Seminar
Types and Programming
Languages

WS 02/03

Type Reconstruction

Sven Woop

Abstract

As standard type checking depends on type annotation (all lambda
abstractions need to be type annotated) we will show an algorithm that
allows typechecking without any type annotation. This type reconstruc-
tion algorithm is capable of calculating a principal type for a term in which
some or all of these type annotations are omited. We only consider type
reconstruction for simple types and not for records as example.

This paper is a summary of the chapter 22 of the book Types and
Programming Languages by Benjamin C. Pierce. It was created as the
draft of the Seminar ” Types and Programming Languages (WS02/03)” at
the Programming Systems Lab of Prof. Smolka at the Saarland University.

April 28, 2003
set with ATEX 2¢

email:
woop@ps.uni-sb.de

Contents

1

2

Simple Typed Lambda Calculus
Type Variables and Substitution
Two views of Type Variables
Constraint-Based Typing
Unification

Principal Types
Let-Polymorphism

Notes

10

11

11

13

1 Simple Typed Lambda Calculus

We assume that you are familiar with the simple typed lambda calculus. In the
following we will use a lambda calculus with booleans, natural numbers, a let
and if-contruct. The let construct will only be used in the end where we discuss
let polymorphism. We have alambda and let with and without type annotation.
Now we will give a short grammar describing the notation we use the following
chapters.

Let Var be an arbitrary infinite countable set of variables then we define the
set of terms the following:

t,t1,... := z € Var
| t1 t
| Az :T.¢t
| Az. t
| true | false
| if ¢; then t; else t3
[0|1]..

| succ | pred | iszero
| let x : T} =¢; in t; end

Variables)

Application)

Abstraction)

Abstraction without type annotation)
Booleans)

Natural Numbers)
Operations on Natural Numbers)
Let)

(
(
(
(
(
(If)
(
(
(
| let z =t; in ¢; end (

Let without type annotation)

Let TyVar be an arbitrary infinite countable set of type variables, then we
define the set T'ypes of types as follows:

T,T1,..:= X € TyVar (Type Variable)
| Th — Th (Functional Type)
| Bool (Booleans)
| Nat (Natural Numbers)

We are not interested in the operational semantics, but only in the typing rules.
Therefore we present them:

z:Tel
_ —— Tvy-
Tre.7 3V
F"tllTQ—)Tg Fl_tQ:TQ
Ty-A
F"tthIT:; y-APP
Tx:Th+Ht:T
i 2 Ty-Abs

Fl—)\w:Tl.t:Tl—>T2

T'F true: Bool T & false: Bool Ty—Bool
F"tliBOOZ F"tg T Fl_tg
. Ty-If
'k if ¢t; then ¢ty else t3: T
I'FO:Nat TH1:Nat Ty-Nat

I'tt;: Nat

I' I iszero t; : Bool
I'Ht;: Nat

I'Fsucct; : Nat
't : Nat

't pred t; : Nat

F,.’I)ZTlf_tllTl F,J):Tll_tQZTQ
T'tlet x: Ty =t in t; end : Ty

Ty-Let

Notice that the standard typing rules can not handle the lambda and let con-
truct without type annotation. For the let construct this would in principle be
possible, but without the possibility of recursive definitions.

2 Type Variables and Substitution

In the previous chapter we assumed that there is a set of type variables. These
variables are just placeholders for some particular types whose exact identities
we do not care about. We analyse the question whether a term gets welltyped if
we instantiate the type variables with some other type. More precisely we apply
a substitution o € TyVar — Types to the type annotations of a term ¢. Such a
substitution is called a type substitution. Applying this mapping to a particular
type T we obtain an instance o7'. For example, if we apply the substitution
o = [X := Bool] to the type X — X we obtain o(X — X) = Bool — Bool.
The application of a substitution to a type is defined the obvious way:

o(X)= T if (X,T) € o
oX)= X if(X,T)¢o
o(Nat)= Nat
o(Bool) = Bool
U(Tl—)Tz): oy — o1y

As we have no construct in our language that binds a type variable we need
not to care about variable capturing. We extend the substitution pointwise to
variable contexts:

o(z1 Ty :Ty) = (z1:0Th, i@y :0Ty)

Similarly a substitution is applied to a term by applying it to all type anno-
tations in it. A very important property of the type substitution is that every
well typed term t is also well typed if we apply any type assignment to it. The
following theorem makes this more precise.

Theorem 2.1. [Preservation of typing under type substitution]: If o is any
type substitution and I' F ¢ : T then we also have oT' - ot : 0T
Proof: Straightforward induction on typing derivations.

3 Two views of Type Variables

Assume that ¢ is a term containing type variables and T is an associated context
than we can ask two different questions:

e Do we have oI' - ot : T for all o and some T'.
e Can we find a 0 and a T such that o' ot : T

The theorem 2.1 says us that each well typed term has the first property.
For example, the term

A X = Xda: X.f(f(a))

has type (X — X) -+ X — X and whenever we replace X by a concrete type
T the instance
AT =>TXa:T.f(f(a))

is well typed. As you see this first property directly leads to parametric poly-
morphism, where each type variable encodes the fact that a term can be used in
many concrete contexts with different types. Later we will say a little bit more
about parametric polymorphism.

A term that fulfills the second property has not necessarily to be well typed.
The term

Af:Ya: X.f(f(a))

is not typable as it stands, but if we replace Y by Nat — Nat and X by Nat,
we obtain
Af: Nat — Nat.ha : Nat.f(f(a))

of type (Nat — Nat) - Nat — Nat. We can also replace Y by X — X and
obtain the term
A X = XAa: X.f(f(a))

which is welltyped and contains type variables. This last term is a most general
instance of Af : Y.Aa : X.f(f(a)) in the sense that it makes the smallest com-
mitment about the values of type variables that yields a welltyped term.
Looking for valid instantiations of type variables leads to the idea of type recon-
struction which is sometimes also called type inference. The idea behind this is
that the compiler fills in the type information that the programmer left out. Of
course may the programmer leave out all type information and write just in the
syntax of untyped lambda calculus.

Definition 3.1. Let I" be a context and ¢ a term. A solution for (I, ¢) is a pair
(0,T) such that oT' ot : T.

4 Constraint-Based Typing

Now we present an algorithm that given a pair (T',t) calculates a set of con-
straints - equations between type expressions - that must be satisfied by any
solution for (I',¢). The intuition behind this algorithm is just the same as the
standard type checking algorithm. The only difference is that instead of directly
checking constraints between subtypes we record them for later consideration.
The reason why we are not able to check directly all constraints the typing rules
do, is that we don’t know the typ assignments (we first have to compute them).
For example, if we have an application t; to with '+ ¢; : Ty and T' F ¢5 : Ts.
Instead of checking that ¢; has the form 75 — 773 and returning 77, as the type
of the application we do the following. We introduce a fresh type variable X and
record the constraint 77 = 75 — X and return X as the type of the application.

Definition 4.1. A constraint set C is a set of equations S = T'. A substitution o
is said to unify an equation S = T, if ¢S and ¢7T are identical. The substitution
o unifies (or satisfies) C if it unifies every equation in C.

Definition 4.2. The following inference rules define the constraint typing rela-
tionT'Ht:T|C. Informally ' ¢: T | C can be read as “The term ¢ has type
T under assumptions I' whenever the constraints C are satisfied.”

Let X be a fresh type variable:

z:T el

Trz:T|0
F,$ZT1|‘t2:T2|C

F")\Z':Tl.tQZTl—)T2|C
Nz:Xkty:To|C
TFizt,: X 51, | C
F}_tliT1|Cl FFt22T2|02

P}_tth:chlLJCzU{Tl:TQ—)X}

CT-Var

CT-Abs

CT-Abs’

CT-App

'k true: Bool T+ false: Bool CT-Bool

F}—tliT1|Cl Fl—tgiT2|02 Fl—t32T3|C3
].-‘}_iftl then tz else t31T2|01UC2U03U{T1 :BOOl,T2 :T3}

CT-If

I'FO:Nat T'H1:Nat ... CT-Nat
+¢:T|C
T+ iszero t : Bool | C U{T = Nat}
+¢:T|C
T'Fsucct: Nat|CU{T = Nat}
+¢:T|C

T'tFpredt: Nat|CU{T = Nat}

It is important, that the type variable X choosen in rule CT-Abs’ is a fresh
variable. This means that the variable occured nowhere else. The rule for the
let construct will be shown later as it is a little bit more complicated.

When read from bottom to top, the constraint typing rules determine a straight-
forward procedure that, given I" and ¢, calculates T'and C such that T' - ¢ : T'|C.
In contrast to the normal typing algorithm this one never fails, in the sense that
for every T' and t there are always some T and C such that T' - ¢ : T | C.
Moreover T and C are uniquely determined by I" and ¢ (modulo renaming of
introduced fresh type variables).

The idea of the contraint typing rules is that given a term t and a context T,
we can check whether ¢ is typable under I" by first collecting the constraints C'
that must be satisfied by any solution. The algorithm yields us an result type
S which may share type variables with C. To find solutions we now look for
substitutions ¢ that satisfy C. For each such o, the type ¢S is a possible type
of t. If we find no such substitutions we are sure, that ¢ cannot be instantiated
in such a way that it es well typed.
For example, the constraint set generated by the algorithm for the term ¢ =
Ar 1 X — Y.z(0) is {Nat - Z = X — Y} and the associated result type
is (X - Y) — Z. The substitution o = [X := Nat,Z := Bool,Y := Boodl]
makes the equation Nat — Z = X — Y into an identity, so we know that
o((X = Y) > Z) = (Nat — Bool) — Bool is a possible type for ¢. This is
formalized by the following definition:

Definition 4.3. Suppose that ' ¢ : S| C. A solution for (T, ¢, S, C) is a pair
(0,T) such that o satisfies C and S =T.

Example 4.4. Before we continue we will do a little example. We will apply
the contraint typing rules to the term Az. Ay. Az. (z 2) (y 2).

'Fz:X|0 'kz:Z|0 VFy:Y |0 'kz:Z|0

T'F(z2): X1 |Ci={X=Z > X1} TFz):X]C={Y =72 Xy}

I'=T,2: X,y:Y,2: ZF(z2) (y2): X3|C=C1UCU{X; = X5 — X3}
Tz: X,y:YFX2.(z2)(y2): Z—> X3|C
Tz: XFXy. Xz (z2) (y2): Y > 2> X;3|C
FTEXz. Ay Az. (z2) (y2): X =Y > Z > X;3|C
We derived the set C = {X = Z - X1,Y = Z = X2,X; = Xo — X3} of

constraints and the type S = X - Y — Z — X3. As you see the type S shares
type variables with the constraints C.

As you can see there are two different ways of finding a solution for a pair
(T, t). The first one is the formal definition 3.1. This means to find a substitution
o and a type T such that ot is welltyped of type T'.

The other way is more algorithmic. First apply the constraint typing rules and
then find a solution for these according to definition 4.3. The last part of finding
a solution to this set of constraint is described later.

It is clear that the solutions according to definition 3.1 are the most general
ones. This means that each possible typing is a solution. As our algorithm has
to calculate all these solutions and no more we have to show the equivalence

between both caracterizations. More formal we have to show that each solution
to (T',t) is also a solution to (T',t,.5,C) and vice versa. The proof is given in
section 22.3.5 and 22.3.7 in Pierce’s book and we will only present the theorems
to be proved.

Theorem 4.5. : Suppose that I' ¢ : S|C. If (o, T) is a solution for (T, ¢, S, C),
then it is also a solution for (T, ¢).

Theorem 4.6. : Suppose I' ¢ : S| C. If (0,T) is a solution for (T',¢) then
there is a solution (o', T) for (T',¢, S, C) such that o’'|gom(r) = 0.

5 Unification

To calculate solutions to the constraint sets, we use the idea due to Hindley
(1969), Milner (1978) and Robinson (1971) of unification. A fundamental prop-
erty of the unification algorithm is, that all solutions can be represented in one
most general solution as described later.

The following algorithm is a simple unification algorithm which is specialized
to our needs.

1. unify(C) = if C =0 then []

2 elselet {S=T}UC =Cin

3 if S=T then

4. unify(C’)

5. else if X =T and X ¢ FV(T) then
6 unify([X := T|C’) o [X := 0T

7 else if S=X and X ¢ FV(S) then
8. unify([X := S]C’) o [X := 9]

9. elseif S=5;, =-S5, and T =T, - T then
10. unify(C’ U {Sl =T1,5; = TQ})

11. else

12. fail

The notation in the line 2 means, that we take a constraint S = T out
of the set C of remaining constraints. The side conditions X ¢ FV(T) and
X ¢ FV(S) in the 5th and 7th line are known as the occur check. Their effect is
to prevent the algorithm from generating a solution involving a cyclic substitu-
tion like X := (X — X)), which makes no sense if we are taking about finite type
expressions. If we expand our language to include infinity type expressions, i.e.
recursive types, then the occur check can be omitted.

Definition 5.1. A substitution o is less specific (or more general) than a sub-
stitution o’, written o C ¢, if ¢’ =y o o for some substitution +.

Definition 5.2. A principal unifier (or sometimes most general unifier) for a
constraint set C is a substitution o that satisfies C' and such that o C ¢’ for
every substitution ¢’ satisfying C.

Theorem 5.3. The unification algorithm unify always terminates, failing when
given a nonunifiable constraint set as input and otherwise returning a principal
unifier.

Proof. See section 22.4.5 in Pierce’s book. O

Note that theorem 5.3 guarantees the existence of a principal unifier for a
constraint set C if C can be unified.

10

6 Principal Types

We remarked above that if there is some way to instantiate the type variables
in a term so that it becomes typable, then there is a most general or principal
way of doing so.

Definition 6.1. A principal solution for (T',¢,S,C) is a solution (¢,T) such
that whenever (¢’,T") is also a solution for (T',¢,S,C) we have 0 C ¢'. When
(0,T) is a principal solution, we call T' a principal type of ¢ under T.

Theorem 6.2. If (I',¢, S, C) has any solution, then it has a principal one. The
unification algorithm can be used to determine whether (T', ¢, S, C) has a solution
and if so to calculate a principal one.

Proof. By definition of a solution for (T', ¢, .5, C) and the properties of unification.
O

Example 6.3. We continue the last example of Az. Ay. Az. (z z) (y 2) by
solving the achieved set C = {X =7 — X1,Y = Z = X3, X1 = X2 — X3}
of constraints by unification to obtain the most principal type. Applying the
unification algorithm yields 0 = {X := Z — Xy — X;3,Y = Z = X, X; :=
Xs — X3} as most general unifier for C. The principal type for the term is
then oS = (Z = X2 = X3) = (Z > X)) > Z — X;.

7 Let-Polymorphism

The term polymorphism refers to a range of language mechanisms that allow a
single part of a program to be used with different types in different contexts.
The type reconstruction algorithm shown above can be generalized to provide
a simple form of polymorphism known as let-polymorphism.

The motivation for let-polymorphism arises from examples like the following.
Suppose we define and use a simple function double, which applies its first
argument twice to its second:

let double = Af : Nat — Nat. Aa : Nat. f(f(a))
in double (Az : Nat.z + 1) 0 end

As we want to apply double to a function of type Nat — Nat we choose
type annotations that gives it the type (Nat — Nat) — (Nat — Nat). We can
alternatively define double so that it can be used to double a boolean function,
but we cannot use the same double function with both booleans and numbers,
although the function body is nearly the same (except the type annotations).
Even the following does not work:

let double = A\f : X — X. \a: X. f(f(a))
in double (Az : Nat. z + 1) 0;

double (Az : Bool. x) true
end

The reason is, that the first application of the double function introduces
the constraint X —- X = Nat — Nat and the second one the constraint X —
X = Bool — Bool. But these constraints are unsatisfiable and therefore the

11

whole program is untypable.

The problem is, that in both applications of double the type variable X is the
same. Therefore X is first bound to the type Nat and then to Bool which
doesn’t work.

The most popular solution to this problem is to introduce a typescheme at the
definition of the double function.

let double = Af : X. Aa: Y. f(f(a))

in double (A\z : Nat.z + 1) 0;
double (Az : Bool. z) true

end

In this example the function double gets the following type scheme:

{X,Y,Z,U},\U{X =Y — Z,X = Z — U}). As you can see the typescheme
is a tuple of the type variables which are introduced by the constraint typing
rules, the type of the term and the constraints.
If we access the double function first we instantiate the variables X,Y,Z, U
to new instances X', Y’, Z', U’ in the type and the constraints. Accessing it a
second time we use other instances, such that the program above gets typable.
The following rules formalize the use of type schemes. Let be X, ..., X,, the free
type variables of T' and C that do not occur in T' (the ones that are introduced
by the constraint typing rules) and the X, X1, ..., X, be fresh type variables:

Tz:Tpybt1:T|C T,z:({X1,.. . X}, ,CU{T, =TH+Ft2: T'|C'
'tletz:T, =t inty end: T | '
T,z:XFt,:T|C T,z:({X, X100 Xo, ,CU{X =T} Fts:T'| C’
Thlet z=t intsend: T |’
z:({X1,... Xn}, T,C) €T o0=[X1:=X1,.y Xn := X}
'tz:0T|oC

As you see the second rule introduces new instances of the type variables
X1, ..., X, and instantiates the type T as well as the constraints C.

In practise this algorithm is almost linear in the size of the input program.
It therefore came as a significant surprise when Kfoury, Tiuryn and Urzyczyn
(1990) and independently Marison (1990) showed that its worst-case complexity
is still exponential. The example they constrcuted involves using deeply nested
sequences of lets in the right-hand side of other lets to build expressions whose
types grow double exponentionally larger than the expressions themselves. The
following programm for example is well typed but it takes a very long time to
typecheck it:

let fo = Ax. (xx)in
let f1 =Ax fo(fo:l}) in
let fz =Ax fl(fliL') in
let f3 =Ax fg(fg.’l,‘) in
let f4 =AX f3(f3.’1,‘) in
let f5 =Ax f4(f4.’13) in
5 (A xx)

end end end end end end

12

The reason why the typechecking of this program is exponential is the fol-
lowing. The typescheme of the function f; has more than 2 constraints as
both application introduce exactly one constraint. In the definition of f,, the
constraints of f,_; are always instantiated two times and we get another 2 con-
straints from the 2 applications. It yields that the number of constraints in level
n is greater then two times the number of constraints in level n — 1. As a con-
sequence the constraint typing rules generate exponentially many constraints.
As the unification algorithm is linear in the number of constraints, the whole
typechecking is exponential.

The above rule for the let construct has one simple error we still have to fix.
Consider the following program (using references to generate side effects):

let r = ref (A\z: X. z)

inr:= (\z:Nat.z+1);
('r) true

end

The program first allocates a reference for a function of type X — X. Then
a function of type Nat — Nat is saved under the reference. But in the next
line we apply this function to a boolean value which is not safe. The program
is welltyped, as we introduce for both occurences of r different type variables.
The reason why this error occurs is that our rules don’t care about side effects,
like references. To handle this problem we simple introduce typschemes only
for values (e.g. functions). In the above example we had not introduced a
typscheme as ref (Az : z) is no value, as it can be evaluated further. Doing so
the above program is not well-typed.
This concept of value restriction solves our problem with type safety, at some
cost in expressiveness. We can no longer write programs which in the right-
hand side of let expressions we can both, perform some interesting computation
and be assigned a polymorphic type scheme. What is surprising is that this
restriction makes hardly any difference in practice.

8 Notes

Notions of principal types for the lambda-calculus go back at least to the work
of Curry in the 1950s (Curry and Feys, 1958). An algorithm for calculating
principal types based on Curry’s ideas was given by Hindley (1969); similar
algorithms were discovered independently by Morris (1968) and Milner (1978).
In the world of propositional logic, the ideas go back still further, perhaps to
Tarski in the 1920s. Additional historical remarks on principal types can be
found in Hindley (1997).

Unification (Robinson, 1971) is fundamental to many areas of computer science.
Thorough instructions can be found, for example, in Baader and Nipkow (1998),
Baader and Siekmann (1994), and Lassez and Plotkin (1991).

ML-style let-polymorphism was first described by Miler (1978). A number of
type reconstruction algorithms have been proposed, notably the classic Algo-
rithm W of Damas and Milner (1982).

Principal types should not be confused with the similar notion of principal typ-
ings. The difference is that, when we calculate principal types, the context I'

13

and term t are considered as inputs to the algorithm, while the principal type
T is the output. An algorithm for calculating principal typings takes just ¢ as
input and yields both I" and T as outputs, which means also to calculate the
minimal assumptions about the types of the free variables in t.

Principal typings are useful in supporting separate compilation and smartest
recompilation, performing incremental type inference, and pinpointing type er-
rors. Unfortunately many languages, in particular ML, have principal types but
not principal typings, see Jim (1996).

Extending type reconstruction to handle recursive types has been shown not
to pose significant difficulties (Huet, 1975, 1976). The only difference from the
algorithm presented in this paper appears in the definition of unification, where
we omit the occur check. If we disable the occur check and use a graph repre-
sentation, like done in high performance unifiers, we can also compute regular
solutions which correspond to recursive types.

References

[1] Benjamin C. Pierce. Types and Programming Languages. The MIT Press,
2002.

[2] Haskell B. Curry and Robert Feys. Combinatory Logic, Volume 1. 1958,
Second Edition 1968.

[3] J. Roger Hindley. The principal type-scheme of an object in combinatory
logic. 1969.

[4] J. Roger Hindley. Basic Simple Type Theory. Cambridge University Press
Press, 1986.

[6] Luis Damas and Robin Milner. Principal type schemes for functional pro-
grams. Springer LNCS 431, 1990.

[6] Trevor Jim. What are principal typings and what are they good for? 1996.

[7] Pawel Urzyczyn Kfoury Assaf J., Jerzy Tiuryn. ML typability is
DEXPTIME-complete. 1996.

14

