
Tree Transducers

Niko Paltzer

Programming Systems Lab
Universität des Saarlandes, D-66041 Saarbrücken, Germany

nikopp@ps.uni-sb.de

Seminar Formal Grammars WS 06/07
Advisor: Marco Kuhlmann

Abstract. The concept of top-down tree transducers is known since
decades and the purpose of this paper is to give a smooth introduction
into this concept. Within this context, we consider the notion of copying,
a copying normal form and a corresponding algorithm. This leads to
the presentation of the intercalation lemma that is used to establish a
language hierarchy on a special class of tree transducers with respect to
the copying-bound parameter.

1 Introduction

The concept of top-down tree transducers is known since decades [4] and the
purpose of this paper is to give a smooth introduction into this concept. In order
to keep things simple, we only consider deterministic transducers. 1

Tree transducers are designed to manipulate trees and together with the
notion of a copying-bound, some interesting language hierarchies can be estab-
lished. Since the copying-bound is based on dynamic properties, we point out
a possibility to derive it statically. Afterward, we consider an analogon for the
pumping lemma of context-free grammars, named intercalation lemma [4]. We
use it to show that a particular class of tree transducers form a language hier-
archy with respect to the copying-bound parameter.

The paper is organized as described in the following. Most of the necessary
basic definitions are stated in Sec. 2. Section 3 provides some examples to get
an idea on how the definitions work together and what is meant by copying.
In Sec. 4 we present a copying normal form together with an algorithm [2] and
propose some modifications to generalize this algorithm. In order to show that
the possible amount of copying performed by a transducer is directly related to
its expressiveness, we consider the intercalation lemma together with a sample
application in Sec. 5.

1 For a special class of transducers, there also exists an algorithm to transform non-
deterministic ones into deterministic ones [4].

2

2 Definitions

The following basic definitions are mainly taken from [2] and [3]. We slightly
modified them wherever we thought it would better suit our requirements. Ad-
ditional definitions and some notation that are more specific, are introduced in
the accordant section.

Definition 1 (Ranked Alphabet). A ranked alphabet is a finite alphabet Σ
with rank function dΣ : Σ → IN. By Σn we denote the set {σ ∈ Σ | dΣ(σ) = n}.

Definition 2 (Trees). A tree over Σ is either a symbol of rank 0 or a string
of the form σ(t1 . . . tn), where σ has rank n, with n ≥ 1, and ti is a tree over Σ
(for 1 ≤ i ≤ n). 2

The set of all trees over Σ is denoted TΣ, which is (formally) a subset of
(Σ ∪ {(,)})∗.

Definition 3 (Variables). We use V = {x1, x2, x3, . . .} as a denumerably in-
finite set of variables, V0 = ∅ and, for n ≥ 1, Vn = {x1, . . . , xn}. In (small)
examples we will use x, y, z rather than x1, x2, x3.

For an alphabet Σ, n > 0 and a string containing variables, i.e. w0 ∈ (Σ∪Vn)∗,
and strings w1, . . . , wn ∈ Σ∗, w0[w1, . . . , wn] denotes the result of substituting
wi for xi in w0 (where 1 ≤ i ≤ n).

Definition 4 (Top-down Tree Transducer). A top-down tree transducer3 is
a construct M = (Q,Σ,∆, q0, R), where

1. Q is a finite set of states
2. Σ is the ranked input alphabet
3. ∆ is the ranked output alphabet
4. q0 ∈ Q is the initial state
5. R is a finite set of (transducer) rules

A rule is of the form q(σ(x1 . . . xn)) → τ(q1(xi1) . . . qk(xik
)) with n, k ≥ 0,

σ ∈ Σn, τ ∈ ∆k, q, q1, . . . , qk ∈ Q and 1 ≤ im ≤ n for 1 ≤ m ≤ k. 4

M is deterministic if different rules in R have different left-hand sides.

Definition 5 (Sentential Form). Let dQ : Q → IN be the rank function for
the set of states Q (of M) with d(q) = 1 for all q ∈ Q.

A sentential form is an element t ∈ TΣ∪Q∪∆ with the following properties:
Either t = q(t′) with q ∈ Q and t′ ∈ TΣ or t = δ(t1 . . . tn) with δ ∈ ∆ and
t1, . . . , tn are sentential forms.

A sentential form is a valid intermediate result of a derivation (Def. 6). The
following property might help to imagine how such a sentential form looks like:

2 The rank of a tree is the number of its direct subtrees.
3 We will omit the ”top-down” from now on.
4 Note that q, q1, . . . , qk and xi1 , . . . , xik do not have to be distinct, respectively.

3

If you pick an arbitrary path of the sentential form from the root to a leave,
then this path is ordered in the sense that there are some elements of ∆ first,
followed by one element of Q and some elements of Σ at the end. There are two
additional special cases: The path might contain no elements of ∆ or it only
consists of elements of ∆.

Definition 6 (Derivation). For sentential forms s1 and s2 we write s1 ⇒ s2

if s2 is obtained from s1 by applying a rule q(σ(x1 . . . xn)) → δ(w), i.e., replacing
a subtree q(σ(t1 . . . tn)) of s1 by δ(w[t1, . . . , tn]).

As usual, ⇒∗ is used to denote derivations, the reflexive and transitive closure
of ⇒.

Definition 7 (Translation). The translation of a tree transducer M is defined
by

{(t, t′) ∈ TΣ × T∆ | q0(t) ⇒∗ t′}.

We define the language generated by M for an input tree language L to be

L(M,L) = {t′ ∈ T∆ | q0(t) ⇒∗ t′ for some t ∈ L}.

We denote L(M,L) by L(M) if L = TΣ.

Definition 8 (State-sequence). Let M = (Q,Σ,∆, q0, R) be a tree trans-
ducer, t ∈ TΣ an input tree and d a subtree of t at level l. Furthermore, let s be a
sentential form such that there exists a derivation α : q(t) ⇒∗ s and all subtrees
of s that have a root node from Q occur at level l (of s).

We define the state-sequence 〈q1 . . . qk〉, k ≥ 0, of d with respect to α as the
sequence of states qi ∈ Q that occur (from left to right) in s as parent nodes of d.

Intuitively, the state-sequence displays how often a particular subtree of the
input is copied and which states of the transducer are applied to it.

Definition 9 (Copying). Let M = (Q,Σ,∆, q0, R) be a tree transducer and
let k ≥ 1 be an integer. A derivation α : q0(t) ⇒∗ t′ has copying-bound k if, for
each node d of t, the length of the state-sequence of d with respect to α is at most
k.

Let L be a tree language. (M,L) has copying-bound k if for each t′ ∈ M(L)
there exist t ∈ L and a derivation q0(t) ⇒∗ t′ with copying-bound k. (M,L) is
finite copying if it has copying-bound k for some k ∈ IN. 5

The class of deterministic tree transducers with copying-bound k is denoted
by DTfc(k).

5 We will write that M is finite copying if L is clear from the context.

4

3 Warmup

Having now all those definitions at hand, we can start playing with tree trans-
ducers. The fact that a tree transducer has an input and an output alphabet
somehow implies that it transforms trees of an input language into trees of an
output language. It often makes no sense to define a transducer for an arbi-
trary input tree language. Otherwise, we could define a nontrivial language and
combine it with a trivial transducer. Therefore, we restrict the input language
to some tree language L ⊂ TΣ that is recognized by a finite tree automaton
(FTA). The class of recognizable tree languages is denoted by REC and several
references concerning FTAs and properties of REC are included in [2].

In order to clarify the definitions and to get some intuition on the behavior
of a tree transducer, we will give some small examples in the following.

Example 1. Let M1 = ({q0, q1}, {σ, τ}, {β, γ, δ}, q0, R
1) such that σ, β and γ

have rank 1 whereas τ and δ have rank 0. R1 consists of the rules

q0(σ(x)) → β(q1(x))
q0(τ) → δ

q1(σ(x)) → γ(q0(x))
q1(τ) → δ.

The tree transducer M1 transforms a linear tree σn(τ) into an alternating
linear tree β(γ(β(γ(. . . (δ))))) with depth n. Since the left-hand sides of the rules
are disjoint, M1 is deterministic.

Let’s have a look at the derivation for input t = σ(σ(σ(τ))):

q0(t) ⇒ β(q1(σ(σ(τ))))
⇒ β(γ(q0(σ(τ))))
⇒ β(γ(β(q1(τ))))
⇒ β(γ(β(δ))))

From the derivation we can see that the state-sequence for σ(σ(σ(τ))) and
σ(τ) is 〈q0〉. For σ(σ(τ)) and τ we have the state-sequence 〈q1〉.

Therefore, this derivation has copying-bound 1. Since this holds for all deriva-
tions of possible input trees, M1 is finite copying with copying-bound 1.

Example 2. Let M2 = ({q0}, {σ, τ}, {β, δ}, q0, R
2) such that β has rank 2, σ has

rank 1, τ and δ have rank 0, and R2 consists of the rules

q0(σ(x)) → β(q0(x)q0(x))
q0(τ) → δ.

The tree transducer M2 transforms a linear tree σn(τ) into a binary tree
β(β(. . . (δδ))β(. . . (δδ))) with depth n and 2n leaves labeled δ. Since the left-
hand sides of the rules are disjoint, M2 is deterministic.

5

For the derivation we add subscripts to the input symbols in order to dis-
tinguish different nodes with the same label. Then, the derivation for input
t = σ1(σ2(τ1)) looks as follows:

q0(t) ⇒ β(q0(σ2(τ1))q0(σ2(τ1)))
⇒∗ β(β(q0(τ1)q0(τ1))β(q0(τ1)q0(τ1)))
⇒∗ β(β(δδ)β(δδ))

Investigating the corresponding state-sequences, the subtree with root σ1 has
〈q0〉, σ2 has 〈q0q0〉 and τ1 has 〈q0q0q0q0〉, respectively.

This derivation has copying-bound 4. In general, the copying-bound of this
example directly corresponds to the number of leaves of the output tree, i.e. 2n

for an input tree of depth n. Therefore, M2 is not finite copying.

4 Copying Normal Form (CNF)

The definition of copying-bound was founded on derivations which are dynamic
artifacts. In order to show that the copying-bound can also be determined stat-
ically, we introduce the copying normal form and a corresponding algorithm,
which are both described in [2].

Definition 10 (Copying Normal Form). A tree transducer M is in copying
normal form iff for all derivations α and for all state-sequences s of α, all states
occur in s at most once.

The benefit of this normal form is the fact that for any tree transducer M
that is in copying normal form, the number of states of M is an upper bound
for the copying-bound of M .

Each tree transducer that is deterministic and finite copying can be trans-
formed into an equivalent one that is in copying normal form by applying the fol-
lowing algorithm. Unfortunately, this algorithm may introduce many new states
such that the above mentioned upper bound is not very tight.

4.1 Algorithm

In order to state the algorithm in a more or less readable format, we have to
introduce some additional notation.

Definition 11 (Notation). For a rule q(σ(x1 . . . xn)) → τ(q1(xi1) . . . qk(xik
))

we define SS(q, σ, xj) to be the sequence of states that is obtained by deleting all
states from 〈q1 . . . qk〉 that are not applied to xj.

An additional superscript l denotes, that the lth state in the sequence is over-
lined, i.e. SSl(q, σ, xj) = 〈qi1 . . . qil

. . . qim〉.
The concatenation of two sequences is denoted by the ◦-operator, i.e.

〈qk . . . ql〉 ◦ 〈qm . . . qn〉 = 〈qk . . . qlqm . . . qn〉.

6

The main idea of the algorithm is to code the state-sequences into the states.
Therefore the new states are labeled with state-sequences and exactly one state
in such a label is overlined, namely the active one.

An agenda A is maintained that keeps track of all newly introduced states,
since the rules for these states have to be copied.

Let M = (Q,Σ,∆, q0, R) be the tree transducer that should be transformed
into copying normal form.

1. The algorithm starts with the introduction of a new initial state 〈q0〉 and
inserts it into A.

2. As long as A is not empty, the algorithm picks an arbitrary state q′ out of
A, modifies the rules from R that correspond to the overlined state in the
label of q′ and enters them into R′.
For q′ = 〈qi1 . . . qil

. . . qim〉 and a rule
qil

(σ(x1 . . . xn)) → τ(q1(xi1) . . . qk(xik
)) we obtain a rule

q′(σ(x1 . . . xn)) → τ(q1
′(xi1) . . . qk

′(xik
)) with

qj
′ = SS(qi1σ, xij) ◦ . . . ◦ SSn(qil

, σ, xij) ◦ . . . ◦ SS(qim , σ, xij) and n is the
number of xih

with xih
= xij for h ≤ j.

3. Move q′ from A to Q′ and continue with 2.
4. If A is empty, the algorithm is done and the output is M ′ = (Q′, Σ,∆, 〈q0〉, R′).

This algorithm is considered to be correct because the difference between the
new and the old tree transducer is just duplication and renaming of the states.
Neither the alphabet nor the rules have been changed.

Since there are a lot of indices involved in the description of the algorithm,
we will give an example and hope that it will clarify the course of action.

Example 3. Let’s have a look at the tree transducer
M3 = ({q, r, s}, {τ, δ}, {α, β, γ}, q, R3) such that β has rank 2, τ and α have rank
1 whereas δ and γ have rank 0. R3 consists of the rules

q(τ(x)) → β(r(x)s(x))
q(δ) → γ

r(τ(x)) → β(s(x)s(x))
r(δ) → γ

s(τ(x)) → α(s(x))
s(δ) → γ.

The algorithm constructs the tree transducer
M3′ = ({〈q〉, 〈rs〉, 〈rs〉, 〈rs〉, 〈sss〉, 〈sss〉, 〈sss〉}, Σ3,∆3, 〈q〉, R3′) and R3′ con-
sists of the rules

〈q〉(τ(x)) → β(〈rs〉(x)〈rs〉(x))
〈q〉(δ) → γ

〈rs〉(τ(x)) → β(〈sss〉(x)〈sss〉(x))

7

〈rs〉(δ) → γ

〈rs〉(τ(x)) → α(〈sss〉(x))
〈rs〉(δ) → γ

〈sss〉(τ(x)) → α(〈sss〉(x))
〈sss〉(δ) → γ

〈sss〉(τ(x)) → α(〈sss〉(x))
〈sss〉(δ) → γ

〈sss〉(τ(x)) → α(〈sss〉(x))
〈sss〉(δ) → γ.

Let’s try to clarify how the right-hand side of the rule for 〈rs〉(τ(x)) has
been constructed. Since M3 is deterministic, the decisions we have to make are
unambiguous.

1. The rule that we have to copy from R3 is chosen via the overlined state r in
the label and the input symbol τ , i.e. r(τ(x)) → β(s(x)s(x)).

2. In this rule, we have to replace the old states by new ones. The labels for
these states depend on 〈rs〉, τ and the variables they are applied to. For r,
τ and x, we obtain 〈ss〉. Since r is overlined, we get 〈ss〉 and 〈ss〉 for the
first and the second occurence, respectively. For s, τ and x, we obtain 〈s〉.
The concatenation yields 〈sss〉 and 〈sss〉 which raplace the first and second
occurence of s, respectively.

Modifications The described algorithm can be modified such that it addition-
ally computes the copying bound of the given tree transducer M or decides that
M is not finite copying. We will just give the ideas of these modifications without
proving any properties, since this is beyond the range of this paper.

The modification to obtain the copying-bound is rather trivial. Since the
generated states are labeled with state-sequences, we just measure the length of
these labels and the maximum over all these values is the copying-bound.

To find out if a tree transducer is finite copying or not, we were not able
to find such a simple solution. The first idea is to let the algorithm build a
directed graph that depends on the rules and this graph is acyclic iff the tree
transducer is finite copying. But it is not sufficient just to check for cycles in this
graph because cycles also do occur in tree transducers that are finite copying.
Otherwise, a tree transducer could not produce an infinite language since it has
only finitely many states and rules.

Therefore we have to consider two kinds of cycles. The good ones, that occur
in finite copying tree transducers, and the bad ones, that make the transducer
loose this property.

We choose the nodes of the graph to be the states of M . A directed edge
(q, q′) is marked if q′ is applied to a subtree that has been copied due to a rule for
q. Then the bad cycles in the graph are those that contain at least one marked
edge.

8

The algorithm should build a graph G = (E, V) as follows: 6

1. When we access a rule r of R, we add each state q that occurs in r to E.
For r = q(σ(x1 . . . xn)) → τ(q1(xi1) . . . qk(xik

)) we add edges (q, qj) to V for
1 ≤ j ≤ k. If xij = xil

for some l ∈ {1, . . . , k} then (q, qj) is marked.
2. After each change (or bunch of changes) of G, we test if we can find a cycle

in G that contains at least one marked edge. If we discover such a bad cycle,
we can abort the computation since M is not finite copying.

Example 4. If we slightly modify one rule of M3, that was presented in Exam-
ple 3, we obtain a tree transducer that is no longer finite copying.

Let M4 = ({q, r, s}, {τ, δ}, {α, β, γ}, q, R4) such that β has rank 2, τ and α
have rank 1 whereas δ and γ have rank 0. R4 consists of the rules

q(τ(x)) → β(r(x)s(x))
q(δ) → γ

r(τ(x)) → β(s(x)s(x))
r(δ) → γ

s(τ(x)) → α(q(x))
s(δ) → γ.

If we take M4 as input for the modified algorithm, it will build up a graph
that will (at some point in time) look like the one depicted in Fig. 1. The marked
edges are labeled with m and we can see that there are two bad cycles, namely
q → s → q and q → r → s → q, containing one marked edge and two marked
edges, respectively.

q

rs

mm

m

Fig. 1. The graph that is built by the modified CNF algorithm for input M4.

6 Insertion of nodes and edges is only done if necessary, i.e. if they are not already
in the graph. The only exception: If an unmarked edge is in the graph, it could be
replaced by a marked one but not vice versa.

9

5 Intercalation Lemma

The intercalation lemma for tree transducer languages is the analogon for the
pumping lemma for context-free grammars. It can be used to show that a lan-
guage L is not an element of the yield languages of a class of tree transducers T .

We first give a recap of the pumping lemma for context-free grammars (found
in [5]), then state the definition of a yield language and introduce the intercala-
tion lemma for finite copying deterministic tree transducers. (The more general
version of the lemma can be found in [4].) We point out the main differences
between the two given lemmas afterward.

Lemma 1 (Pumping Lemma for CFGs). For each context-free language L,
there exists a constant n ∈ IN such that each z ∈ L with |z| ≥ n can be written
as z = uvwxy with |vx| ≥ 1, |vwx| ≤ n and ∀i ≥ 0 : uviwxiy ∈ L.

Figure 2 depicts what you should have in mind when arguing about the
pumping lemma for CFGs. Unfortunately, there is no such nice picture for the
intercalation lemma as we will see later.

w yxvu

A

A

w

yxvu

A

v x

v x

A

A

A

Fig. 2. The picture behind the pumping lemma for CFGs. It is an abstract view of
possible derivation trees where A is a nonterminal of the CFG and u, v, w, x and y are
sequences of terminals.

10

Definition 12 (Yield Language). Let M = (Q,Σ,∆, q0, R) be a tree trans-
ducer and L a tree language over Σ.

Then yL(M,L) = {yield(t′) | q0(t) ⇒∗ t′ for some t ∈ L} is the yield lan-
guage of (M,L). 7

With yL(T , C) = {yL(M,L) | M ∈ T and L ∈ C} we denote the set of yield
languages for some class of tree transducers T and some class of tree languages C.

The string language generated by a CFG G is equivalent to the yield language
of the derivation trees of G together with the identity transducer. The identity
transducer simply outputs the input tree like the identity function does.

Lemma 2 (Intercalation Lemma). Let k > 0 be an integer. For each tree
language L ∈ yL(DTfc(k),REC) there exists a constant p ∈ IN such that each
z ∈ L with |z| ≥ p can be written as z = x1z1x2z2 . . . xszsxs+1 with (1 ≤ s ≤ k)
such that 0 < |zi| ≤ p for 1 ≤ i ≤ s and the following holds:

∀n ∈ IN. ∃v1, . . . , vs such that

1. v = x1v1x2v2 . . . xsvsxs+1

2. v ∈ L
3. |v| ≥ n
4. alph(vi) = alph(zi) for 1 ≤ i ≤ s

Note that alph(w) is the set of symbols occurring in w.

On the one hand this lemma is very similar to the pumping lemma, but on
the other hand there are some major differences. One aspect is the fact that
there can be up to k parts x1 . . . xs where something can be intercalated into the
string whereas there are only two parts v and y in a string that can be pumped.

While the pumping lemma clearly predicts how the pumped string looks like,
the intercalation lemma is weaker in the sense that it only states, that the set
of used symbols does not change when intercalating from zi to vi. As already
mentioned, this is the reason, why we cannot give such a nice picture for the
intercalation lemma. And we will see in Example 6 why the lemma has this
restriction.

Theorem 1 (Language Hierarchy). The yield languages generated by finite
copying deterministic tree transducers form a hierarchy with respect to the copying-
bound k, i.e.

yL(DTfc(k−1),REC) yL(DTfc(k),REC) for k > 1

Proof. It is clear that yL(DTfc(k−1),REC) ⊂ yL(DTfc(k),REC), since by the
definition of the copying-bound, DTfc(k−1) ⊂ DTfc(k).

It remains to show that yL(DTfc(k−1),REC) 6= yL(DTfc(k),REC) for k > 1.
For that purpose, we use the language Lk = {a1

na2
n . . . a2k

n | n ∈ IN} for k > 1.
With Lemma 3 and 4 we show that Lk ∈ yL(DTfc(k),REC) but

Lk /∈ yL(DTfc(k−1),REC), respectively.
Therefore yL(DTfc(k−1),REC) 6= yL(DTfc(k),REC).

ut
7 The yield of a tree is the concatenation of all leaves from left to right.

11

Lemma 3 (Language Hierarchy). Let Lk = {a1
na2

n . . . a2k
n | n ∈ IN}, then

Lk ∈ yL(DTfc(k),REC) for k > 1.

Proof. We can prove this lemma by constructing an appropriate tree transducer.
Let M = ({q0, . . . , qk, r1, . . . , r2k}, {a, b, c, d}, {a, b, c, a1, . . . , a2k}, q0, R) where a
has rank k, b has rank 3, c has rank 2, a has rank 1 and d, a1, . . . , a2k have
rank 0. Furthermore, R contains the following rules for 1 ≤ i ≤ k:

q0(a(x)) → a(q1(x) . . . qk(x))
qi(b(xyz)) → b(r2i−1(x)qi(y)r2i(z))
qi(c(xy)) → c(r2i−1(x)r2i(y))
r2i−1(d) → a2i−1

r2i(d) → a2i

The recognizable input language for this tree transducer contains trees of the
form a(b(db(d . . . b(dc(dd)d) . . . d)d)). The output has the form
a(b(a1b(a1 . . . b(a1c(a1a2)a2) . . . a2)a2) . . .

b(a2k−1b(a2k−1 . . . b(a2k−1c(a2k−1a2k)a2k) . . . a2k)a2k)).
The copying-bound of M is k since copying only occurs in the first rule where

the direct subtree of a is copied k times. ut

Example 5 shows the construction of Lemma 3 for the case k = 2.

Lemma 4 (Language Hierarchy). Let Lk = {a1
na2

n . . . a2k
n | n ∈ IN}, then

Lk /∈ yL(DTfc(k−1),REC) for k > 1.

Proof. We assume that Lk ∈ yL(DTfc(k−1)) and deduce a contradiction.
According to our assumption, we can apply the intercalation lemma (Lemma 2).

Let p be the constant from the lemma and z = a1
pa2

p . . . a2k
p ∈ Lk.

According to the lemma there exists a decomposition z = x1z1x2z2 . . . xszsxs+1

with s ≤ k − 1 and 0 < |zi| ≤ p.
Since all zi have to be nonempty, at least one ai occurs in z1, . . . , zs. And

since |zi| ≤ p, each zi can contain at most two different ai. Hence, there are at
most 2k − 2 different ai in z1, . . . , zs.

It follows that there is some aj that occurs in z1, . . . , zs and some aj′ that
does not occur in any zi. Since alph(zi) = alph(vi), this aj′ does not occur in
any vi.

Since the lemma states that we can produce an arbitrary long word v ∈ Lk,
the number of at least one aj must increase whereas the number of aj′ remains
p and therefore v /∈ Lk.

ut

12

Example 5. To illustrate the construction that was done in Lem. 3 we state an
example for the case k = 2 in the following.

Let M5 = ({q0, q1, q2, r1, r2, r3, r4}, {a, b, c, d}, {a, b, c, a1, a2, a3, a4}, q0, R
5)

and R5 contains the following rules:

q0(a(x)) → a(q1(x)q2(x))
q1(b(xyz)) → b(r1(x)qi(y)r2(z))
q2(b(xyz)) → b(r3(x)qi(y)r4(z))
q1(c(xy)) → c(r1(x)r2(y))
q2(c(xy)) → c(r3(x)r4(y))

r1(d) → a1

r2(d) → a2

r3(d) → a3

r4(d) → a4

Figure 3 shows one sample input and output tree for M5.

a

b

b

c

d d

d d

d d

a

b

b

c

a1 a2

a1 a2

a1 a2

b

b

c

a3 a4

a3 a4

a3 a4

Fig. 3. Tree transducer M5 generates for the input tree on the left the output tree on
the right. And the yield of the output tree is a1

3a2
3a3

3a4
3.

A tree transducer may reorder subtrees in any possible way. Therefore, the
intercalation lemma is weaker than the pumping lemma for CFGs in the sense
that there is not simply a multiplication of substrings for the yield of an inter-
calated tree, as shown in the following example.

13

c

c b

b c

a b a a a

b

b b

b b b

c

c c

d

d

d

e

f

f

f

yield: fabbebafbbabf

c

c b

b c

b c

a b a a a a

b

b b

b b b

b b b b

c

c c

c c c

d

d

d

d

e

f

f

f

f

yield: fbabbfabbebafbbbabf

Fig. 4. The top right tree is obtained from the top left one by intercalation. The trees
below are the corresponding output trees with respect to transducer M6.

14

Example 6. This example is adapted from Ex. 1.1 in [3].
Let M6 = ({q}, {a, b, c}, {a, b, c, d, e, f}, q, R6) where a, b, e and f have rank 0,

c has rank 2, d has rank 4 and R6 contains the following rules:

q(c(xy)) → d(q(x)r(y)r(x)q(y))
r(c(xy)) → c(r(x)r(y))

q(a) → e

r(a) → a

q(b) → f

r(b) → b

Figure 4 shows that the only structural relation between the two resulting
yields is the fact that no different symbols have been introduced to the yield. But
the order in which they appear highly depends on the rules of the transducer
and can not be generalized.

References

1. Maneth, S.: Models of Tree Translation. IPA Dissertation Series (2004) 45–80
2. Vugt, N.: Generalized Context-Free Grammars. Master’s Thesis, Universiteit Leiden

(1996) 43–57
3. Perrault, C. R.: Intercalation theorems for tree transducer languages. STOC ’75:

Proceedings of seventh annual ACM symposium on Theory of computing (1975)
126–136

4. Engelfriet, J., Rozenberg, G., Slutzki, G.: Tree Transducers, L Systems, and Two-
Way Machines. Journal of Computer and System Sciences 20 (1980) 150–176

5. Wegener, I.: Theoretische Informatik - eine algorithmenorientierte Einführung.
B.G. Teubner Stuttgart • Leipzig (1999) 157–160

