MONA - MSO in practice

Martin Emrich
Tutors: Tim Priesnitz, Thomas Klocker, Christian Klein

PS Lab
Gert Smolka

Saarland University

October 20, 2003

Abstract
This presentation is about MONA, an MSO theorem prover using
BDDs (binary decision diagrams) and finite-state automata. We will
show what it can do and shed some light on its internal optimization
techniques.

1 Introduction

MONA is a theorem prover for WS1S/WS2S formulas written in C/C++.
MONA takes a program consisting of formulas and variable definitions and
generates a finite state tuple automaton that recognizes the language of the
conjunction of all formulas in the program.

MONA is/has been used in numerous practical applications, including

e Hardware verification
e Controller synthesis
e Parser generation (YakYak, an extension to yacc)

Protocol verification

e Program verification

[KMO1]

varl x;
var2 X,Y;
x in X => x+1 in Y;

Figure 1: A simple MONA Program
2 Programming MONA
MONA programs primarily consist of variable definitions

var0 b; |varl p; | var2 P;

(where b € B,p € N and P C N) and formulas:

t == 0 | p [t+1
T == | P | T sub T
| TunionT |T\T
¢ u= t<=t |t=t | T=T
| tinT | b "¢
R X |91 ¢ | ¢ =>0¢ | ¢ <=>¢
| exlp:¢ |alllp:¢ |ex2P :¢ |all2 P : ¢

More syntax elements such as macro definitions, predicates (which should
rather be seen as macros with precompiled automata), etc. can be found in
[KMO1]. But these constructs deserve a special explanation:

e No formula is allowed to construct infinite sets, something like

var 2 G;
0 in G & alll p: p in G <=> p+1 notin G;

is not allowed.
e [f t a first-order variable and ¢ an integer constant, t —c:=0if ¢ > t
e nin(T) and max(T) are 0 when T = ().

Figure 1 shows a small MONA program for z € X = z1 €Y.

3 Automaton Language

The automata generated by MONA generally read a language L C ({0, 1, X}*)*,
where k is the number of free variables in the corresponding MONA program,

2

and X being a dummy character denoting a situation where both 0 and 1 have
the same effect.

The first tuple of a word contains the truth value for boolean (0th order)
variables, or is filled up with an X for first- and second-order variables. This
enables the automaton to take boolean variables into account as early as
possible.

The remaining string contains the first /second-order variables in the usual
sense, except that a first order value p is not encoded as a singleton set, but
as a non-empty set P with p = min(P). This way, the automaton can
completely ignore all characters in p’s fingerprint after reading the first 1.

An Example:
varO b; b = true 1 XXXXXXXXX
varl p; p=4 X00001XXXX

var2 P; P = {2,4,5,8} X001011001

Note that there is neither a L-Symbol nor a shape variable denoting the
end of the word. Automata generated by MONA are always in an accepting
state if the input string satisfies the corresponding program, and vice versa.
If one wants to use a MONA-generated automaton in own projects with finite
input strings, one has to take care of the string’s end by oneself.

4 Language minimization & Automaton gen-
eration

Before starting to build the automaton, MONA simplifies the program:

e Trivial boolean expressions are reduced:
T =T ~ true &P ~ ¢
true & ~> ¢ ORGSR
true &¢ ~ false ~false ~~ true
Of course these constructs do not appear very often, but the reduction

yields small improvements especially with machine-generated MONA
code.

e Second-order terms are “flattened” by introducing new variables for
sub-terms. Fx.:

A = (Bunion C) inter D ~~
3V : (A =V inter D)&(V = B union C)

3

X X X

Figure 2: The automaton for the example

e Redundant operations are removed, e.g.:
Y ~s =3 ¢\/¢,W_\(_\¢/_|¢/)
The result is the minimal syntax

¢ = ¢ Koxy | 3X : ¢
IXCX| X=X 41X =X\X"

Now, MONA calculates a minimum DFA for a program which accepts all
strings with interpretations that satisfy the conjunction of all formulas in the
program. The automaton for our example (Figure 1) is shown in figure 2.

Atomic formulas are translated into basic automata, e.g.

¢=(Pr="P\P)

is translated to the automaton

ooo
O R -
P X O

ocoor

OO
X e
(Dxxx

o

Composite formulas are translated by combining the basic automata (e.g.
¢ = ¢’ corresponds to automaton complementation). After every operation,
the automaton is minimized to keep the memory usage low all the time. Of

course, existential quantification results in a non-elementary complex decision
procedure (n nested alternating quantifiers):

'QC'TL
22 }c -n

The cause for this are the projection operations used to translate quantifi-
cations, which produce an additional 2" state increase caused by the deter-
minization. To avoid this and the following costly normalization, MONA
tries to rewrite quantifications:

[K1a9g]

when ¢ is of the form (--- & X; =X; & ---)andi#j .

5 Three-valued semantics

By viewing a first-order term t as a singleton second-order term 7', we
face the problem that this semantics is not closed under complementation.
Consider the formula ¢ =;p = 2 (p is first-order), which is handled as
¢ = P = {2} where P is second order. So, the complement of ¢’
is (P = {0}), something different from the representation of ~(p = 0),
namely (P = {0}) & singleton(P), where the restriction singleton(P)
holds when P has exactly one element. KMO01]

To be on the safe side, we would have to carry the restriction with us all
the time (conjunctive semantics), resulting in numerous additional automa-
ton product and minimization procedures.

Another type of restrictions often needed is limiting variables for M2L-Str,
where all first and second-order terms have to be element/subset of a given
finite string $. To enforce this, we would have to cojoin the restriction p € $
with every atomic formula, which may easily result in doubly-exponential
blow-ups[Kla99].

WS1S-R First, we make the restrictions explicit in syntax. A variable P
is associated with a restriction p:
¢ ::=ex2 P where p: ¢’

For the time being, this is equivalent to ex2 P : ¢’ & p, but p is cojoined
to any sub-formula mentioning P. We assume that every variable P; is re-
stricted, even if the restriction is “empty”, by just being (P; = P;).

bt

The ternary semantics Until now, a formula ¢ is either true (+) or
false (—). The MONA semantics adds a third possibility[KM01]|[K1a99]: The
formula ¢ is don’t care (L) if the restriction(s) of a free variable in ¢ is not
fulfilled.

Let X is an expression. We define

where P contains all free variables in X and all free variables appearing in
restrictions on free variables in X. p*(¢) is the induced restriction on ¢, the
conjunction of all restrictions appearing in ¢.

Conjunction and negation are redefined in a way that if ||¢lw = L or
|¢'[[w = L (¢ on the word w evaluates to L), so do ||¢ & ¢'||lw = L and
16l = L.

Now, the three-valued semantics is defined as

I"¢llw = ~ll¢flw

I & ¢lw = [[dllw & [[¢]|w
(4 if AM : ||¢/||w [P — M] = +

— ifVYM :||¢||w [P — M] # +

and M : ||¢/||w [P, — M] = —
L if VM ||¢f ||w [P — M] = L
+ ifwl= F sub Pjand [[p*(P) & p*(F;)|lw =+
|F; sub Pjllw = ¢ — ifwl P sub Pjand [p*(F) & p*(F;)lw =+
(L i [|p"(P) & p(Py)llw # +

|ex2 P; where p: ¢'||w =

[KMO1]

Consequently, the automata now have a three kinds of states, accepting,
rejecting and don’t-care-states (in fig. 2, the square states), that are reached
if a restriction is violated. Consider the string w

3 X0001X
= {3,4} X00011
{4} X00001

S
I
<obd M

which satisfies the example in Figure 1. As long as there is no 1 read
in z’s fingerprint, it clearly violates the singleton() restriction, and the
automaton stays in the don’t-care state 1.

Equivalence of binary and three-valued semantics [KMO01]
The “classic” semantics and the ternary semantics defined above are equiv-
alent in the following sense:

wlEp'(¢) & |ofw=1
wiEo & p(¢) & [ofw=1
w="¢ & p'(¢) & [¢fw=0
In fact, MONA can be forced to generate two-valued automata, the don’t-
care states are replaced by rejecting states.

6 Finite state automata as BDDs

The transition table for even a small automaton (e.g. 5 free variables, 20
states) is usually very big (640 entries). To cut down the memory footprint
of automata, MONA stores the automata as multi-terminal, shared BDDs
(SMBDD). [KMSO00]

A generic BDD is a directed, acyclic graph consisting of £ > 2 nodes; the
leaves {0, 1} and variable nodes. Furthermore, there is a transition function
v with

IneN:ve{0,...,n} - Var x{0,...,n} x{0,...,n}

giving for an index n a node v, its low successor (reached when v’s variable
is 0) and its high successor. [Smo03] If the BDD is ordered:

V(n, (X,ng,n1) €Ev:n>ngAn>n;

we need at most n transitions to reach a leaf. BDDs are more space saving
than decision trees, the tree for the example in Figure 3 would have 15 nodes
instead of 5.

While a generic BDD has only 2 final nodes (0 and 1), a MONA BDD
for an automaton has ¢ leaves, one for every automaton state, each one
additionally marked with the node type (accepting=1, rejecting=-1 or don’t-
care=0). The variable nodes are labeled according to the free variables in
the input string, thus in the example, the variable nodes 0 corresponds to
x, 1to X, and 2 to Y. So, the SMBDD can be seen as many BDDs joined
together, sharing as many variable nodes as possible. It is no longer acyclic,
as there is one cycle per input character.

For every character the automaton reads a k-tuple, which is processed
top-down through the SMBDD. Starting at the top in the current state,
walking down along the way the k-tuple lays out, and one reaches the next
state. This takes at most k steps, instead of looking up in 2* decision table
entries.

A BDD for (a A =b Ac):

V = {a,bc} 1\
7 = {(4(a,0,3)),(3,(6,2,0)),(2,(c,0, 1))} ()
Ex.: Read v as “In node 4, read a, when !

a = 0 then enter node 0, otherwise, en- /
ter node 3.

Figure 4: The BBD for the example in Figure 1

7 Model checking & satisfiability

When MONA is run on a program, it also checks if the formula is valid,
satisfiable or unsatisfiable.

This is done by searching the shortest path to an accepting/rejecting
state. If a path to an accepting state is found, the formula is satisfiable. If
no path to a rejecting state is found, too, the formula is valid. If no path to
an accepting state is found, the formula is unsatisfiable.

MONA prints a shortest example and counter-example, too, which is gen-
erated by concatenating all transitions on the shortest path to the accepting
state and rejecting state, respectively. For the example in Figure 1, the
examples are:

ANALYSTIS

A counter-example of least length (1) is:
X X1

X X1

Y X X

x=0

X = {0}

Y = {}

A satisfying example of least length (1) is:
X X1

X X0

Y X X

x=0

X =4{

Y ={}

To get “larger” examples, one can force it by adding a new free first-order
variable v and including v = length in the program. But keep in mind that
the automata become very large.

MONA can be used to check if a formula holds for a given input by
assigning all free variables a fixed value. For the example, this could be:

x =3; X ={2,3}; Y = {4};

If MONA’s shortest example is again this interpretation, it satisfies the for-
mula.

References

[K1a98] Nils Klarlund. Mona & fido: The logic-automaton connection in
practice. In Computer Science Logic, CLS’97, volume 1414. LNCS,
1998.

[K1a99] Nils Klarlund. A theory of restrictions for logics and automata. In
Computer Aided Verification, CAV’99, volume 1633. LNCS, 1999.

[KMO1] Nils Klarlund and Anders Mgller. MONA Version 1.4 User Man-
uwal. BRICS, Department of Computer Science, University of
Aarhus, Ny Munkegade 540, DK-8000 Aarhus C, Denmark, 1997-
2001.

[KMS00] Nils Klarlund, Anders Mgller, and Michael I. Schwartzbach. Mona
implementation secrets. In Fifth International Conference on Im-
plementation and Application of Automata, CIAA’00, 2000.

[Smo03] Gert Smolka. Vorlesungsskript zu Logik, Semantik und Verifikation.
PS Lab, Saarland University, Saarbriicken, Germany, 2003.

10

