reduction always terminates. In particular, Coq’s type

discipline does not admit self-application of functions as in ω = λx.xx.

Adding the η-law has the consequence that 1 ≡ I since 1 = λfa.fa �η λf .f = I.
Thus 1 is not βη-normal. However, all other Church numerals are βη-normal and

different from the the βη-normal form of 1 (which is I). Thus the Church numerals

for two different numbers are not βη-equivalent.

It turns out that βη-equivalence is the coarsest equivalence we can have in un-

typed λ-calculus. This result is a consequence of Böhm’s theorem.

Theorem 20 (Böhm 1968) Let s and t be different βη-normal combinators. Then

there exist combinators u1, . . . , un such that

su1 . . . unxy ≡βη x
tu1 . . . unxy ≡βη y

for all variables x and y .

Corollary 21 Let ≈ be a nontrivial equivalence relation on terms sucht that s ≈ t
whenever s ≡βη t. Then ≈ and ≡βη agree on βη-normal terms.

More about Böhm’s theorem can be found in Hindley and Seldin [6].

Exercise 22 Prove BCC ≡ I under βη-equivalence.

Exercise 23 Prove that the η-law follows from λx.fx ≡ f provided f ≠ x.

References

[1] Henk P. Barendregt. The Lambda Calculus: Its Syntax and Semantics. North-

Holland, 1984. Revised Edition.

[2] Haskell B. Curry and Robert Feys. Combinatory Logic, Volume I. North-Holland

Publishing Company, 1958.

[3] Haskell B. Curry, J. Roger Hindley, and Jonathan P. Seldin. Combinatory Logic:

Volume II. North-Holland Publishing Company, 1972.

14

[4] Yannick Forster and Gert Smolka. Call-by-value lambda calculus as a model of

computation in Coq. Automated Reasoning, 63(2):393–413, 2019.

[5] Mayer Goldberg. A construction of one-point bases in extended lambda calculi.

Information processing letters, 89(6):281–286, 2004.

[6] J. Roger Hindley and Jonathan P. Seldin. Lambda-Calculus and Combinators, an

Introduction. Cambridge University Press, 2008.

[7] Moses Schönfinkel. Über die Bausteine der mathematischen Logik. Mathe-

matische Annalen, 92:305–316, 1924.

15

	Introduction
	Terms
	Reduction and Equivalence
	Substitution Laws
	Scott Encoding of Numbers
	Recursive Functions as Fixed Points
	Call-By-Value Lambda Calculus
	Translation to SK-Terms
	Weak Reduction
	Eta Law

