w-Automata and corresponding Logics

Swen Jacobs
Seminar: Logical Aspects of XML
Saarland University
Programming Systems Lab

Abstract

We present to the reader the correspondence between Biichi automata
on infinite words and S1S, the monadic second-order logic on infinite
strings. To reach this goal, we show that Biichi automata are closed
under boolean operations such as union, intersection and complementa-
tion. Special emphasis will be on the complementation proof, which is
the most difficult step in this work. Also, the according steps for the
correspondence between Muller automata on infinite trees and S2S are
mentioned, but not carried out.

1 Introduction

In this work, we first want to provide the reader with essential knowledge about
w-automata, which are essentially finite automata over input words or trees.
The main difference to normal and more or less widely known finite word and
tree automata is that in case of w-automata the input word or tree is infinite.
To clarify things, we will only use the term w-automata if we mean both types.
If we specifically talk about automata on infinite strings, we call them w-word-
automata, if we talk about automata on infinite trees, we use the term w-tree-
automata.

We view these automata with respect to the logics they decide, which will
turn out to be the monadic second order logic (MSO) with one or two succes-
sors (S1S or S2S), respectively. We give a short introduction to these logics.
We will also present the theorems leading to this conclusion. Having seen the
correspondence between finite automata and WSI1S as well as between finite
tree automata and WS2S in [Kerber03], the proofs are trivial, except for one
thing: In order to do these proofs, we need to show the closure of w-automata
under boolean operations. For the infinite word case, we will show closure of
Biichi-word-automata, which are a special case of w-word-automata. For the
infinite tree case, we will only give the proof ideas.

2 w-word-automata

When we discuss w-word-automata, our basis clearly are finite automata. How-
ever, since our input words are no longer finite, we need a different acceptance
condition. While the acceptance condition for automata over finite strings is
rather canonical, there are several ways to define acceptance of a run which
includes infinitely many visits to finitely many states. One could either define
an acceptance condition on the states which are or are not visited on the run
(which is called Staiger- Wagner acceptance, introduced in [SW74]), or one could
restrict the acceptance condition to view only those states which are visited in-
finitely often in a run. In the following, we will use the latter approach and
introduce two acceptance conditions working in this way.

Definition 1 (Finite w-word-automaton). A finite w-word-automaton is
a tuple A = (Q, 4, qo, A, Acc), where @ is a finite set of states, A an input
alphabet, go an initial state, A C Q x A x Q a transition relation, and Acc an
acceptance component. A run of automaton A on a given input w-word a =
a(0)a(l)... with a(i) € A is a sequence p = p(0)p(1)... € Q¥ such that p(0) = qo
and (p(4), (i), p(i + 1)) € A for ¢ > 0. If the automaton is deterministic, the
transition relation is replaced by a function § : Q X A — @, and a run then has
to satisty p(i + 1) = §(p(i), (7)) for i > 0.

To obtain a functional automaton, we still need to specify the acceptance
component. Let 3 be the quantifier for "there exist infinitely many” and
consider the set In(p) = {q € Q|3¥ i : p(i) = ¢}, the infinity set of run p.

Now we can define two important acceptance conditions, which are require-
ments on the infinity set of a run p:

e Biichi condition[Biichi62]: In(p) N F # 0 for a set F C Q of final states.
This condition requires that at least one of the final states occurs infinitely
often in the run p.

e Muller condition[Muller63]: In(p) € F, for F C 29, a set of accepting
subsets of Q. This condition requires that exactly the infinity set of the
run is specified as an accepting set.

There are other acceptance conditions for w-automata, like the Rabin, Rabin
chain or Streett condition. However, because we don’t need them for our proofs
we omit their definitions.

In accordance to the acceptance condition, in the following we will speak
of a Biichi-word-automaton if we mean an w-word-automaton with Biichi ac-
ceptance condition (and similarly for the Muller condition). Even though it is
straightforward, let us define acceptance of a word by a Biichi- or Muller-word-
automaton:

Definition 2 (Acceptance of Biichi-word-automata). An w-word « is ac-
cepted by a Biichi-word-automaton A, if there exists a run p of A on « such
that In(p) N F # 0.

Definition 3 (Acceptance of Muller-word-automata). An w-word « is
accepted by a Muller-word-automaton A, if there exists a run p of A on « such
that In(p) € F.

After defining different acceptance conditions for the same kind of automa-
ton, one question arises immediately: Which one is more powerful?

Proposition 1. Nondeterministic Biichi- and Muller-word-automata recognize
the same class of w-languages.

Proof. 1t is straightforward that the more general Muller condition can sim-
ulate the Biichi condition: for a given set of final states F, let the set of accepting
sets F contain every subset S of () such that at least one element s € S is from
F. The other direction, simulating Muller by Biichi, is not that easy and only
works when allowing nondeterminism: To simulate a Muller-word-automaton,
the Biichi-word-automaton at first needs to nondeterministically chose the sub-
set S € F which will be equal to the infinity set of the run. Furthermore, it
needs to nondeterministically chose the point of time in the run from which
on only states from S occur!. Finally, it has to be tested that every state
from S is indeed visited infinitely often, which is done by a subset construc-
tion. As one can easily see, this simulation is very expensive, while the other
direction works on the same state set with only different acceptance condition. O

Let’s get back to the statement that we need nondeterminism when simu-
lating Muller by Biichi:

Proposition 2. Deterministic Biichi-word-automata recognize less languages
than nondeterministic Buchi-word-automata.

Proof. It is easy to show that there are w-languages which cannot be rec-
ognized by deterministic Biichi-word-automata. One example is the language
over A = {a,b} with only finitely many a’s in every w-word. It is clearly
recognized by Muller-word-automata (and thus also by nondeterministic Biichi-
word-automata), but not by deterministic Biichi-word-automata: Suppose there
would be a Biichi-word-automaton accepting the language. Then it would ac-
cept the w-word b, i.e. on the corresponding run there are infinitely many
accepting states. We chose one of them, say it appears after reading b%. Then
the automaton must also accept b®ab”, i.e. we find another accepting state
at boab™. In this way we can construct a word bab’ ab®q... with infinitely
many a’s which is nonetheless accepted by the automaton, thus obtaining a
contradiction. OJ

1One can easily confirm that such a point must exist: If for some state ¢ ¢ In(p) there
would not be a point after which it does not occur anymore, then it would need to occur
infinitely often, which is a contradiction.

3 Completeness of w-word-automata

In order to show the correspondence between w-word-automata and S1S, we
need to show the closure of the automata under the following operations:

1. union

2. intersection

3. projection

4. cylindrification
5. complement

We prove closure for Biichi-word-automata, as far as possible:

1. Union:

Given two automata A; = (Q1, A1, q1, A1, F1) and Ay = (Q2, Az, g2, Aa, Fy)
with respective languages L(A;) = £1 and L(Az) = Lo, the automaton for
L = L1 ULy is constructed by building the union of all respective sets, i.e.

A = (Ql U QQ;Al U AQ;QO; A1 U AQ U {(q0567Q1)5 (QO765q2)}7F1 U FQ))

and qq is a new initial state with e-transitions to the old initial states g; and gs.

2. Intersection:

Given two automata as above, the automaton for the language £ = £1 N Lo
is constructed with the help of a double product automaton plus an indice.
That means, we first construct the standard product automaton (as for finite
automata) for the given two automata. We copy the resulting automaton and
mark the tuple-states from the original product automaton with a 1, and those
of the copy with a 2. Thus, in the resulting automaton, we have tuple states
of the form (qq, gs,%), where g, € Q1, ¢ € Q2 and i € {1,2}. The construction
works as follows: we start in (¢1,¢e,1), i.e. in the initial state of the original
product automaton. When we reach a final state from A;, i.e. a tuple state
where the first element is from Fj, with the next transition we jump into the
copy of the product automaton (and into the according state of the compu-
tation, of course). Here we continue the computation until we reach a final
state from Ay, and then jump back into the original product automaton. As
accepting states we only need the accepting states of A; in the original product
automaton, i.e. all states (qq,qp, 1), where g, € F; and ¢, € Q2. This con-
struction works because if we visit any of these final states infinitely often, we
must also visit some accepting state from A5 in the copy of the product automa-
ton infinitely often (otherwise we would not be allowed to return to the original).

3. Projection: Given an automaton over a tuple alphabet A = A; X Ao,
the automaton for the first projection is constructed easily: We may keep the

states, initial state and accepting states of the original automaton, our new
alphabet is of course only A;. For every transition (q,(a1,a2),q¢’) € A in
the original automaton, there is a transition (¢, a1,q’) in the new automaton.

4. Cylindrification: Cylindrification is just as easy: we keep the states
as above, and for any transition (g, (a1),q’) € A of the original automaton, we
have all possible transitions (g, (a1, a2),q’) with any as from the new alphabet.

5. Complement: We have already seen that complementation is the most
difficult standard operation for finite automata, word and tree alike. The infinite
word case is no exception. In fact, complementation of w-word-automata is such
a challenging task, that we will do it in a section of its own.

4 Determinisation and Complementation

Complementation of w-word-automata is a big problem. The reason for this
is that the known complementation algorithms need deterministic automata,
but we have already seen that deterministic Biichi-word-automata are not as
expressive as nondeterministic ones. That means, for a given nondeterministic
Biichi-word-automaton, there may not even be a deterministic automaton, and
thus no way to build the complementary automaton in a relatively easy way.
Nonetheless, complementation of Biichi-word-automata is possible:

Theorem 1 (McNaughton’s Theorem [McNaughton66]). A Biichi-word-
automaton can be transformed effectively into an equivalent deterministic Muller-
word-automaton.

This theorem is the key to our complementation problem, because a deter-
ministic Muller-word-automaton can be easily complemented: we only need to
switch accepting and non-accepting sets of states. After that complementation,
we may go back to a Biichi-word-automaton, as we have already seen (losing
the determinism, however).

Complementation of Biichi automata has been proved in several different
ways: Buchi himself already proved that "his” automata were closed under
complement in [Biichi62]. McNaughton’s theorem of course has been proved
by McNaughton, and his proof was then sharpened by the widely-known proof
of Safra in [Safra88] which uses ”Safra trees” to construct macro-states similar
to the subset construction for finite automata. Even after Safra, there have
been new proofs for complementation of Biichi automata: Wolfgang Thomas
developed a new proof in [Thomas2|, which involves transforming the nonde-
terministic Biichi automaton into a weak alternating automaton, and goes on to
use the determinism of weak infinite games to complete the proof.

In the following, we will give an entire look on Safra’s proof. To this end,
we will first explain Safra’s construction itself, then give an example of how it
is applied to a nondeterministic Biichi automaton, go on to show why Safra’s
construction is correct and finally prove McNaughton’s theorem.

4.1 Safra’s construction[Safra88]

Before we explain Safra’s construction, let us revisit the subset construction
known from finite automata and show why it is not sufficient in the infinite
word case:

Suppose we have a Biichi automaton with three states gg,¢q1 and ¢o such
that a transition from go to ¢; is always possible (plus transitions to stay in
qo), but from ¢; all transitions directly go on to go. Furthermore, there is no
transition leaving g2 and ¢ is the only accepting state. Clearly, no w-word can
be accepted by such an automaton, because the final state can only be visited
once.

Now take a look at the subset construction: from the macrostate {qo}, we
move on to {qo, q1}, and from there to {qo, q1, g2}, where we stay forever. Now
every macrostate which includes a final state is a final state in the subset con-
struction, so instead of accepting no w-words, our subset construction would
accept all w-words.

The reason for this lies in the way the subset construction is supposed to
work: essentially, for every finite word, it computes all possible states the au-
tomaton can reach with this word. If this set of reachable states includes at
least one final state of a finite automaton, we know that there is an accept-
ing run, i.e. the automaton accepts the given word. This is not enough for
w-word-automata, however: we not only need to reach a final state once, but
infinitely often. Thus, an according construction for w-word-automata must not
only check if a final state is reachable, but it must find out if there is a loop such
that a final state can be visited infinitely often. As we will see, this is exactly
what Safra’s construction does:

Essentially, Safra’s construction is a subset construction, with one new con-
cept: whenever the computed macrostate includes final states, an own thread
of macrostates is split off, represented by a child node in the Safra tree. Those
Safra trees will be the states of the resulting deterministic automaton.

Definition 4 (Safra Tree). A Safra tree over a finite non-empty set of states
Q with |Q| = n is a finite, ordered tree. The nodes of the tree have names from
{1,...,2n} and labels from 29 \ {(}. Furthermore, every node may be marked
or unmarked. The label of every node in the tree is a proper superset of the
union of labels of its children. Labels of nodes with the same parent are pairwise
disjoint.

As this definition only captures Safra trees, but not their development, we
still need to define the algorithm which will be used for determinization of
Biichi-word-automata. Let us first discuss it informally:

The root node of the given Safra tree will always contain the momentary
reachable states, just like the original subset construction. Now, if during the
computation this set of states contains any final states, a child node is intro-
duced, containing exactly those final states. After that, the subset construction
is applied both to the parent and the child node separately. If in the following
we get to another macrostate where the root contains final states, a new child

is split off, containing those states. The same is done if any of the child states
should contain final states. However, we need to ensure that our tree remains
within the boundaries of the Safra tree definition, i.e. the label of a parent node
must always be a proper superset of the union of labels of its children, and the
labels of those children have to be disjoint. The second property is ensured by a
horizontal merge, i.e. if some state is included in more than one brother-node,
it is deleted from all nodes except the oldest. This may result in empty labels
for some nodes, in which case the whole node is deleted. The first property is in
some sense the center of Safra’s construction: If the union of the labels of child
nodes equals the label of the parent node, all child nodes are deleted and the
parent node is marked?. With this, we come to the end of the construction: the
acceptance condition. Every Safra tree we created represents one state in a new
(deterministic) Muller-word-automaton. The set of accepting sets F contains a
set of Safra trees if there is a node with the same name in every tree and this
node is marked in at least one of those trees.

Now, let us revisit the construction and formulate an algorithm which de-
velops Safra’s construction:

Algorithm 1 (Safra’s Construction). Given a Biichi-word-automaton A =
(Q, A, qo, A, F), we build a deterministic Muller automaton in the following way:

1. Start with the Safra tree consisting of only one node named “1” and labeled
with the set {go}, consisting only of the initial state.

From here on, repeat until no more trees are added:
2. All nodes are unmarked.

3. If any of the nodes of the current tree contains final states, a new youngest
child node is added with a free name® and labeled with this set of final
states.

4. Apply the subset construction on the label of every node of the tree

5. For all brother nodes: if some brother nodes contain the same state, re-
move it from all but the oldest brother

6. If there are nodes labeled with the empty set, remove them

7. If there are nodes where the union of child-labels equals the parent label,
mark the parent node and remove all descendants

end repeat.

Let us take a look at the marked states: what does it mean if some state is
marked? Suppose from some set of states Q1 the automaton reaches Q) after

2As one can easily confirm, there cannot be states in labels of child nodes which are not
in the parent node
3usually this would be the lowest number which is not currently used in the tree

reading input w1, with a set of final states Fy C Q2. Suppose further that after
reading input v1, the automaton goes on and reaches the same set of states from
both F» and @2, thus the node with ()5 in the Safra tree would be marked. As
one can easily see, this mark means that for any state g» in the marked node,
there is some state qg; € @1 such that the automaton can reach ¢» from ¢; when
reading wqv; and pass through F; in the process. The same argument holds if
during input v, more macrostates are split off.

If we continue this scheme, we can see how acceptance of the old automaton
relates to acceptance of the constructed one: If we can find an w-word wyws...
such that after each input w; some marked macrostate is reached, then both of
our automata are accepting. For the constructed automaton this is clear, since
the run on this w-word passes through the same node, which in the process
is marked not only once, but infinitely often. For the original Biichi-word-
automaton acceptance is easily poved: for each sequence wy, wiws, ... pick some
finite run of the automaton which passes through F at least 7 times (as seen
above). These finite runs then form an infinite tree which is finitely branching.
By applying Konig’s Lemma, we yield an infinte run with infinitely many visits
to F.

Thus, we can use Safra trees with marked nodes to detect successful runs of
the Biichi-word-automaton. In the following section we want to use this fact to
prove McNaughton’s theorem.

4.2 Proof of McNaughton’s Theorem

Given a Biichi-word-automaton A = (Q, 4, qo, A, F'), the desired deterministic
Muller-word-automaton B is constructed as follows: Use Safra’s construction
(Algorithm 1) to define state set and transitions of B. Initial state of B is
always qo, the alphabet is of course the same as for A. We define acceptance of
B as follows: a set S of Safra trees, i.e. states of B, is in F if some node k is in
every tree in S, and k is marked at least once.

What we need to show is that L(A) = L(B):

e L(A) D L(B)

If « is an w-word such that « € L(B), then there is a run of B on «,
such that some node k is contained in all Safra trees from the infinity set,
and marked in at least one of those trees. By the argument from the last
section, « can be split into infinitely many input words such that after
each input word, a marked node is reached. Thus, there is a run of A on
« with infinitely many visits to F'. Hence A accepts «.

o L(A) C L(B)

Suppose A accepts «a, say by a run p which passes through ¢ € F infinitely
often. Consider the run of Safra trees of B on a. The root macrostate of
each Safra tree in this run must be nonempty, since it contains at least
p(i). Tf the root is marked infinitely often, B accepts and we are done.
Otherwise, after the last time the root has been marked, a final state

g € F will be reached at some later point of the run p (since there are
infinitely many final states in p), and thus be put into a son macrostate
of the root. From this point on, the states from the run p will appear
in the label of this son, or get associated to some older brother of this
node by a horizontal merge operation (step 5 in the algorithm). However,
such a merge can only happen a finite number of times — from then on,
the states of p will be associated to some fixed son of the root. This son
cannot be deleted anymore because we know that the root has already
been marked for the last time. Now we continue as above: if this son of
the root is marked infinitely often, we are done. Otherwise, proceed as
above, continuing the computation with some son of this son. Because the
depth of a Safra tree is bounded by |@Q| — 1, at some time a node must be
found which is marked infinitely often. Thus B accepts and we are done.
O

5 Correspondence between w-Word-Automata
and S1S

Now that we have poved closure of Biichi-word-automata, together with what we
have already seen in [Kerber03], it is fairly easy to show that w-word-automata
correspond to S18S, i.e. are a possibility to decide S1S. The proof works exactly
the same way, except that we may have infinite sets in our S1S-formulas, which
corresponds to the fact that we have automata over infinite words.

However, with these results at hand, another result becomes apparent:

Proposition 3. Over w-words, any S1S-formula is equivalent to a WS1S-
formula.

The proof idea is to express every S1S-formula in such a way that infinite
sets are declared indirectly, i.e. by specific properties which only an infinite
set may have. When we return to automata, this means that we do not need
w-word-automata to decide S18S: instead of testing an input word with an w-
automaton, we can test each prefix of the word with a finite automaton. Only
if infinitely many prefixes are accepted, the w-word is accepted.

6 w-Tree-Automata and S2S

For the case of automata on infinite trees, there are similar results available
as for the infinite word case. Resembling what we have already shown, one
can extend the proof from [Kerber03] to the infinite tree case, once closure
of w-tree-automata under boolean operations has been proved. This is done
fairly easy, again with the exception of the complement. Complementation
of w-tree-automata is an even bigger problem than for w-word-automata, and
to our knowledge there is no constructive proof available. To make the proof
understandable, a game-theoretic view of automata may help. Such proofs can

be seen e.g. in [Thomas96] or [Finkbeiner02]. However, originally this is already
a result of Rabin, as in [Rabin69).
The main results of these proofs are the following:

Theorem 2. For any S1S-formula ¢ one can construct effectively a w-tree-
automaton A such that a tree t is accepted by A iff t satisfies ¢.

Theorem 3 (Rabin Tree Theorem). The theory S2S is decidable.

In contrast to S1S, there is no result stating that S2S-formulas over w-trees
may be substituted by WS2S-formulas.

7 Conclusion

We have shown that for any S1S-formula, an equivalent w-word-automaton can
be constructed, thus showing decidability of S1S. To this end, we have proved
closure of Biichi-word-automata and thus w-word-automata under boolean op-
erations, especially complementation. This most difficult step was shown re-
sembling the proof of Safra, including Safra’s construction for determinization
of Biichi-word-automata.

For S2S and w-tree-automata, there are similar results available, although
an entire look at the proofs was out of the scope of this work.

References

[Finkbeiner02] B. Finkbeiner. Lecture: Automata, Games & Verification, WS
2002/03.

[Thomas96] W. Thomas. Languages, Automata, and Logic. Technical Report
for Univiversity of Kiel, 1969, pp. 28-61.

[Kerber03] J. Kerber. The Correspondence between Automata and Logics. Sem-
inar: Logic Aspects of XML, 2003.

[Biichi62] J.R. Biichi. On a decision method in restricted second-order arith-
metic. Proc. 1960 Int. Congr. For Logic, Methodology and Philosophy
of Science. Stanford Universal Press, Stanford 1962, pp.1-11.

[Muller63] D.E. Muller. Infinite sequences and finite machines. Proc. 4th IEEE
Symp. On switching Circuit Theory and Logic Design, 1963, pp. 3-16.

[Rabin69] M.O. Rabin. Decidability of second-order theories and automata on
infinite trees. Trans. Amer. Math. Soc. 141, 1969, pp. 1-35.

[Rabin72] M.O. Rabin. Automata on infinite objects and Churchs problem.
Amer. Math. Soc., Providence, RI, 1972.

[Safra88] S. Safra. On the complexity of w-automata. Proc. 29th IEEE Symp.
on Foundations of Computer Science, 1988, pp. 319-327.

10

[McNaughton66] R. McNaughton. Testing and generating infinite sequences by
a finite automaton. Inform. Contr. 9, 1966, pp.521-530.

[SWT74] L. Staiger and K. Wagner. Authomatentheoretische und automaten-
freie Charakterisierungen topologischer Klassen regulrer Folgemengen.
Elektron. Informationsverarbeitung und Kybernetik, EIK 10, 1974,
pp-379-392.

[Thomas2] W. Thomas. Complementation of Bchi Automata revisited. J.
Karhumki et al., Eds., Jewels are Forever, Contributions on Theo-
retical Computer Science in Honor of Arto Salomaa, Springer-Verlag,
pp. 109-122.

11

