Transformation Schemes for Optimization of
Parsing Algorithms

Jochen Setz

Seminar “Formal Grammars” WS 2006/2007
Programming Systems Lab
University of Saarbruecken

Abstract. Parsing Grammars can be done by deducting called “Parsing
as Deduction”. The parser can be formalised by inference systems or
logic programs. Efficient parsing algorithms like Early or CKY use some
tricks on the inference systems to parse the grammars more efficient than
a naive parsing algorithms.

Some of this tricks can be transferred to Transformation Schemes which
possibly can optimise arbitrary inference systems. Three of these Trans-
formation Schemes will be described here an their asymptotic time will
be analysed.

1 Introduction

Parsing complex grammars like context-free grammars more powerful ones can
easily become a very expensive thing, in the sense of running-time, because
naive parsing algorithms tends to derive a lot of things, which will never play
a role for the goal, by deriving without any strategy. Such parsers are mostly
complete unusable, even for small problems. For example parsing very small
English sentences could take a very long time with naive parsers.

To make this problems manageable, the natural language processing commu-
nity developed several algorithms, which uses some tricks to reduce the running-
time. For example the Early-Algorithm (Nederhof and Satta 2004) runs in time
O(N? - n?) where N is the size of the grammar, and n the size of the input
sentence.

In general, paring algorithms are dynamic programming algorithms which
can be formulated by inference systems. Here, we will describe, how some of these
tricks can be abstracted to every parsing algorithm which can be described by a
inference system. They will even work for parsing of Semiring-Weighted Gram-
mars. Theses tricks are called transformation schemes. It will be shown, how
these transformation schemes can reduce the asymptotic running-time, or at the
least reduce the running-time by a constant factor. Of course these transforma-
tions will be completely formalised.

In the following, the Cocke-Younger-Kasami Algorithm (CYK) (Shieber et
al. 1995) will be used as an example, how existing fast-running algorithms still
use such transformations.

With his help, the folding transformation will be explained, a powerful trans-
formation that for example allows a CKY-like bottom-up parser to have an
asymptotic complexity that is independent of the length of the production rules.

While the usual CKY-Algorithm reaches this aim by assuming the grammar
to be in Chomsky-Normal Form, the same optimisation can be obtained at the
level of the inference system using the Folding transformation.

After that, we will go on with the Unfolding transformation, the inverse of
the Folding transformation.

The third and last transformation will be Speculation, which is a quite new
thing which is used to handle special cases like unary rule cycles, and is used for
newer parsing algorithms for example to parse Splited Bilexicalized Grammars
(Eisner and Satta 1999). Although Speculation is not really relevant for the older
famous algorithms, the CKY-Algorithm will again serve as introduction example.
Additionally we will have a view on bilexical-parsing, where Speculation fulfils
his whole possibilities.

In the last section, the semantics of these transformations will be analysed.

This paper contains nothing new, it is completely based on “Program Trans-
formations for Optimisation of Parsing Algorithms and Other Weighted Logic
Programs” by Jason Eisner and John Blatz 2007.

1.1 Inference Systems - A very short introduction
Inference Systems consists of rules of the form:
conclusion :- ARG1, ARG2, ARG3, side-constraints.

Such a rule state a derivation step. It means, we can derive the conclusion,
when we can derive all the argument, and all the side-constraints are fulfilled.

An Inference System describes a set of items, which can be derived. For
example an item constit(X,I,K) means, an X can be derived from position I
to K. A typical side-constraint would be a production rule X — Y Z which will
be notated in the following as rewrite(X,Y,Z).

Where the rule above shows the boolean case, where the arguments and side-
constrains are connected by a A, which means for every argument /side-constaint
it must be checked whether it is true. All the items which can be derived by that
rule in a derivation step, are connected by a V.

The Inference Systems can be extended to Weighted Semiring Inference Sys-
tems. A semiring contains a set A/ of possible values and two operators @ and
®, where ® distributes over ®.

Often, the rules are notated as:

ARG1 ARG2 ARGS3

CONCLUSION side — constraints.

In a Weighted Logic Program, each provable item has a value out of N” which
can be notated with an '="- Sign at the item. Often, Weighted Semiring Inference
Systems are used to compute the probabilities, that items are derived. A rule in
looks as follows:

conclusion += ARG1 * ARG2 * ARG3 * side-constraints

Where the probability to derive the conclusion would be the product of the
arguments and the side-contrains. The probability of all conclusions which can
be derived by that rule in one step would be the sum of all these conclusions.

Parsing as deduction works by applying inference rules on the set of already
derived items, as long as an goal is reached, with yields a successful parse, or
there is no rule which can be applied, which means, the input cannot be parsed
and is therefore not in the grammar.

Applying a rule means, to iterate over the free variables, variables which
don’t occur in the conclusion, and prove if there is an item in the set of already
derived items with this values.

The running-time of an inference rule depends on the number of free vari-
ables, in fact, the running-time is the sum of all possible combinations of the free
variables. The running-time of in inference system depends on the running-time
of the rules, asymptotically on the most expensive rule, and how often this rule
could be applied.

1.2 The Cocke-Younger-Kasami (CYK) Algorithm

Let us have a quick look at the “traditional” CYK-Algorithm. Figure 1 shows
the complete algorithm, together with a simple grammar which also contains the
lexicon, and a input sentence.

Line one can derive unary rules with lexical entries on the left side, where
line two derives the other, binary rules. An item like constit(X,I,K) means,
we can derive an nonterminal X from position I to K.

Line three describes the whole parse-tree, we will obtain when we can derive
the start symbol s from position 0 to n. The next four lines, denote a little
example grammar, which can generate simple English sentences. The last lines
represent the input sentence, or the sentence we want to derive.

Most of the following examples will base on this example.

1.3 Run-time of the CKY-Algorithm
The asymptotic run-time of our CKY-Algorithm is affected by the second rule:
constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), comnstit(Z,J,K).
which contains the most variables, over whom, the parser have to iterate.

This rule contains 3 Variables out of the grammars alphabet N (Terminals

and Non-Terminals): X,Y,Z and 3 Variables which indicate positions n: I, K, J.
With this, it follows that the the CKY-Algorithm is in O(N? - n?).

constit(X,I,K) :- rewrite(X,W), word(W,I,K).
constit(X,I,K) :- rewrite(X,Y,Z), comnstit(Y,I,J), comstit(Z,J,K).
goal :- constit(s,0,N), length(N).

rewrite(s,np,vp).
rewrite(np,det,n).
rewrite(np, "Dumbo").
rewrite(vp,"flies").

word ("Dumbo",0,1).
word("flies",1,2).
length(2).

Fig. 1. The CKY-parser, a grammar and an input sentence.

2 Folding

Now let’s start with the first transformation which is called Folding. It is a very
simple, but also very effective transformation, which may help to reduce the
asymptotic running-time.

The basic idea is, to avoid unnecessary applying of rules and iterating over
free variables. To sketch the system remember how the evaluation of a inference
system works. We have to iterate over all values of all free variables for each
rule, and for every instance of a rule. Now consider a rule with three arguments.
Maybe there is a variable, which occurs to be free in the right side of the rule,
and this variable doesn’t occur in all arguments. Then it’s possible to take just
the arguments which use this variable to calculate the possible values. With that
values the other variables can be calculated, without iterating over the whole
domain of our previous calculated variable.

2.1 Example 1(CKY)

Let us consider the CKY-Algorithm, more precisely the second rule, which is
the most expensive rule:

constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), comnstit(Z,J,K).

All free occurrences of variables are underlined. We see, Y is free in this rule, and
Y just occurs in the first two items of the rules body.

To get a feeling how Folding works, we start with a first folding step, which
is obviously correct, but with no effect for the run-time.

We introduce a new rule, and adjust the old rule as follows:

temp(X,Y,Z,I,J) :- rewrite(X,Y,Z), constit(Y,I,J).
constit(X,I,K) :- temp(X,Y,Z,I,J), constit(Z,J,K).

Because of the associativity of the and operation, it is no problem, to compute
the two first items first. We hold the result of that calculation with help of the
new introduced “temp”-item. After that, it is folded into the computation of
constit.

Distributivity Because V distributes over A we can modify our previous Fold-
ing. In our second rule, Y appears only in the temp item. Nevertheless the rule
sums over J, Y and Z.

Because of the distributivity of V and A its possible to sum just over Y
before multiplying by constit(Z,J,K). With this we receive a better Folding
transformation:

temp2(X,Z,I,J) :- rewrite(X,Y,Z), constit(¥,I,J).
constit(X,I,K) :- temp2(X,Z,I,J), constit(Z,J,K).

Here we can see the whole idea of folding. Because of the distributivity we can
compute Y first, and then we can forget it as soon as possible, and don’t have to
iterate unnecessarily.

2.2 Run-time Analysis of the first Example

Let us analyse the second folding. The first rule iterates over the 3 Variables X,
Y, Z out of the grammars alphabet N, and over two positions N: I and J which
leads to a run-time of O(N? - n?) of the first rule.

The second rule only iterates over X and Z out of N and over the three
positions I, J and K, which yields an run-time of O(N?2 - n?).

So the whole overall run-time is O(N?3 - n? + N2 - n3), compared to O(N?3 -
n?) from our original rule we have seen in Chapter 1.3. Our next example will
demonstrate a better result of the folding.

2.3 Example 2 (CKY without CNF)

In this example we will see how the CKY-Algorithm uses folding to reduce the
running time.

Consider that CKY requires the rewrite-rules to be in Chomsky-Normal Form
(CNF). We will see that this restriction is highly related to folding. For this, let’s
have a look on this rule:

constit(X,I,L) :- ((rewrite(X,Y1,Y2,Y3), constit (¥Y1,I,J)),
constit (¥2,J,K)),
constit(Y3,K,L)

This rule can derive projections with three items on the right side. Note that
the brackets works like the “dot” in dotted-rules.
With the folding transformation we can transfer the above rule like this:

temp3(X,Y2,Y3,I,J) :-rewrite(X,Y1,Y2,Y3), constit(¥1,I,J).
temp4(X,Y3,I,K) :- temp3(X,Y2,Y3,I,J), constit(¥2,J,K).
constit(X,I,L) :- temp4(X,¥3,I,K), constit(¥3,K,L).

This folding is nothing else than a transfer of a projection with three items on
the right side to CNF, but with good advantages in the running-time, as we will
see in the run-time analysis.

2.4 Run-time Analysis of the second Example

The original rule in this example runs in O(N* - n*) cause it iterates over four
Grammar Variables N (X, Y1, Y2, Y3) and four positions n (I, J, K, L).

The folded version runs quite faster. Rule one iterates over X,Y2,Y3,Y1 out
of N and over two positions I, J which means this rule runs in O(N* - n?). The
second rule iterates over tree N’s (X,Y2,Y3) and tree positions n (I,J,K) which
means the asymptotic time is in O(N?3 - n?). The last rule just iterates over two
grammar variables N (X, Y3) and over three positions n (I, K, L) which leads
to O(N? - n3).

The all together asymptotic run-time is O(N*-n? + N3 -n3 + N2 . n3) which
is really faster than O(N* - n*) regarding to n.

2.5 Formalisation of Folding

The first example demonstrated the use and the idea of folding. The second
example showed, that the original CKY-Algorithm ever used a special case of
folding.

Now we have to take a look at the formal abstraction of folding to every
inference system including semiring-weighted inference systems.

Figure 2 shows the formal definition of folding. Note that F[FE] denote the
literal substitution where items are the literals, and F and E are expressions over
items. F[E] substitutes E for all instances of p in F, where p is a distinguished
symbol that does not appear elsewhere.

The new introduced rule R corresponds to our temp-rules. The iteration over
i searches for all rules, where the new rule R can be folded in. A little thing we
haven’t seen in the examples yet, is, variable renaming. Suppose we have two
rules with the same items, where just the variables are different. Then both of
this rules can use the same new temp-rule to fold out these items.

The first bullet provided by the replacement, means, a variable which occurs
in our items we folded out in the original rule and also occurs in the body or
head of the temp-rule must also occur in the instance of the temp-rule we filled in
the modification of the original rule. This prevents a wrong iteration over these
variable.

The second bullet describes, that the distributivity still holds for all variables
and all valuations, which means no restriction happens here.

Given a new rule R in the form r @ = F[s| (which will be used to replace a group
of rules Ry, ..., Ry in P). Let S1, ..., Sn be the complete list of rules in P whose heads
unify with s. Suppose that all rules in this list use ® as their aggregation operator.
Now for each i, when s is unified with the head of S;, the tuple (r, F, s, S;)* takes the
form (r;, Fi, si,8:® = E;). Suppose that for each i, there is a distinct rule R; in the
program that is equal to r;@® = F;[E;], modulo renaming of its variables.

Then the folding transformation deletes the n rules R, ..., R, and replaces them with
the new rule R, provided that

— Any variable that occurs in any of the F; which also occurs in either F; or r; must
also occur in s;°.

— Either ® = is simply =, or else the distributive property [Flu] @ Flu]] =
[Flo © v]] holds for all assignments of terms to variables and all valuation
functions [[]].?

Fig. 2. The weighted folding transformation taken from Eisner and Blatz 2007

3 Unfolding

The next transformation we want to have a look on is called Unfolding. As the
name indicates, unfolding is the inverse transformation of Folding, we have seen
in the section before.

Here, the basic idea is to replace a rule by a set of new rules. Every rule is
more specific than the original one. To Unfold one of the premises of a rule, we
add a new rule for every rule, whose conclusion unifies with this premise to the
inference system. Such a new rule contains all other premises of the original rule,
but the variables are replaced by the variables, which comes from the unified rule.

Again, the distributivity of the operations (V, A) makes this transformation
possible. Whereas we factored out in the Folding transformation, we expand in
the Unfolding transformation.

With Unfolding, new, more specific parsers emerge, which can improve the
running-time by a constant factor, which can be very useful for specific gram-
mars.

Another very important field of application is, to restore folded grammars.
Maybe you get a grammar, where someone already did some folding applications,
and you think you could do a better folding. Here, unfolding helps, to improve
the asymptotic behaviour, because a good folding can improve the asymptotic
running-time.

! Before forming this 4-tuple, rename the variables in S; so that they do not conflict
with those in r,F'|s. Perform the desired unification within the 4-tuple by unifying
it with the fixed term (R, F, S, S ®= E), which contains two copies of S

2 This ensures that computing s; by rule S; does not sum over this variable, which
would break the co-variation of E; with F' or r as required by the original rule R;.

3 That is, all valuation functions over the space of ground terms, including dummy
terms p and v, when extended over expressions in the usual way.

3.1 Example 3 (CKY)
Let us again look at the CKY-Algorithm. More precisely this three rules:

constit(X,I,K) :- rewrite(X,Y,Z), constit(Y,I,J), comnstit(Z,J,K).
rewrite(s,np,vp).
rewrite(np,det,n).

Here, we want to unfold the rewrite(X,Y,Z) premise. The following rules are
those, whose conclusion unifies with this premise. After the transformation, we
get this inference system:

constit(s,I,K) :- comnstit(unp,I,J), constit(vp,J,K).

constit(np,I,K) :- constit(det,I,J), constit(n,J,K).
rewrite(s,np,vp).
rewrite(np,det,n).

The first rule is replaced by two, more specific rules. Please note, in this
example, you could throw away the last two rules, because there is no way in
the inference system, to reach them. But in general, there could be another rule,
which still contains a rewrite(X,Y,Z) premise, and so this rules have to stay in
these system.

3.2 Run-time Analysis of the third example

As there are still 3 Variables out of the Grammar: s, np and vp in the first rule,
respectively np, det and n in the second one, and 3 indices in both rules: I, J
and K the asymptotic run-time is still O(N3 - n?).

But nevertheless this transformation can be very useful in practise. It avoids
to try every rewrite-rule and therefore reduces the running-time by a constant
factor.

3.3 Formalisation of Unfolding

Now we want to abstract the previous example to every inference system includ-
ing semiring-weighted inference systems.

Figure 3 shows the formal definition of folding. The rule R from the definition
correspond to the first rule of the third example, before the transformation. The
rewrite item is contained in the s, and Sy, ..., S, corresponds to the two rewrite
rules of the example. A new rule emerges by unifying s with the conclusion of
S;, which must be done for every 1 < ¢ < n. After that, the rule R can be
replaced by the rules r;@® = F;[E;], where E; denotes the unification of s with
the conclusion of S;.

The two bullets provided by the replacement mean exactly the same as de-
scribed earlier (Section 2.5). The first one prevents a wrong iteration, and the
second one assures the distributivity.

4 Before forming this tuple, rename the variables in S; so that they do not conflict
with those in 7, F,s.

Let R be a rule in P, given in the form r@® = F[s]. Let Si, ..., Sn be the complete list
of rules in P whose heads unify with s. Suppose that all rules in this list use ® as their
aggregation operator.

Now for each 4, when s is unified with the head of S;, the tuple (r, F, S, S;)* takes the
form (7, Fi, 84, 8:0 = Ej).

Then the unfolding transformation deletes the rule R, replacing it with the new rules
r;@® = F;[E;] for 1 < i < n. The transformation is allowed under the same two condi-
tions as for the weighted folding transformation:

— Any variable that occurs in any of the E; which also occurs in either F; or r; must
also occur in s;.

— Either ® = is simply =, or else we have the distributive property [F[u] @ F[v]] =
[Flu o o]

Fig. 3. The weighted unfolding transformation taken from Eisner and Blatz 2007

4 Speculation

The last transformation we will discus here, is called Speculation, which main
application area is to handle cycles in weighted semiring inference systems. Ob-
viously, parsing a cycle by deduction will never terminate. In practise, parsing
a cycle in weighted semiring inference systems will abort, for example, if the
value becomes stable enough. That means, it aborts, when the difference be-
tween the previous value, and the value computed by the next turn, added to
the previous one is smaller than a predefined e. This computation is somewhat
time-consuming (Eisner and Blatz 2007)

Note that a circle is on top of an constit(X,I,K), that means, if we have
derived an X we have to compute this cycle. This cycle doesn’t depend on I and
K, and will therefore always have the same value. So we can prevent computing
this circle again and again by doing it just once, and multiply the precalculated
value if necessary.

That is the idea of Speculation. It speculates this value, by assuming this X
is already derived.

In the boolean case, Speculation is less interesting, cause there is no need
to compute cycles in more than one turn, as its value will always be 1 if it
can be derived. But assume we have unary rules, with which it is possible to
build extremely long chains. So that computing such a chain will be very time-
consuming. Then, with Speculation it is again possible, to do this expensive
computing just once.

4.1 Example 4 (CKY)

Let’s start with a first example, again the CKY-Algorithm. This time, we will
not restrict this algorithm to be in Chomsky Normal Form, and allow unary
rules of the form rewrite(X,Y), which leads to these rules:

constit(X,I,K) :- rewrite(X,W),word(W,J,K).
constit(X,I,K) :- rewrite(X,Y),constit(Y,I,K).
constit(X,I,K) :- rewrite(X,Y,Z) constit(Y,I,J),constit(Z,J,K).

Depending on the grammar, such long chains can occur, and this parser would de-
rive them as often, as they occur with the second rule. Note that the rewrite (X,Y)
in that rule, doesn’t depend of the I and K of the following constit item. (Il-
lustrated in Figure 5)

After the Speculation transformation, the rules look as follows:

temp (X0,X0) .

temp (X,X0) :- rewrite(X,Y), temp(Y,X0).

other(constit(X,I,K)) :- rewrite(X,W), word(W,J,K).

other(constit(X,I,K)) :- rewrite(X,Y,Z), constit(Y,I,J),constit(Z,J,K).

constit(X,I,K) :- temp(X,X0), other(constit(X0,I,K)).

The two temp items derive the chain. The first rule is the termination condi-
tion, which just says, that it’s always possible to derive an X0 when X0 is already
derived. The second rule derives the rest of the chain, starting at XO0.

The last rule calls the computation of this chain, by pretending, the X0 is
already derived.

The rules three and four are nearly the same as in our previous examples,
excepting the 'other’ in the conclusion, which is necessary to prevent computing
the chain, although it is already computed. Without this 'other’ the chain would
be computed all over again because of the recursive rules.

Figure 4 shows the weighted semiring version of that algorithm, which works
completely analogous to the boolean case, excepts that here cycles must be
computed, which really occurs in real applications, whereas the boolean case is
improbable to.

temp (X0,X0) += 1.

temp(X,X0) +- rewrite(X,Y), temp(Y,X0).
other(constit(X,I,K)) +- rewrite(X,W) * word(W,J,K).
other(constit(X,I,K)) +- rewrite(X,Y,Z) * constit(Y,I,J) *
constit(Z,J,K).

constit(X,I,K) +- temp(X,X0) * other(constit(X0,I,K)).

Fig. 4. Weighted Semiring Version of Example 4

4.2 Example 5 (Split Bilexical CFG)

A very important area of application of Speculation is parsing Split Bilezical
CFGs, in which a head word must combine with all of its right children before any
of its left children (Eisner and Satta 1999). Here, the left children are completely
independent of its right children. So with Speculation it is possible to speculate
the left children and therefore compute them just once.

constit(X0,1,))

constit(X0,p,q)

q

Fig. 5. Principle of speculation - Boolean Case

The naive algorithm for bilexical context-free parsing is O(n°) (Eisner and
Blatz 2007). But it can be break down over O(n*) to O(n?) (Eisner and Satta
1999). The techniques used by Eisner and Satta to break down the running-time
can be abstracted which yields the Speculation-Transformation (Eisner and Blatz
2007).

This shows, that Speculation can break down the asymptotic enormously.

4.3 Filter Clauses

Another trick, which can improve the asymptotic running-time are Filter Clauses
which prevents the parser to speculate things, which aren’t required. This looks
as follows:
temp(X0,X0) :- needed.only_if constit(X0,I0,KO0).
temp (X,X0) :- rewrite(X,Y), temp(Y,X0) needed_only_if constit(X0,I0,K0).

This just means, that before computing a cycle, it will be checked, if there is
at least one X0 derived so far.
4.4 Run-time of Speculation

As mentioned in Chapter 4.2 Speculation can improve the asymptotic behaviour.
Suppose, that in the worst-case, a cycle for on the top of a constit (X,I,J) must

be computed n? times (all possible values for the indices I and J), whereas with
speculation this computation will be done just for one time.

Suppose computing this cycle takes n*, the whole time of the algorithm
without Speculation would be O(n® - n?) = O(n**2). With Speculation it is in
O(n* - 1) = O(n").

4.5 Formalisation of Speculation

Now we have to formalise the Speculation. Figure 6 shows the definition. This
definitions works on semirings of weights W. All the rules must use the same
aggregation operator ®=, with identity element 0, and each rule’s body must be
a product of items, using ® as associative binary operator that distributes over
@.

In Example 4 we have V as the aggregation operator with identity false,
and A as the ® operator with identity element true.

The slash item in our example would be the temp items. slash(r;,x) means,
deriving products we want to speculate. Where x is an item which is slashed out
of that rule. In our example constit (X0,I,K), which doesn’t unify with the part
of the rule, we want to speculate, and must be more general with the other part
t. The definition claims, that the ¢ must be the last item of the rule. To avoid
this restriction, ® have to be commutative. The slash item can only multiplied
to an other item, to prevent multiple computing of the speculated part, as we
discussed in Example 4. Intuitively, other (r;) accumulates ways of building r;
other than just grounding r;.

According to our Example, the R; from the definition would be the rule
which contains the unary production.

5 Semantics

Before we have to look at the specific transformations, we have to define the
phrase 'semantics preserving’. This means, two inference systems are semantics
preserving it they can derive the same items, and none of the inference systems
can derive more than the other.

Now we can claim, that all our transformations are semantics preserving.
Except for the new introduced temp items, which obviously cannot be derived
by the original inference system, because they don’t occur there.

Nevertheless they can still be said to be semantics preserving because in such
two-step transformations P — P” — P’ introduce new items in the first step
P — P" and eliminate them in the second P” — P’.

5 If necessary, the program can be preprocessed so that such an index exists. Any rule
can be split into three more specialised rules: an ¢ < k rule, an ¢ > k rule, and a
rule not among the R;. Some of these rules may require boolean side conditions to
restrict their applicability.

5 That is, t; is “more specific’ than : it matches a non-empty subset of the ground
terms that = does.

Given a semiring (W, ®, ®, 0, 1).

Given a term z to slash out, where any variables in do not occur anywhere in the
program P. Given distinct rules Ry, ..., R,, in P from which to simultaneously slash =
out, where each R; has the form r;® = F; ® t; for some expression F; (which may be

1) and some item ¢;.
Let k be the index ® such tat 0 < k < n and

— For i <k, t; does not unify with x.
— For i > k, t; unifies with z; moreover, their unification equals ;5.

Then the speculation transformation constructs the following new program. Recall that
@, denotes the aggregation operator for r (which may or may not be ®). Let slash,
other and matches_x be new functors that do not already appear in P.

— slash(x,x) @, =1 needed_only_if z.

— (V1 <4 < n) slash(r;,x) ® = F;® slash({;,x) needed only if x.
— (V1 <i <k) other(r;) & = F;® other(¢;).

— (V rules p@®, = E not among the R;) other(p) &, = E.

— matches_x(x) |= true.

— matches_x(A) |= false.

— A @4= other(A) if not matches_x(A).

— A ®4= slash(A,x) ® other(x).

Fig. 6. The semiring-weighted speculation transformation taken from Eisner and Blatz
2007

This composite transformation is semantics preserving although the step
P” — P’ is not.

6 Conclusions

We have seen tree techniques called transformations which helps to optimise
inference systems:

— Folding
— Unfolding
— Speculation

While Folding and Speculation can improve the asymptotic behaviour, Unfolding
cannot directly improve the asymptotic behaviour, but can reduce the running-
time by a constant factor, and can help to prepare a good folding and thus can
also be used to improve the asymptotic behaviour indirectly.

Folding follows from tricks, famous algorithms used. For example the CKY-
Algorithm or the Early-Algorithm which make context-free parsing manageable.
Now we have a corresponding abstraction to every inference system, to optimise
it.

Speculation is something new, which allows to handle unbounded sequences
of rules, included cycles. It is a really important transformation for Parsers of
new grammars like Bilexicalized grammars.(Eisner and Blatz 2007)

References

Eisner, J., Blatz, J.: Program Transformations for Optimisation of Parsing Algorithms
and Other Weighted Logic Programs. In Proceedings of FG 2006: The 11th Con-
ference on Formal Grammar, pp. 45-85. CSLI Publications.

Nederhof, M-N. and Satta, G.: Introduction to Parsing Algorithms for NLP, Lecture
Notes, ESSLLI 2004.

Shieber, S. M., Schabes, Y., Pereira, F. C. N.: Principles and Implementation of De-
ductive Parsing, Journal of Logic Programming 24:1+2, 3-36, 1995.

Eisner, Jason and Giorgio Satta (1999). Efficient parsing for bilexical context-free gram-
mars and head automaton grammars. Proceedings of the 37th Annual Meeting of
the Association for Computational Linguistics, pages 457-464, College Park, Mary-
land, June.

