
CFG Parsing and Boolean Matrix Multiplication

Franziska Ebert

Abstract. In this work the relation between Boolean Matrix Multipli-
cation (BMM) and Context Free Grammar (CFG) parsing is shown. The
first described approach, which is due to Valiant (1975), shows how CFG
parsing can be reduced to Boolean Matrix Multiplication. Afterwards
the reverse direction, i.e. how a CFG parser can be used to multiply two
Boolean matrices, is presented, which is due to Lee (2002). The funda-
mental theorem that can be derived from the reductions is that fast CFG
parsing requires fast Boolean matrix multiplication, and vice versa.

1 Introduction

CFG parsing arose in the middle of the last century. First CFG parsers had a
worst-case running time of O(gn3), where g is the size of the CFG and n is the
length of the input string. The most famous CFG parsers with this running time
are the CKY algorithm ([You67], 1967) and Earley’s algorithm ([Ear70], 1970).

A relation between CFG parsing and Boolean Matrix Multiplication (BMM)
was found at first by Valiant in 1975 ([Val75]). Since BMM was shown to be sub-
cubic (Strassen: O(n2.81), [Str69]), Valiant tried to transform the CFG parsing
problem to an instance for BMM with no computational overhead. Indeed, his
algorithm is proven to have a worst-case running time in O(BM(n)), where
BM(m) is the time needed to multiply two m × m Boolean matrices. Hence, if
Valiant’s algorithm uses Strassen’s method, CFG parsing is possible in less than
cubic time. Also today Valiant’s algorithm is asymptotically the best.

During the following years, there were only little improvements of the running
time of BMM algorithms. Unfortunately, it turns out that the involved constants
in these “fast” BMM algorithms are very large, such that these algorithms cannot
be used in practice. Therefore, still Strassen’s algorithm has asymptotically the
best running time.

For the development of CFG parsers it looks almost the same. There was
only little success in finding a better algorithm. Thus, Lee analyzes the relation
between BMM and CFG parsing ([Lee02]). She shows that the reverse direc-
tion of Valiant’s approach, namely converting a CFG parser into an algorithm
for BMM, is also possible. Figure 1 gives an overview over the development of
BMM algorithms (below the timeline) and CFG parsing algorithms (above the
timeline).

Since Valiant’s reduction and also the reverse reduction could be proven,
Lee formulated a fundamental theorem in 2002: “Fast CFG parsing requires fast
Boolean matrix multiplication.” ([Lee02]). In the following this theorem of Lee
is proven by showing the reduction of CFG parsing to BMM and the reverse
direction.

CFG parsing

BMM

CFG parsing in O(n3)

Strassen
O(n2.81)

CKY, Earley

1969 1975

Valiant
O(BM(n))

Improvement

O(m2.376)
but still Strassen’s algorithm
is practically the best

Little success in finding
a better algorithm

O(n3/log2n)

Lee
Fast CFG parsing
requires fast BMM

2002

Fig. 1. Development of CFG parsing algorithms and BMM algorithms.

2 Reduction of CFG Parsing to Boolean Matrix

Multiplication

The idea of reducing CFG parsing to BMM is due to Valiant ([Val75]). In his
paper of 1975 he derives a sub-cubic CFG parsing algorithm which - also today
- is the asymptotically fastest known. First, CFG parsing is reduced to matrix
multiplication (MM) and afterwards MM is reduced to BMM. In the following
this CFG parsing algorithm is described.

The general idea for an MM algorithm to parse a string of length n and a
CFG is to build an upper triangular (n+1)×(n+1) matrix a with subsets of the
set of nonterminals as elements. Matrix multiplication is defined newly over this
type of matrices. After applying this new matrix multiplication several times on
a, a fixpoint is reached. In all iteration steps it holds that the entry aij of a

is the set of nonterminals which derive the string wj−1
i . Hence, if the starting

symbol is an element of the set a1n+1 of matrix a, the string can be derived by
the CFG. Note, that the form of a is exactly like the recognition matrix of the
CKY-algorithm. Now Valiant’s CFG parsing algorithm is formalized.

2.1 Preliminaries

It is assumed that the considered CFGs are in Chomsky normal form. Thus
CFGs are defined as follows.

Definition 1. A CFG is a 4-tuple (N, Σ, P, A1) with

– N : The set of nonterminals, with N = {A1, . . . , Ah}
– Σ: The set of terminals

– P : The set of productions, each of which has the form:

• Ai → AjAk

• Ai → x, for x ∈ Σ

– A1: The starting symbol

With Ai →∗ wk
j is denoted that the string wj . . . wk can be derived from Ai.

In Valiant’s algorithm, matrices with subsets of N as elements are observed.
Hence, the MM has to be defined newly.

Definition 2. Let a and b be two m×m matrices with subsets of N as elements.
Then a ∗ b = c is defined as:

cij =
m⋃

k=1

aik ∗ bkj ∀1 ≤ i, j ≤ m

where the ∗-operator over subsets of N is defined as:
N1 ∗ N2 = {Ai | ∃Aj ∈ N1, Ak ∈ N2.(Ai → AjAk) ∈ P}

Confer example 1 for an application of multiplying two matrices with subsets of
N as elements.

Example 1. Consider the CFG G with starting symbol S and productions
P =
{ S → XY
X → XA | AA
Y → Y B | BB
A → a
B → b}
This grammar produces strings consisting of a’s that are followed by b’s. At least
there have to be two a’s and two b’s. Then we obtain the product matrix c by
applying the above definition of MM on a and itself:









∅ {A} ∅ ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} ∅
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









∗









∅ {A} ∅ ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} ∅
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









=









∅ ∅ {X} ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {Y }
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅









a ∗ a = c

In the following we observe only matrices with subsets of N as elements.
With MM as defined above, the transitive closure of a square matrix can be
defined.

Definition 3. Let a be a m×m matrix. Then the transitive closure of a, denoted
by a+ is:

a+ = a(1) ∪ a(2) ∪ . . .
where

a(i) =
i−1⋃

j=1

a(j) ∗ a(i−j) and a(1) = a

The union of two matrices a ∪ b = c is defined as:
cij = aij ∪ bij ∀1 ≤ i, j ≤ m

Note, that computing the transitive closure of a yields a fixpoint and thus the
computation is finite.

Example 2. Consider the CFG of example 1. Then the first two iterations of the
transitive closure, a(1) ∪ a(2), is computed by a ∪ a ∗ a =: c. Hence we obtain:









∅ {A} ∅ ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} ∅
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









∪









∅ ∅ {X} ∅ ∅
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ {Y }
∅ ∅ ∅ ∅ ∅
∅ ∅ ∅ ∅ ∅









=









∅ {A} {X} ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} {Y }
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









a ∪ a ∗ a = c

2.2 Algorithm: CFG Parsing reduced to Matrix Multiplication

Valiant’s CFG parsing algorithm requires as input a CFG G = (N, Σ, P, A1) in
Chomsky normal form and a string w = w1 . . . wn of length n. The string w
should be parsed, i.e. the algorithm should check whether w can be derived from
the starting symbol A1.

Now let b be a (n + 1) × (n + 1) matrix with subsets of N as elements. The
algorithm performs the following steps:

1. bi,j = ∅ ∀1 ≤ i, j ≤ (n + 1)
2. bi,i+1 = {Ak | (Ak → wi) ∈ P} ∀1 ≤ i ≤ n
3. Compute a = b+

4. Check whether A1 ∈ a1,n+1

The first step initializes all entries of b with the empty set. Afterwards b is filled
by parsing w bottom-up. That means, first all substrings of w of length 1 are
parsed (step 2) then all substrings of w of length 2 and so on (step 3). In each
iteration of the computation of the transitive closure it holds that:

Ak ∈ bij ⇔ Ak →∗ wi . . . wj−1

Hence, if the fixpoint b+ is reached, it is checked whether the starting symbol
A1 is an element of the set b+

1n+1. If A1 ∈ b+
1n+1 then A1 derives w1 . . . wn = w.

Thus w is recognized by G. The following example shows an execution of the
algorithm.

Example 3. Let the CFG be defined as in example 1. The string which should
be parsed is w = aabb. We start at step two of Valiant’s algorithm where b is
initialized:

2. Build the upper triangular matrix (parsing of all substrings of length 1):

b :=









∅ {A} ∅ ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} ∅
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









3. Compute b+ :

(a) a := b(1)
︸︷︷︸

=b

∪ b(2)
︸︷︷︸

=b∗b

(parsing of all substrings of length 2)

a :=









∅ {A} {X} ∅ ∅
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} {Y }
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









(b) a := a ∪ b(3)
︸︷︷︸

=b∗b(2)∪b(2)∗b

(parsing of all substrings of length 3 and 4)

a :=









∅ {A} {X} ∅ {S}
∅ ∅ {A} ∅ ∅
∅ ∅ ∅ {B} {Y }
∅ ∅ ∅ ∅ {B}
∅ ∅ ∅ ∅ ∅









(c) The fixpoint is reached

4. Check whether S ∈ a1n+1: ”yes”. Hence w can be derived by S and is
recognized by the CFG G.

2.3 Time Bounds

The computation of the transitive closure (step 3 of the algorithm) clearly dom-
inates the time complexity of Valiant’s CFG parsing algorithm. Hence, the time
complexity for computing the transitive closure, denoted by T (n), has to be es-
timated. It is claimed that Valiant’s algorithm is sub-cubic, and thus T (n) has
to be sub-cubic.

Theorem 1. The transitive closure of an upper triangular matrix can be com-
puted in less than cubic time.

This result is proven in the following. Let T (n) denote the time to compute
the transitive closure, BM(n) denotes the complexity for BMM, and with M(n)
the complexity for multiplying two matrices is denoted. Figure 2 shows the
reduction steps which prove that computing the transitive closure is sub-cubic.

O(T (n)) ≤ O(M(n)) O(M(n)) ≤ O(BM(n)) O(BM(n))

Fig. 2. Time complexity for CFG parsing: O(BM(n)) = O(n2.81)

First, Valiant shows that computing the transitive closure of an upper tri-
angular matrix has essentially the same time complexity as performing matrix
multiplication. Afterwards it is shown that matrix multiplication can be re-
duced to Boolean matrix multiplication, by simulating matrix multiplication by
h2 Boolean matrix multiplications (where h is the size of the set of nonterminals
N).

In the following these two reductions are shown and the involved constants
are approximated.

1. Reduction: O(T (n)) ≤ O(M(n)):
to show: the transitive closure of an upper triangular matrix b can be com-
puted with the same time complexity as performing matrix multiplication.

Proof (sketch). Here only a proof sketch is given. For a detailed analysis of
the time complexity confer [Val75].
The proof is inductive over the size of matrix b. Therefore, a recursive pro-
cedure for computing the transitive closure is established.
Matrix b can be partitioned into two smaller upper triangular matrices. It is
shown that if the transitive closure of these two matrices is known, b+ can
be computed by performing a single matrix multiplication and computing
the transitive closure for a smaller matrix. This leads to recursion and thus,
the same time complexity as for matrix multiplication is obtained.

2. Reduction: O(M(n)) ≤ O(BM(n)):
to show: we can compute c =

⋃n
k=1 aik ∗ bkj by performing only Boolean

matrix multiplications with the same complexity.

Proof. Let h denote the number of nonterminals, i.e. h = |N |. First we
form for each nonterminal Al ∈ N two n × n Boolean matrices a[l] and b[l]
(1 ≤ l ≤ h) in the following way:

a[l]ik = 1 iff Al ∈ aik and b[l]kj = 1 iff Al ∈ bkj ∀1 ≤ i, k, j ≤ n.

Hence, we obtain 2h Boolean matrices. For each pair l, m with 1 ≤ l, m ≤ h
we compute the Boolean matrix c[l, m] by Boolean matrix multiplication
where

c[l, m] = a[l] · b[m]

Thus, we obtain h2 matrices c[l, m]. We compute matrix c by

Ap ∈ cij iff ∃l, m.c[l, m] = 1 and (Ap → AlAm) ∈ P

Therefore, matrix multiplication can be simulated by h2 Boolean matrix
operations. Since h is a constant we obtain: O(M(n)) ≤ O(BM(n) · h2) =
O(BM(n)).

By these two reductions it follows that T (n) has the same complexity as
performing Boolean matrix multiplication. Since the latter one is proven to be
sub-cubic (Algorithm of Strassen: O(n2.81)), CFG parsing is shown to be sub-
cubic. Also it holds that finding a faster BMM algorithm would lead to a faster
CFG parsing algorithm.

3 Conversion of a CFG Parser into an Algorithm for

Boolean Matrix Multiplication

In the previous section the reduction from CFG parsing to Boolean matrix mul-
tiplication was explained. In this section a dual result, i.e. converting a CFG
parser into an algorithm for BMM, is shown. This algorithm was developed by
Lee in 2002 ([Lee02]).

How this algorithm works in general is depicted in figure 3. As input the BMM

reduction c−parser querierFG,w(A, B) C(G, w)

BMM algorithm

Fig. 3. Conversion of a CFG parser into an algorithm for BMM

algorithm requires two Boolean matrices A and B which should be multiplied.
Since a CFG parser should be used, A and B have to be transformed into a CFG
G and a string w. w is parsed by a c-parser and the output is an oracle F(G,w)

that answers in constant time whether a nonterminal Ai derives the substring
wk

j . This oracle is passed to the querier which has the task to compute the
resulting Boolean matrix C, i.e. the querier answers for all entries of C whether
it is 1 or 0. The algorithm with its three components (reduction, c-parser, and
querier) is formalized in the following.

3.1 Preliminaries

In the following A and B are Boolean matrices, i.e. matrices with entries 1 and
0. The definition of a CFG G is as usual: G is a 4-tuple (N, Σ, P, S), where N
is the set of nonterminals, Σ is the set of terminals, P is the set of productions,
and S is the starting symbol. wj

i denotes a substring of w = w1 . . . wn with

wk ∈ Σ ∀1 ≤ k ≤ n, i.e. wj
i = wi . . . wj .

Definition 4. Ak ∈ N c-derives wj
i iff

(i) Ak →∗ wj
i , and

(ii) S →∗ wi−1
1 Akwn

j+1

C-derivation is stronger than derivation since it requires additionally that the
starting symbol S derives the whole string w by using the nonterminal Ak that
derives the substring wj

i . Figure 4 illustrates the definition of c-derivation, i.e.

Ak c-derives wj
i .

With the definition of c-derivation, c-parsers can be defined.

w1 wi−1wi wjwj+1 wn

S

Ak

.

Fig. 4. The nonterminal Ak c-derives w
j
i .

Definition 5. A c-parser is an algorithm that takes a CFG G and a string w
and outputs FG,w with:

(i) Ak c-derives wj
i ⇒ FG,w = “yes”

(ii) Ak 6→∗ wj
i ⇒ FG,w = “no”

(iii) FG,w answers queries in constant time.

The input of a c-parser is a CFG G and a string w which should be parsed. The
output of a c-parser is an oracle FG,w that answers in constant time whether a

nonterminal c-derives a string wj
i . To obtain such an oracle, the parser has to

generate all possible parse trees for w. Both, CKY and Earley’s algorithm, can
be used as c-parsers.

Recall the definition for Boolean matrix multiplication.

Definition 6. The product C of two Boolean matrices A and B is defined as:
A · B = C :⇔ cij =

∨m
k=1(aik ∧ bkj)

From this definition it follows immediately that if cij = 1 then ∃k.aik = bkj = 1.

3.2 Algorithm: BMM reduced to CFG Parsing

As input the algorithm requires two m × m Boolean matrices A and B. The
output should be a Boolean matrix C with C = A · B. The next two sections
describe the three steps needed to compute the product matrix C using a CFG
parser. Confer figure 3 for an overview of these three components.

Reduction In the first step, the reduction step, the two matrices A and B are
transformed into a CFG G and a string w that serve as input for the c-parser.
Mainly all information about A and B is coded in the grammar. The general
idea is to introduce for each entry aij of A that equals 1 a production Ai,j →
wiWwj (A-rule), where W is a nonterminal that can produce an arbitrary string
(except the empty string). For all entries bij of B a production Bi,j → wi+1Wwj

(B-rule) is introduced and finally, for all entries cij of the resulting matrix C,
productions Ci,j → Ai,kBk.j ∀1 ≤ k ≤ m (C-rule) are established. In order
to check whether cij has to be set to 1, it has to be answered whether Ci,j

c-derives wj
i . Figure 5 shows this graphically. Ci,j c-derives Ai,kBk,j , which c-

jw

S

WW Ai,k Bk,j

Ci,j

w1 wi wk wk+1 wj wn

Fig. 5. General idea: Derivation tree for wn
1 where aik = bkj = 1.

derive wiWwkwk+1Wwj = wj
i if and only if there exists a k such that there

exist productions for Ai,k and Bk,j . But there only exist such productions if

aik = bkj = 1. Hence, cij is 1 if Ci,j c-derives wj
i .

Unfortunately, the grammar size, which is defined as the sum over all pro-
ductions, would be very large, i.e. the grammar size would be in O(m3) since
we could have 2m2 A- and B-rules, and m3 C-rules. To keep the grammar size
small, and thus also the complexity, all indices like i,j, and k are split into a
pair of indices, e.g. i = (i1, i2), where i1 and i2 are an abbreviation for f1(i) and
f2(i), respectively. i1 and i2 are computed by

i1 = f1(i) = ⌊i/d⌋ and
i2 = f2(i) = (i modd) + 2,

with d = ⌈m1/3⌉.

It was shown by Lee that the choice of d = ⌈m1/3⌉ results in the best time
complexity [Lee02].

Essentially, i1 and i2 are the quotient and the remainder of i/d. Thus, i can
be computed uniquely by i1 and i2. Note that 0 ≤ i1 ≤ d2 and 2 ≤ i2 ≤ d + 1.
i2 has to be greater than 1 in order to avoid epsilon-rules. Compare figure 6.

Instead of adding productions Ai,j → wiWwj productions Ai1,j1 → wi2Wwj2

are introduced. Analogously for Bi,j , and Ci,j . That means the number of pro-
ductions is smaller since we need only (d2)3 ≈ m2 C-rules. Thus, the grammar
size is in O(m2). Note that now some information about matrix A is coded in
the string w since in order to determine i uniquely i2 is needed (which is coded
in w).

Since i2 and j2 are remainders, j2 could be smaller than i2. In order to avoid
this, a δ that is at least d is added to j2. Confer figure 6. w consists of three
parts x, y, and z, all of size δ. Hence, the substring c-derived by Ai1,k1 should
start in x and should end in y. Thus the substring c-derived by Bk1,j1 has to

start in y and has to end in z, i.e. Ai1,k1 c-derives to wk2+δ
i2

and Bk1,j1 c-derives

wj2+2δ
k2+1+δ. Note that the derived blocks of Ai1,k1 and Bk1,j1 lie directly next to

each other. The strings that are derived from the W ’s should be non-empty in
order to avoid epsilon-rules. Therefore the remainder has to be greater than 1
and δ has to be chosen slightly larger than d, i.e. δ is chosen as d + 2.

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������
���������

����
����
����
����
����
����
����
����

����
����
����
����
����
����
����
����

�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����

...

S

W W

Ci1,j1

Ai1,k1
Bk1,j1

x y z

w1 wi2 wk2+δwk2+δ+1
wj2+2δ w3d+6

Fig. 6. Derivation tree for w3d+6

1 with pairs of indices, where aik = bkj = 1.

Now the resulting CFG and the string w, which should be parsed, for Boolean
matrices A and B can be established. Let G = (N, Σ, P, S) with N = {S} and
P = ∅. Σ is chosen as {wl | 1 ≤ l ≤ 3δ = 3d + 6} since we need 3δ differ-
ent terminals in order to compute the indices uniquely. Hence, w is chosen as
w1w2 . . . w3d+6. The following productions and nonterminals are added to P and
N , respectively:

– W-rules: N = N ∪ {W}

W → wlW | wl ∀1 ≤ l ≤ 3d + 6

– A-rules: N = N ∪ {Ap,q | 1 ≤ p, q ≤ d2}
for all matrix-entries aij = 1 add production

Ai1,j1 → wi2Wwj2+δ

– B-rules: N = N ∪ {Bp,q | 1 ≤ p, q ≤ d2}
for all matrix-entries bij = 1 add production

Bi1,j1 → wi2+δ+1Wwj2+2δ

– C-rules: N = N ∪ {Cp,q | 1 ≤ p, q ≤ d2}

Cp,q → Ap,rBr,q ∀1 ≤ p, q, r ≤ d2

– S-rules:

S → WCp,qW ∀1 ≤ p, q ≤ d2

In order to prove that the reduction from Boolean matrices A and B to the
CFG G and the string w is valid, the following theorem has to hold.

Theorem 2. For 1 ≤ i, j ≤ m, the entry cij in C is 1 iff Ci1,j1 c-derives wj2+2δ
i2

.

Proof. (i) “⇒”

to show: Ci1,j1 c-derives wj2+2δ
i2

Assume cij = 1. By definition there exists a k such that aik = bkj = 1.

1. Claim: Ci1,j1 →∗ wj2+2δ
i2

:

Ci1,j1 → Ai1,k1Bk1,j1 by C-rule
→∗ wi2Wwk2+δ wk2+δ+1Wwj2+2δ ∃k.aik = bkj = 1

→∗ wj2+2δ
i2

by W-rule
Since the W-rules can not produce the empty string we have to show
that wk2+δ

i2
and wj2+2δ

k2+δ+1 contain at least one symbol:

(a) to show: i2 + 1 < k2 + δ − 1:
i2 + 1 ≤ d + 2 = δ < 2 + δ − 1 ≤ k2 + δ − 1

(b) to show: k2 + δ + 2 ≤ j2 + 2δ − 1:
k2 + δ + 2 ≤ d + 2 + δ + 1 = 2δ + 1 = 2 + 2δ − 1 ≤ j2 + 2δ − 1

Hence, W derives at least one symbol in the A-rule and in the B-rule.

2. Claim: S →∗ wi2−1
1 Ci1,j1w

3d+6
j2+2δ+1

This follows immediately from the S-rules: S → WCi1,j1W and W can
derive all substrings except the empty string. Thus wi2−1

1 and w3d+6
j2+2δ+1

have to consist of at least one symbol:

(a) to show: 1 ≤ i2 − 1:
i2 ≥ 2 ⇒ 1 ≤ i2 − 1

(b) to show: j2 + 2δ + 1 ≤ 3d + 6:
j2 + 2δ + 1 ≤ d + 2 + 2δ = 3δ = 3d + 6

Hence, W derives a non-empty string in the S-rule.

With 1. and 2. it follows that Ci1,j1 c-derives wj2+2δ
i2

.

(ii) “⇐”
to show: cij = 1

Assume Ci1,j1 c-derives wj2+2δ
i2

.

Hence, Ci1,j1 →∗ wj2+2δ
i2

.
⇒ ∃k1, k2.Ci1,j1 → Ai1,k1Bk1,j1

→ wi2Wwk2+δwk2+δ+1Wwj2+2δ →∗ wj2+2δ
i2

⇒ ∃k = (k1, k2).aik = bkj = 1
⇒ cij = 1

From Theorem 2 follow directly the next two Corollaries.

Corollary 1. For 1 ≤ i, j ≤ m, cij = 1 iff Ci1,j1 →∗ wj2+2δ
i2

. Hence, c-
derivation and derivation are equivalent for the Cp,q non-terminals.

This Corollary holds because of the S-rules: S → WCp,qW . If Ci1,j1 derives
wi2,j2+2δ then by the S-rule S derives W wi2,j2+2δ

︸ ︷︷ ︸

derived by Ci1,j1

W which derives w3d+6
1 .

Hence, Ci1,j1 c-derives wi2,j2+2δ.

Corollary 2. S →∗ w iff C is not the all-zeroes matrix.

If C is the all-zeroes matrix there exists no k such that aik = bkj = 1 ∀1 ≤ i, j ≤
m. Hence, there exists no k1 such that for both nonterminals Ai1,k1 and Bk1,j1

a production exist. Thus, S cannot derive w. Therefore, if a string is accepted
by the CFG, C has at least one entry that is 1.

The reduction from Boolean matrices A and B to the CFG G and the string
w can now be combined with the c-parser and the querier. This results in an
algorithm for BMM using a CFG parser.

C-parser and Querier The shown grammar can be easily converted into
Chomsky normal form, since there are no epsilon rules or unit productions. Com-
pare Figure 7. The size of the resulting grammar G′ would be also in O(m2).
Therefore, the choice of the c-parser is not restricted, i.e. also a c-parser that
requires the grammar to be in Chomsky normal form (e.g. the CKY parser) can
be chosen without obtaining a worse complexity.

The c-parser computes all parse trees and outputs an oracle F(G,w) as it is
defined in Definition 5. That means, it can be checked in constant time whether
Ci1,j1 c-derives wj2+2δ

i2
. The oracle F(G,w) is now passed to the querier. The

querier answers, by using F(G,w) and Theorem 2, whether cij equals 1.

3.3 Time Bounds

The following theorem shows the relation between time bounds for BMM and
time bounds for CFG parsing.

Theorem 3. Any c-parser with running time O(T (g)t(n)) can be converted into
a BMM algorithm that runs in time O(max(m2, T (m2)t(m1/3))). In particular,
if P takes time O(gn3−ǫ), then an algorithm for BMM runs in time O(m3−ǫ/3).

g denotes the size of the CFG G and n denotes the length of the input string w.
m is as usual the size of the input matrices A and B, i.e. A and B are m × m
Boolean matrices.

This theorem says that if there is a CFG parser that is linearly dependent
on the grammar size and sub-cubic in the length of the input string, then this
CFG parser can be converted into a sub-cubic BMM algorithm, i.e. the BMM
algorithm runs in time O(m3−ǫ/3). In order to prove this theorem confer figure
8.

Proof. To read the two input matrices A and B requires O(m2). Since the size
of G is O(m2) and the size of w is by construction O(m1/3), the reduction
from (A, B) to (G, w) takes O(m2). The theorem assumes that the oracle can

– W-rules:

W → WlW | wl (1 ≤ l ≤ 3d + 6)
Wl → wl (1 ≤ l ≤ 3d + 6)

– A-rules:
for all matrix-entries aij = 1 add productions

Ai1,j1 → Wi2Xj2+δ

Xj2+δ → WWj2+δ (2 ≤ j2 ≤ d + 1)

– B-rules:
for all matrix-entries bij = 1 add productions

Bi1,j1 → Wi2+1+δXj2+2δ

Xj2+2δ → WWj2+2δ (2 ≤ j2 ≤ d + 1)

– C-rules:

Cp,q → Ap,rBr,q (1 ≤ p, q, r ≤ d2)

– S-rules:

S → WT

T → Cp,qW (1 ≤ p, q ≤ d2)

Fig. 7. Grammar of the previous section in Chomsky normal form.

reduction c−parser querier
O(m2)

O(m2) O(m2)O(T (m2)t(m1/3))

FG,w(A, B) C(G, w)

Fig. 8. Time bounds for BMM algorithm using a CFG parser

be computed in O(T (m2)t(m1/3)). Since the oracle F(G,w) answers queries in
constant time, computing the output matrix C takes O(m2). So the total time
spent by the BMM algorithm is O(max(m2, T (m2)t(m1/3))), as claimed.

In the case where T (g) = g and t(n) = n3−ǫ, the second argument of the
maximum in O(max(m2, T (m2)t(m1/3))) dominates the term. Hence, the run-
ning time for the BMM algorithm is O(T (m2)t(m1/3)) = O(m2 · (m1/3)3−ǫ) =
O(m3−ǫ/3).

Since there is a relation between time bounds for BMM and time bounds
for CFG parsing, a faster CFG parsing algorithm would lead to a faster BMM
algorithm.

4 Conclusion

It was shown, that CFG parsing is possible in less than cubic time. This approach
from 1975 is due to Valiant ([Val75]). He shows that CFG parsing can be reduced
to BMM obtaining a time complexity of O(BM(n)), where BM(m) denotes the
complexity to multiply two m × m matrices.

Afterwards the reverse direction, i.e. how a CFG parser can be used for BMM,
was shown. The idea was to transform the input matrices into an input for a
c-parser, i.e. a CFG and an input string. After parsing the input, the c-parser
outputs an oracle which helps the querier to compute the product matrix. This
reduction, which is due to Lee ([Lee02]), was presented and its correctness was
proven. Furthermore, by this reduction a relation between the running time of a
CFG parser and the running time of an algorithm for BMM was derived, i.e. if
a CFG parser has sub-cubic running time in the length of the input string, then
a sub-cubic BMM algorithm is obtained.

By reducing BMM to CFG parsing, it was shown that a faster BMM algo-
rithm would yield a faster CFG parsing algorithm. The reverse direction also
holds. Thus, the theorem of Lee - “Fast CFG parsing requires fast BMM”(and
vice versa) - is proven. The theorem explains, why there is little success in find-
ing a faster CFG parsing algorithm. Since fast practical BMM algorithms are
thought not to exist, this establishes a limitation on the efficiency of practical
CFG parsers ([Lee02]).

References

[Ear70] Jay Earley. An efficient context-free parsing algorithm. Communications of the

ACM, 13(2):94-102, 1970.
[Lee02] Lillian Lee. Fast context-free grammar parsing requires fast Boolean matrix

multiplication. Journal of the ACM, 49(1):1-15, 2002.
[Sat94] Giorgio Satta. Tree-adjoining grammar parsing and Boolean matrix multipli-

cation. Computational Linguistics, 20(2):173-191, 1994.
[Str69] Volker Strassen. Gaussian elimination is not optimal. Numerische Mathematik,

13:354-356, 1969.
[Val75] Leslie G. Valiant. General context-free recognition in less than cubic time.

Journal of Computer and System Sciences, 10:308-315, 1975.
[You67] Daniel H. Younger. Recognition and parsing of context-free languages in time

n3. Information and control, 10(2):189-208, 1967.

