
Parsing as Deduction

Joseph Kühner

Department of Computer Science,
Saarland University, D-66041 Saarbrücken, Germany

jrkuehner@t-online.de

http://www.ps.uni-sb.de

Abstract. Parsing algorithms for various types of languages are repre-
sented in a formal logic framework as deduction systems, where items
(formulas) describe the grammatical status of strings, and inference rules
produce new items from already generated items. On this more abstract
level, Parsing Deduction Systems reflect the structure of parsers in a clear
and concise manner and provide unified tools for the proof of correctness,
completeness and complexity analysis.

Key words: Parsing, Deduction, Axioms, Inference, Correctness, Com-
pleteness, Complexity

1 Introduction

These notes are an elaborate version of the authors’s talk about Parsing as
Deduction at the Formal Grammars Seminar of the Programing Systems Lab,
Informatics, Saarland University.

The aim of this talk was to present the principles of deductive parsing and
to describe parsing reduction systems for various types of formalisms, including
context free grammars and tree adjoining grammars. Proofs of correctness and
completeness for these parsing deduction systems are detailed. A single deduction
algorithm is introduced which can be applied to implement all these various
deduction systems. It is proved to be correct and complete.

1.1 Basic Notation

We present parsing algorithms as deductive processes in which rules of inference
are used to derive statements about the grammatical status of strings from other
such statements. Statements are represented by formulas in a suitable formal
language.

A deduction system is defined by a set of items, subsets of distiguishes items
called axioms resp. goals and a set of inference rules given by appropriate formula
schemata.

The general form of a rule of inference is

A1 . . . Ak

B
< side conditions on A1, . . . , Ak, B > .

2 Parsing as Deduction

The antecedents A1, . . . Ak and the consequent B of the rule are items. Axioms
can be represented as inference rules without antecedents.

Given a deduction system, a derivation of an item B from assumptions
A1, . . . , Am is a sequence of items S1, . . . Sn such that Sn = B, and each Si

is either an axiom or there is a rule of inference R and items Si1 , . . . , Sik
with

i1, . . . , ik < i such that Si1 , . . . , Sik
match the antecedents of R and Si matches

the consequent and the side conditions are satisfied. We write A1, . . . , Am ⊢ B

and say that B is a consequence of A1, . . . , Am if such a derivation exists. If B is
the consequence of the empty set of assumptions, it is said to be derivable and
we write ⊢ B.

2 Deductive Parsing of Context-Free Grammars

In this section various parsing algorithms for context-free grammars are pre-
sented as parsing deduction system.

Let G = (N, Σ, P, S) be a context free grammar (CFG). We use standard
notation for meta-variables ranging over the objects under discussion: uppercase
Latin letters A, B, C . . . for nonterminals, lowercase Latin letters a, b, c . . .

for terminals, lowercase Greek letters α, β, γ . . . for strings of nonterminals or
terminals, ǫ for the empty string. We write → for direct derivation and

∗

→ for
its reflexive, transitive closure.

2.1 The CYK Parsing Algorithm

In this section, we recall the CYK parser. Let G = (N, Σ, P, S) be a context free
grammar (CFG) in Chomsky-Normal-Form (CNF). This means that there are
only two types of production rules in G:

A → a and A → BC

where a is a terminal and A, B, C are nonterminals in G. Let w = w1 . . . wn ∈ Σ∗

be a string to be parsed. The algorithm constructs sets Tij , (1 ≤ i ≤ j ≤ n), of
nonterminals in the following manner:

For 1 ≤ i ≤ n a nonterminal A belongs to the set Tii if and only if A → wi

is a production.

For 1 ≤ i < j ≤ n a nonterminal A belongs to the set Tij if and only if there
is an index k, i ≤ k ≤ j − 1 and a production A → BC such that B ∈ Tik and
C ∈ Tk+1,j .

This could be implemented using nested loops. Correctness and completeness
can be showed by verification of suitable loop invariants. The complexity is
O(|P |n3).

Parsing as Deduction 3

2.2 CYK Parsing as Deduction

Let G = (N, Σ, P, S) be a CFG in CNF, w = w1 . . . wn a string in Σ∗ to be
parsed. Consider items (formulas) [A, i, j], A ∈ N , 1 ≤ i ≤ j ≤ n, which are

meant to state that A
∗

→ wi . . . wj .

For each terminal wi in w and each production A → wi, it is clear that the
item [A, i, i] makes a true claim, so that such items can be taken as axiomatic.

Let [B, i, k] and [C, k + 1, j] be items and A → BC a production. Since

these items assert B
∗

→ wi . . . wk and C
∗

→ wk+1 . . . wj , it is sound to conclude

A
∗

→ wi . . . wj . This argument can be coded as rule of inference.

[B, i, k] [C, k + 1, j]

[A, i, j]
< A → BC >

If, starting with axioms and using inference rules, an item [S, 1, n] is derivable,
we can conclude that the string w = w1 . . . wn is admitted by the grammar, since
it asserts A

∗

→ wi . . . wj . We call this item goal item.

In summary, the CYK deduction system can be specified with four compo-
nents: a class of items, a set of axioms, a set of inference rules and a subclass of
items, the goal items. These are given in summary form in table 1. We give a

Table 1. CYK deduction System

Item Form: [A, i, j]

Axioms:
[A, i, i]

< A → wi >

Inference Rules:
[B, i, k] [C, k + 1, j]

[A, i, j]
< A → BC >

Goals: [S, 1, n]

formal proof of the correctness an completeness of this deductive parser.

Lemma 1. Let [A, i, j] be a derivable item in the parsing deduction system spec-

ified in table 1. Then in grammar G we have A
∗

→ wi . . . wj.

Proof. We proceed by induction on the number of steps which are needed to
infer item [A, i, j] from the axioms.

If the item is an axiom [A, i, i] then, by the side condition, there is a produc-
tion rule A → wi in the grammar.

If the item is not an axiom, then there is an index i ≤ k ≤ j − 1, and a
production A → BC and items [B, i, k] and [C, k + 1, j] which derive [A, i, j]
using the inference rule

[B, i, k] [C, k + 1, j]

[A, i, j]
.

4 Parsing as Deduction

The number of steps needed to derive items [B, i, k] and [C, k + 1, j] is smaller
than the number of derivation steps for [A, i, j], so we can apply the induction

hypothesis and conclude that B
∗

→ wi . . . wk and C
∗

→ wk+1 . . . wj . But this

implies the claim: A
∗

→ wi . . . wj .

Correctness follows from application of lemma 1 to the goal item [S, 1, n]. Indeed

if the goal item can be derived, we have S
∗

→ w1 . . . wn.

Corollary 1. If the goal item [S, 1, n] can be derived in the parsing deduction
system, then the string w = w1 . . . wn is accepted by the grammar G.

Lemma 2. If in grammar G we have A
∗

→ wi . . . wj , then item [A, i, j] can be
derived in the parsing deduction system.

Proof. We proceed by induction on the length of the derivation. If the string is
derived in one step, then it must be a production A → wi. But then the item
[A, i, i] is an axiom.

If the string is derived in more than one step, there is a production A → BC

and an index i ≤ k ≤ j − 1 such that B
∗

→ wi . . . wk and C
∗

→ wk+1 . . . wj .
By induction the items [B, i, k] and [C, k + 1, j] are generated in the deduction

system. Now the inference rule
[B, i, k] [C, k + 1, j]

[A, i, j]
can applied to generate item

[A, i, j].

Corollary 2. If the string w = w1 . . . wn is accepted by the grammar G, the goal
item [S, 1, n] can be generated in the deduction system.

Proof. Apply lemma 2 to S
∗

→ w1 . . . wn.

2.3 Pure Top Down Parsing

In this section we present recursive-decent parsing in this logical perspective.
Let G = (N, Σ, P, S) be an arbitrary CFG, w = w1 . . . wn a string in Σ∗ to be
parsed. Consider items (formulas) [• β, j], where 0 ≤ j ≤ n. Such an item asserts
that the substring w1 . . . wj followed by β is a sentential form of the language,

that is, that S
∗

→ w1 . . . wjβ.

Since S
∗

→ S is trivially true, we start with axiom [•S, 0]. Note that items

of the form [•wj+1β, j] and [• β, j + 1] make the same claim, namely S
∗

→
w1 . . . wjwj+1β. This motivates the following inference rule, called scanning rule:

[•wj+1β, j]

[• β, j + 1]
.

If we have a sentential form of type S
∗

→ w1 . . . wjBβ and a production B → γ

in the grammar, we can infer the sentential form S
∗

→ w1 . . . wjγβ. This leads
to the prediction inference rule:

[•Bβ, j]

[• γβ, j]
.

Parsing as Deduction 5

In summary, we can write down the following parsing deduction system for
top down parsing in table 2. We give a formal proof of the correctness and

Table 2. Top-Down Deduction System

Item Form: [•β, j]

Axioms:
[•S, 0]

Scanning Rule:
[•wj+1β, j]

[• β, j + 1]

Prediction Rule:
[•Bβ, j]

[• γβ, j]
< B → γ >

Goals: [•, n]

completeness of this deductive parser.

Lemma 3. Let [• β, j] be an item which can be derived in the parsing deduction

system specified in table 2. Then in grammar G we have S
∗

→ w1 . . . wjβ.

Proof. It is clear that this is true for the axiom [•S, 0].

If the item [• β, j] is not an axiom it might result from an item [•wjβ, j−1] by
application of the scanning rule. By induction, [•wjβ, j−1] implies the sentential

form S
∗

→ w1 . . . wj−1wjBβ, which proofs the claim.

The item may also result from prediction. In this case there are strings β′

and γ such that β = γβ′ and a production B → γ such that item [•Bβ′, j] infers

[• γβ′, j] = [• β, j]. By induction S
∗

→ w1 . . . wjBβ′, which by application of the
production B → γ proofs the claim.

From lemma 3 applied to the goal item, correctness follows.

Corollary 3. If the goal item [•, n] can be derived in the parsing deduction sys-
tem specified in table 2, then the string w = w1 . . . wn is accepted by the grammar
G.

Lemma 4. Let S
∗

→ w1 . . . wjβ. be a sentential form in grammar G, then item
[• β, j] can be derived in the parsing deduction system specified in table 2.

Proof. Define the rank of S
∗

→ w1 . . . wjβ to be the sum of j and the length of
a shortest leftmost derivation of β. The proof will proceed by induction on the
rank.

If the rank of S
∗

→ w1 . . . wjβ is zero, we have j = 0 and β = S. But then
the corresponding item is [•S, 0] which is an axiom in the deduction system.

Let the rank r of S
∗

→ w1 . . . wjβ be greater than 0 and suppose that the
lemma is true for all instances of rank smaller than r. Then there are two cases.

6 Parsing as Deduction

Case 1: S
∗

→ w1 . . . wjβ may be a production. Then we apply the predic-
tion rule to the axiom [•S, 0] to infer [•w1 . . . wjβ, 0]. Repeatedly scanning the
terminals w1, . . . , wj will finally derive item [• β, j].

Case 2: S
∗

→ w1 . . . wjβ in more than one step. Then we can decompose
β = γβ′ and find a production B → wj−k+1 . . . wjγ in G such that the derivation
splits in the following way:

S
∗

→ w1 . . . wj−kBβ′ → w1 . . . wjβ.

Since the rank of S
∗

→ w1 . . . wj−kBβ′ is strictly less than r, we can apply
the induction hypothesis to generate item [•Bβ′, j − k]. By prediction the item
[•wj−k . . . wjγβ′, j − k] will be generated. Finally by k applications of the scan-
ning rule the item [• β, j] will be inferred and the claim is proved.

Corollary 4. If the string w = w1 . . . wn is accepted by the grammar G, the goal
item [•, n] can be generated in the parsing deduction system.

Proof. Apply lemma 4 to S
∗

→ w1 . . . wn.

2.4 Pure Bottom-Up Parsing

To construct a pure bottom-up parsing deduction system consider items of the
form [α •, j]. Such an item asserts αwj+1 . . . wn

∗

→ w1 . . . wn or equivalently

α
∗

→ w1 . . . wj . The deduction system is specified in table 3

Table 3. Pure Bottom-Up Deduction System

Item Form: [α •, j]

Axioms:
[•, 0]

Shift:
[α •, j]

[αwj+1 •, j + 1]

Reduce:
[αγ •, j]

[αB •, j]
< B → γ >

Goals: [S •, n]

Lemma 5. Let [α •, j] be an item which can be derived in the parsing deduction

system specified in table 3, then in grammar G we have αwj+1 . . . wn
∗

→ w1 . . . wn.

Proof. The proof works by induction on the number of steps to infer the item.
If the item can be derived in one step, it must be an axiom [•, 0]. Then trivially

w1 . . . wn
∗

→ w1 . . . wn.

Parsing as Deduction 7

If the number of steps to derive item [α •, j] is greater than 1 there are two
cases.

Suppose [α •, j] is inferred by application of the shift rule. Then α = α′wj

where the item [α′ •, j−1] is the antecedent of [α′wj •, j]. By hypothesis of induc-

tion α′wj . . . wn
∗

→ w1 . . . wn is a derivation in G, but this implies immediately

the claim: (α′wj)wj+1 . . . wn = αwj+1 . . . wn
∗

→ w1 . . . wn.

The item [α •, j] may also result from application of the reduction rule. Then
there is a production B → γ such that α = α′B and [α′γ •, j] is the antecedent

of [α′B •, j]. By hypothesis of induction we have α′γwj+1 . . . wn
∗

→ w1 . . . wn,

but this implies α′Bwj+1 . . . wn→α′γwj+1 . . . wn
∗

→ w1 . . . wn.

If we apply lemma 5 to the goal item, we can proof the correctness of the de-
duction system.

Corollary 5. Suppose that the goal item [S •, n] can be derived in the deduction

system, then S
∗

→ w1 . . . wn.

Lemma 6. Suppose αwj+1 . . . wn
∗

→ w1 . . . wn, then the item [α •, j] can be de-
rived in the deduction system.

Proof. We proceed by induction on the length of a minimal reversed rightmost
derivation. If αwj+1 . . . wn

∗

→ w1 . . . wn in one step then α = A, a nonterminal,
and A → w1 . . . wj is a production in grammar G. Applying j shift steps to the
axiom [•, 0] yields item [w1 . . . wj •, j] and one application of the reduction rule
infers the item [A •, j].

If αwj+1 . . . wn
∗

→ w1 . . . wn in more than one step, there is a production
B → γwl+1 . . . wj , where 1 ≤ l ≤ j − 1 and a decomposition α = α′B and

α′B → α′γwl+1 . . . wj
∗

→ w1 . . . wj . We can apply the induction hypothesis to

the derivation α′γ
∗

→ w1 . . . wl to derive the item [α′γ •, l]. Repeatedly applying
the shift rule yields the item [α′γwl+1 . . . wj •, j] and one application of the
reduction rule results in [α′B •, j] = [α •, j], our claim.

Now the completeness of the deduction system follows from lemma 6.

Corollary 6. If S
∗

→ w1 . . . wn the goal item [S •, n] can be generated in the
deduction system.

2.5 Earley’s Algorithm

The items in Earley’s algorithm are dotted rules [i, A → α • β, j] where A →
αβ is a production and 1 ≤ i ≤ j ≤ n denote positions in the string w =
w1 . . . wn. Such an item asserts the top-down claim S

∗

→ w1 . . . wiAγ for some
string γ, and the bottom-up claim αwj+1 . . . wn

∗

→ wi+1 . . . wn or equivalently

α
∗

→ wi+1 . . . wj . For technical reasons we introduce an auxiliary production
S′ → S. The deduction system is specified in the table 4.

8 Parsing as Deduction

Table 4. Earley’s Deduction System

Item Form: [i, A → α • β, j]

Axioms:
[0, S′ → •S, 0]

Scanning:
[i, A → α • wj+1β, j]

[i, A → αwj+1 • β, j + 1]

Prediction:
[i, A → α • Bβ, j]

[j, B → • γ, j]
< B → γ >

Completion:
[i, A → α • Bβ, k] [k, B → γ • , j]

[i, A → αB • β, j]

Goals: [0, S′
→ S •, n]

Lemma 7. If the item [i, A → α • β, j] can be generated in the deduction system

specified in table 4, then in grammar G we have: S
∗

→ w1 . . . wiAγ for some string
γ and αwj+1 . . . wn

∗

→ wi+1 . . . wn.

Proof. The proof proceeds by induction on the number of steps to derive the
item from the axiom.

The axiom item itself [0, S′ → •S, 0] asserts S
∗

→ S and w1 . . . wn
∗

→
w1 . . . wn which are trivially true.

Let be [i, A → α • β, j] an item. Several cases are to be considered:

Case 1. The latest inference rule to generate the item was scanning. Then
α = α′wj and our item resulted from

[i, A → α′ • wjβ, j − 1]

[i, A → α′wj • β, j]
.

The induction hypothesis can be applied to the antecedent, so we have S
∗

→
w1 . . . wiAγ for some string γ and α′wj . . . wn

∗

→ wi+1 . . . wn. The claim follows
from the identity (α′wj)wj+1 . . . wn = αwj+1 . . . wn.

Case 2. The latest inference rule to generate the item was completion. Then
α = α′B, where B is a nonterminal and our item resulted from

[i, A → α′ • Bβ, k] [k, B → γ • , j]

[i, A → α′B • β, j]
.

The induction hypothesis can be applied to both antecedents, so we have S
∗

→
w1 . . . wiAγ for some string δ and α′wk+1 . . . wn

∗

→ wi+1 . . . wn and also S
∗

→

w1 . . . wkBδ′ for some string δ′ and γwj+1 . . . wn
∗

→ wk+1 . . . wn. The first claim
for our item is trivially true, the second results from

α′Bwj+1 . . . wn → α′γwj+1 . . . wn
∗

→ α′wk+1 . . . wn
∗

→ wi+1 . . . wn.

Parsing as Deduction 9

Case 3. The latest inference rule to generate the item was prediction. Then
α = ǫ, i = j, A → γ is a production and our item resulted from

[i, A′ → α′ • Aβ, j]

[j, A → • γ, j]
.

We can apply the induction hypothesis to the antecedent. Hence we have S
∗

→
w1 . . . wiA

′γ′ for some string γ′ and α′wj+1 . . . wn
∗

→ wi+1 . . . wn. Now

S
∗

→ w1 . . . wiA
′γ′ ∗

→ w1 . . . wiα
′Aβγ′ ∗

→ w1 . . . wiwi+1 . . . wjAβγ′.

The second claim is trivial since ǫ
∗

→ ǫ.

If we apply lemma 7 to the goal item, we can proof the correctness of the de-
duction system.

Corollary 7. Suppose that the goal item [0, S′ → S •, n] can be derived in the

deduction system, then S
∗

→ w1 . . . wn.

3 Deduction for Tree Adjoining Grammars (TAG)

In this section we present a deduction system for parsing tree adjoining gram-
mars.

3.1 Introduction to tree adjoining grammars

A tree adjoining grammar (TAG) is a quintuple G = (N, Σ, S, I, A) where N is
a set of nonterminals, Σ a set of terminals, S a distinguished nonterminal, the
start symbol, I a set of initial trees and A a set of auxiliary trees. The trees in
I ∪ A are called elementary.

In an initial tree the root and all inner nodes are labelled with nonterminals,
all frontier nodes are labelled with terminals.

In an auxiliary tree the root and all inner nodes are labelled with nontermi-
nals; all frontier nodes are labelled with terminal symbols except one, the foot
node, which is labelled with the same terminal as the root. This is represented
in figure 1.

Let α be a tree with an inner node ν labelled B and β an auxiliary tree with
root and foot node labelled with the same nonterminal B. Then an operation
adjunction is defined in the following way: The subtree of α rooted by ν (and
labelled with B) is cut off and β is inserted at ν. Then the previously excised
subtree is appended at the foot node of β. Adjunction is illustrated in figures 2
and 3.

Let α be a tree, every node in α can be specified by its address, a list of
integers defined recursively by:

The address of the root is the empty list nil; if the address of a node ν is a

the address of its k-th child node is ak.

10 Parsing as Deduction

B

w1 . . . wjBwk+1 . . . wn

β =A

w1 wn

α =

Fig. 1. Initial tree α: the root is labelled with a nonterminal A, all frontier nodes are
labelled with terminal symbols. Auxiliary tree β: the root is labelled with a nonterminal
B, all frontier node are labelled with terminal symbols except one, the foot node, which
is labelled with the same nonterminal B as the root.

B

B

β =Aα =

B

Fig. 2. Root and foot node of the auxiliary tree β are labelled B. β can be adjoint to
tree α at node ν labelled B.

B

Aγ =

B

Fig. 3. Tree γ results from adjoining β to α at node ν labelled B.

Parsing as Deduction 11

If α is a tree we denote by α@a the node in α with address a and by α|a the
subtree of α rooted by the node α@a. The grammar symbol that labels node ν

is denoted by Label(ν). Given an elementary tree node ν, Adj(ν) is defined as
the set of auxiliary trees that can be adjoined at ν.

Suppose that α is a tree, a1, . . . , ak are distinct addresses in α and β1, . . . , βk

are auxiliary trees such that adjoining βi to the node at address ai is defined for
1 ≤ i ≤ k. Then we denote by α[β1 7→ a1, . . . , βk 7→ ak] the tree which results
from these adjoining operations. If α is an initial tree the tree α′ derived by
these operations will have no foot node, whereas if α is an auxiliary tree α′ will
have a foot node.

Definition 1. We define the set D(G) of derivable trees recursively: D(G) is the
smallest set such that

I ∪ A ⊆ D(G) (all elementary trees are derivable)

For all elementary trees α the set D(α,G) of trees α[β1 → l1, . . . , βk → lk]
where β1, . . . βk ∈ D(G), is a subset of D(G): D(α,G) ⊆ D(G).

The valid derivations in G are the trees in D(αS ,G) where αS is an initial
tree whose root is labelled with the start symbol S.

The set L(G) of terminal strings appearing in the frontier of such trees the
string language of G.

3.2 Parsing Deduction System for TAG

Parsers for TAG can be described just as those for CFG, as deduction systems.
We present a CYK-like parsing deduction system for tree adjoining grammars.
We shall therefor assume that any node in an elementary tree has at most
two children. Suppose we want to parse an elementary tree with frontier w =
w1 . . . wn.

To describe this system, we need the notion of a dotted tree; this can be
specified as an elementary tree α, an address a in that tree and a marker to
indicate the position of the dot relative to the node at address a. This position
can be above or below the node. We will use the notation ν• and ν• for dotted
trees with dot above and below node ν respectively. The dot in lower position,
ν•, specifies that in the derivation of the subtree of α rooted at ν, adjunction
must not be involved.

In order to track the portion of the string w = w1 . . . wn covered by the
derivation up to the dot position, in general four indices are needed. One pair
(i, l) of indices to specify the left edge and the right edge of the parsed portion
of the tree, but possibly another pair (j, k) to specify the gap where the foot
node occurs in an auxiliary tree.

Hence we consider items [ν•, i, j, k, l] and [ν•, i, j, k, l] where ν is a node in an
elementary tree α, 0 ≤ i ≤ l are string positions, j and k may be undefined or
instantiated to positions i ≤ j ≤ k ≤ l (the latter only if α is an auxiliary tree).

12 Parsing as Deduction

An item [α@a•, i, , , l] specifies that there is a tree τ ∈ D(α|a), with no foot
node, such that the frontier of τ is the string wi+1 . . . wl. The position of the dot
above specifies that at node α@a an adjunction may have occured to derive τ .

An item [α@a•, i, j, k, l] specifies that there is a tree τ ∈ D(α|a), with foot
node, such that the frontier of τ is the string wi+1 . . . wjAwk+1 . . . wl, where A

is the label of the foot node of α. Again, the position of the dot above specifies
that at the node α@a an adjunction may have occured in the derivation of τ .

Items [α@a•, i, , , l] and [α@a•, i, j, k, l] specify similar invariants except that
the derivation of τ must not involve adjunction at node α@a.

This is illustrated in figure 4.

Aα =

ν• =
B

wi+1 . . . wjAwk+1 . . . wl

Fig. 4. Tree α illustrates item [ν•, i, j, k, l].

The algorithm preserves this invariant while traversing the derived tree from
bottom to top, starting with items corresponding to the terminal string symbols
themselves which follow from the axioms

[ν•, i, , , l]
< Label(ν) = wi+1 > .

Completed subtrees are combined to larger ones and subtrees before adjunction
are combined with derived auxiliary trees to form subtrees after adjunction.

The detailed inference rules are depicted in table 5. In order to reduce the
number of cases, we define the notation i ∪ j for two indices i and j as follows:

p ∪ q =

{

p if p is defined

q otherwise.

In order to prove correctness of the deduction system, we need the following
lemma.

Lemma 8. Let [ν•, i, j, k, l] (resp. [ν•, i, j, k, l]) be a derivable item in the de-
duction system specified in table 5, then there is an elementary tree α with inner
node ν• (resp.ν•) and a derived tree τ in D(ν,G) whose frontier string is equal
to wi+1 . . . wjLabel(α)wk+1 . . . wl.

Parsing as Deduction 13

Table 5. The CYK deductive parsing system for tree adjoining grammars

Item Form: [ν•, i, j, k, l]

[ν•, i, j, k, l]

Terminal Axiom:
[ν•, i, , , i + 1]

< Label(ν) = wi+1 >

Empty String Axiom:
[ν•, i, , , i]

< Label(ν) = ǫ >

Foot Axiom:
[β@Foot(β)•, j, j, k, k]

< β ∈ A >

Goals: [α@ǫ•, 0, , , n] < α ∈ I, Label(α@ǫ) = S >

Inference Rules:

Complete Unary:
[α@a1•, i, j, k, l]

[α@a•, i, j, k, l]
< α@a2 notdefined >

Complete Binary:
[α@a1•, i, j, k, l] [α@a2•, l, j′, k′, m]

[α@a•, i, j ∪ j′, k ∪ k′, m]

No Adjoin:
[ν•, i, j, k, l]

[ν•, i, j, k, l]

Adjoin:
[β@ǫ•, i, p, q, l] [ν•, p, j, k, q]

[ν•, i, j, k, l]
< β ∈ Adj(ν) >

Proof. We proceed by induction on the length of the sequence of inference steps
which are performed to derive item [ν•, i, j, k, l].

If the item is derived in one step, it must be one of the axiom items. But
then the side conditions assert the claim.

If the item is derived by more than one step, an inference rule must have
been applied. Several cases are to be considered, one for each rule.

Case 1. The item is of the form [α@a•, i, j, k, m] and results from binary
Completion. We assume that the items which correspond to the two children of
the node α@a have the form [α@a1•, i, j, k, l] and [α@a2•, l, , , m]. This means
that the indices j and k are defined, hence there is a foot node, and this foot
node is in the frontier of the leftmost child. In this case the binary Completion
rule reads:

[α@a1•, i, j, k, l] [α@a2•, l, , , m]

[α@a•, i, j, k, m]

The induction hypothesis can be applied to both antecedents. Hence, the tree τ1

derived from α@a1 dominates the string wi+1 . . . wjLabel(α)wk+1 . . . wl and the
tree τ2 derived from α@a2 dominates the string wl+1 . . . wm. Then the node α@a

itself dominates the string wi+1 . . . wjLabel(α)wk+1 . . . wm. This is illustrated in
figure 5. The other cases involving binary completion are proved analogously.
We mention another interesting case: adjunction.

Case 2. The item has the form [ν•, i, j, k, l] and is generated by the adjunction
rule. Hence, items [ν•, p, j, k, q] and [β@ǫ•, i, p, q, l], where β ∈ Label(ν), are

14 Parsing as Deduction

Aα =

B1

wi+1 . . . wjAwk+1 . . . wl wl+1 wm

B2

B

Fig. 5. Tree α illustrates binary completion.

generated in the deduction system and the item in question is inferred from the
rule

[β@ǫ•, i, p, q, l] [ν•, p, j, k, q]

[ν•, i, j, k, l]
.

Again, the induction hypothesis can be applied to both antecedents. Hence,
there is a derived tree τ rooted at ν with frontier wp+1 . . . wjLabel(α)wk+1 . . . wq

and a tree derived from β which dominates wi+1 . . . wpLabel(β)wq+1 . . . wl. Now
we need only to adjoin β to α at node ν to obtain a tree with frontier string
wi+1 . . . wjLabel(α)wk+1 . . . wl. The dot changes from the lower to the upper
position, since adjunction has been operated. This proves the claim.

The proof of the remaining cases is omitted since the reasonings are quite similar.
An analogous result can be shown for items without foot node. Correctness of
the deduction system can be shown by application of lemma 8 to the goal item.

Corollary 8. If the goal item [α@ǫ•, 0, , , n], where α ∈ I, Label(α@ǫ) = S,
can be derived in the deduction system, then the string w1 . . . wn can be derived
in the TAG G.

For completeness we need to prove the following lemma.

Lemma 9. Suppose that an elementary tree α with inner node ν• (resp.ν•) and
derived tree tree τ in D(ν,G) with frontier string wi+1 . . . wjLabel(α)wk+1 . . . wl

(resp. wi+1 wl) can be derived in the TAG. Then the item [ν•, i, j, k, l]
(resp. [ν•, i, j, k, l]) can derived in the above specified deduction system (Note
that j, k may not be defined).

Proof. Let r be the length of a shortest derivation of the specified tree. The
proof proceeds by induction on r.

If r is one, the dotted tree must elementary. Let us explain the case where
it is an initial tree. Then starting with the terminal axioms [ν•, p, , , p + 1],

Parsing as Deduction 15

i ≤ p ≤ l − 1, and repeated application of binary completion we can infer the
item [α•, i, , , l]. The other cases are treated analogously.

Suppose r > 1; among the various cases to consider, we specify just one,
since they are all treated similarly.

Suppose for example that the node ν = α@a and has only one child α@a1.
The tree rooted at this child can be derived in at most r − 1 steps. Hence we
can conclude by induction that the corresponding item [α@a1•, i, j, k, l] can be
derived in the deduction system. Now apply unitary completion to infer the item
[α@a1•, i, j, k, l].

Corollary 9. Suppose that the string w = w1 . . . wn can be derived in the TAG.
Then the goal item [α•, 0, , , n] can be derived in the deduction system.

Proof. By hypothesis there is an initial tree with root labelled S whose frontier
is the string w1 . . . wn. Application of lemma 9 yields the claim.

4 Control

In this section we describe a deduction procedure to operate over the inference
rules of any parsing deduction system. It uses a chart. Items should be added to
the chart as they are proved. However, every new item may itself generate new
consequences. The issue as to when these consequences should be computed is
subtil. A standard solution is to keep a separate agenda of items that have been
proved but whose consequences have not been proved. When an item is removed
from the agenda and added to the chart, its consequences are computed and
themselves added to the agenda for later consideration.

Thus the general form of a agenda-driven, chart-based deduction procedure
is as follows:

1. Initialize the chart to the empty set and the agenda to the set of axioms of
the deduction system.

2. Repeat the following steps until the agenda is exhausted:

(a) Select an item from the agenda, called the trigger item, and remove it.
(b) Add the trigger item to the chart, if necessary.
(c) If the trigger item was added to the chart, generate all items that are

new immediate consequences of the trigger item together with all the
items in the chart, and add these generated items to the agenda.

3. If a goal item is in the chart, the goal is proved and the string is recognized,
otherwise it is not.

We show the correctness of this procedure.

Proposition 1. Suppose that in the above described procedure the agenda has
been initialized with items A1, . . . Ak and item I has been placed in the chart,
then A1, . . . , Ak ⊢ I.

16 Parsing as Deduction

Proof. Since every item in the chart must have been in the agenda, and been
placed in the chart by step (2b), it is sufficient to show that A1, . . . , Ak ⊢ I for
any I in the agenda. We show this by induction on the stage ♯(I) of I. This is
the number of the iteration of step (2) at which I has been added to the agenda,
or 0 if I has been placed in the agenda at step (1).

If ♯(I) = 0, I must be an axiom. Thus the trivial derivation consisting of I

alone is a derivation of I from A1, . . . , Ak.

Assume that ♯(I) = n and the claim is true for any item J with ♯(J) < n.
Then I must have been added to the agenda by step (2c). Thus there are items
J1, . . . Jm in the chart and a rule instance such that

J1 . . . Jm

I

and the side conditions on J1, . . . Jm, I are satisfied. Since J1, . . . Jm are in the
chart, they must have been added to the agenda at the latest at the beginning
of iteration n of step (2), that is, ♯(Ji) < n for each 1 ≤ i ≤ m. By the induction
hypothesis each Ji must have a derivation ∆i from A1, . . . , Ak. But then the
concatenation of ∆1, . . . , ∆m followed by I is a derivation of I from A1, . . . , Ak.

We show the completeness of this procedure.

Proposition 2. Suppose that A1, . . . , Ak ⊢ I in the parsing deduction system.
Then item I is in the chart at step (3).

Proof. We show that item I is eventually added to the chart, if we assume some
kind of “fairness” for the agenda. That is we assume that items with smaller
stage are removed from the agenda by step (2a) before items with greater stage.

We show completeness by induction on the length of any derivation D1, . . . , Dn

of I from A1, . . . , Ak.

If n = 1, we have D1 = I and I is an axiom Ai for some i. I will thus be
placed in the agenda at step (1) and ♯(I) = 0. By the fairness assumption I will
be removed from the agenda after at most k iterations of step (2). When this is
done, I will be added to the chart or the chart already contains the same item.

Let n ≥ 1 and assume the claim for derivations of length less than n. Consider
a derivation D1, . . . , Dn = I of I from A1, . . . , Ak. Either I is an axiom, in which
case we just have shown the claim, or there are indices i1, . . . , im < n such that
there is an inference rule

Di1 . . . Dim

I
〈side conditions〉

with side conditions satisfied. By definition of derivation, each prefix D1, . . . , Dij
,

(1 ≤ j ≤ m), of D1, . . . , Dn is a derivation of Dij
from A1, . . . , Ak. By induction

hypothesis, all items Dij
are in the chart. Note Ip the item among the Dij

’ that
was added latest to the chart. Then it will be the trigger item for the application
of the above rule. Thus I will be added to the agenda. Since step (2c) can only
add a finite number of items to the agenda, item I will eventually be considered
at steps (2a) and (2b) and added to the chart, if not already there.

Parsing as Deduction 17

References

1. Shieber, S.M., Schabes, Y. Pereira, F.C.N.: Principles and Implementation of De-
ductive Parsing. Journal of Logic Programming, 23(1–2):3–36, July-August 1995.

2. Vijay-Shanker, K., Joshi, A.K. Some Computational Properties of Tree Adjoining
Grammars. Proc. of ACL’85, pp. 82–93, Chicago, USA.

3. Wegener, I.: Theoretische Informatik - eine algorithmenorientierte Einführung, 2.
Auflage, Leitfäden der Informatik. B.G. Teubner Stuttgart-Leipzig 1999 ISBN 3-
519-12123-9

