
Spartacus: A Tableau Prover for Hybrid Logic

Daniel Götzmann, Mark Kaminski, and Gert Smolka

Saarland University, Saarbrücken, Germany

Abstract. Spartacus is a tableau prover for hybrid multimodal logic
with global modalities and reflexive and transitive relations. Spartacus is
the first system to use pattern-based blocking for termination. To achieve
a competitive performance, Spartacus implements a number of optimiza-
tion techniques, including a new technique that we call lazy branching.
We evaluate the practical impact of pattern-based blocking and lazy
branching for the basic modal logic K and observe high effectiveness of
both techniques.

1 Introduction

Automated reasoning in modal and description logics (DL) is an active field
of research. Arguably the most successful approach to modal reasoning are
tableau-based methods. Several of the most prominent DL reasoners, including
FaCT++ [1] and RacerPro [2], are based on tableau algorithms. In the pres-
ence of global modalities or transitive relations, the naive tableau construction
strategy, sufficient in the case of basic modal logic, no longer terminates. To
regain termination, one employs blocking [3]. Most of the established blocking
techniques are derived from Kripke’s chain-based approach [4]. Kaminski and
Smolka [5, 3] propose a different blocking technique, called pattern-based block-
ing. They conjecture that pattern-based blocking may display a better perfor-
mance than the established techniques. Our goal is to show that pattern-based
blocking is useful even for K, where blocking is not required for termination.

Spartacus is a tableau prover for hybrid multimodal logic with global modali-
ties. It supports reasoning in the presence of reflexive and/or transitive relations.
In contrast to other systems, Spartacus uses pattern-based blocking to achieve
termination. Crucial for the performance of pattern-based blocking is the data
structure used to store blocked patterns (pattern store). Spartacus allows us to
evaluate two different implementations of the pattern store, one of them based
on a data structure by Giunchiglia and Tacchella [6], the other one on work
by Hoffmann and Koehler [7]. Similarly to FaCT++ [1], Spartacus schedules
pending rule applications using a configurable priority queue, which allows for a
fine-grained control over the rule application strategy. To achieve a reasonable
performance on realistic inputs, Spartacus implements a number of optimiza-
tions, including term normalization, Boolean constraint propagation, semantic
branching and backjumping [8]. Moreover, Spartacus implements a new tech-
nique, called lazy branching. Lazy branching is a generalization of lazy unfold-
ing [8], an effective optimization technique from DL reasoning. Restricted to



2 Daniel Götzmann, Mark Kaminski, and Gert Smolka

propositional reasoning, lazy branching corresponds to the Pure Literal Rule.
Spartacus is written in Standard ML and compiled with MLton. The source
code and test data are available from www.ps.uni-sb.de/theses/goetzmann/.
A detailed description of Spartacus can be found in [9].

We evaluate the effects of pattern-based blocking and lazy branching, and
compare the performance of Spartacus with that of other reasoners for modal
and description logics. Both techniques prove highly effective.

2 Pattern-Based Blocking

Pattern-based blocking (PBB) in Spartacus is implemented following [5]. The
pattern P (s) of a diamond formula s is a set of formulas consisting of s itself
and all the boxes located at the same node as s on the tableau branch (nodes are
also known as nominals or prefixes). Once the diamond rule is applied to s, P (s)
is marked as expanded. Moreover, a pattern P is considered expanded if there is
an expanded pattern Q such that P ⊆ Q. PBB restricts the applicability of the
diamond rule to formulas whose patterns are not yet expanded on the branch.

Crucial for the performance of PBB is the ability to efficiently determine,
given a query pattern P , whether there is an expanded superpattern (i.e., super-
set) Q of P . Following [6], we call this operation subset matching. The pattern
store is the data structure used for storing and testing the expandedness of pat-
terns by subset matching. Giunchiglia and Tacchella [6] propose a satisfiability
cache based on a bit matrix representation that allows for straightforward sub-
set matching. Practical inputs contain a large number of distinct subformulas,
which results in the bit matrix becoming sparse. To exploit this, one can use a
sparse matrix representation.

A different data structure for subset and superset matching is proposed by
Hoffmann and Koehler [7]. The approach represents patterns as paths in a forest.
The forest structure allows sharing of common subpatterns, which can consider-
ably reduce the required space.

3 Lazy Branching

Lazy branching (LB) is a technique that aims at postponing the processing of
disjunctions that are consistent with the current tableau branch. LB is inspired
by lazy unfolding [8]. Assume a node n contains a disjunction l ∨ t, where l
is a propositional literal. As long as other formulas at n do not constrain l to
be false, we can assume l to be true and ignore the disjunction l ∨ t. In other
words, we delay the processing of disjunctions for which we know that one of the
alternatives (the witness) is consistent with the branch. There are two cases in
which l∨ t cannot be delayed. Obviously, the disjunction has to be processed if n
contains l, the negation of the witness l. Also, we cannot delay l∨ t if we already
delay l ∨ s, since delaying both formulas results in inconsistent assumptions
about l. A disjunction l1 ∨ · · · ∨ lm ∨ t with several propositional literals can be
delayed as long as at least one of them can serve as a witness.



Spartacus: A Tableau Prover for Hybrid Logic 3

Propositional literals make good witnesses because their consistency with the
branch depends only on formulas at the current node n. A similar observation
holds for box formulas. As long as a node n does not contain any diamond
formulas 〈r〉t, it cannot have any r-successors. Hence, all formulas [r]s at n can
be assumed true, allowing us to delay disjunctions of the form [r]s ∨ u.

Compared to lazy unfolding, LB is more general in that it is applicable in
more cases. On the other hand, certain special cases are treated more efficiently
by lazy unfolding. The specialization of LB to propositional reasoning is known
as the Pure Literal Rule. Spartacus implements LB for propositional literals and
for box formulas.

4 Evaluation and Conclusion

We evaluate Spartacus on some well known representative benchmarks for K:
Table 1: Randomly generated 3CNFK formulas [10] for several settings of d
(modal depth), L (number of clauses), and N (number of propositional vari-
ables). Table 2: A subset (the harder problems) of the Tableaux’98 benchmarks
for K [11]. Table 3: A subset (the easier problems) of the TANCS-2000 Un-
bounded Modal QBF (MQBF) benchmarks [12]. Table 4: Randomly generated
modalized MQBF formulas [13]. The results for Tables 3 and 4 are grouped by
the quantifier alternation depth D and the number of variables V used per alter-
nation in the original QBF. In both cases, the sets contain 8 formulas for each
setting of C (number of QBF clauses), which ranges between 10 and 50.

We evaluate the tree (T) and the sparse matrix (S) representation of the pat-
tern store versus no blocking at all (pbb-). Moreover, in one of the runs we disable
LB (lb-). The other settings, including the rule application strategy, are chosen
according to Configuration I in [9]. To see how Spartacus performs compared
to other provers, we include four systems into the evaluation: (1) CWB [14], a
prototype reasoner for ALC, featuring global caching. (2) FaCT++ (v1.2.2), cur-
rently one of the leading DL reasoners. It supports the logic SROIQ(D), which
is more expressive than the language supported by Spartacus. (3) HTab [15]
(v1.3.5), a prover for hybrid logic. Compared to Spartacus, HTab additionally
supports the difference modality, but has no support for reflexive or transitive
relations. (4) *SAT [16] (v1.3), a reasoner for ALC, featuring matrix-based satis-
fiability and unsatisfiability caching. In contrast to the other systems, which are
all tableau-based, *SAT implements a modal extension of the Davis-Putnam pro-
cedure. All provers except CWB are compiled and run with the default settings.
For CWB we use the flags -oa -ogc (global caching on).

The tests are performed on a Pentium 4 2.8GHz, 1GB RAM, with a 60s time
limit per formula (60s is enough for most problems). For each setting/system,
we count the number of problems solved (left subcolumn). In addition (right
subcolumn), we record the average time (in seconds) spent on the successful
problems (except for Table 2, where it suffices to give the time for the hardest
successful formula). The timings are only relevant for the comparison of two runs
if they solve the same number of problems. The best results are set in bold.



4 Daniel Götzmann, Mark Kaminski, and Gert Smolka

d T S pbb- T,lb- CWB FaCT++ HTab *SAT
1 45 5.2 45 4.6 45 4.3 45 12.0 0 — 29 32.6 0 — 45 0.4

2 40 2.5 40 2.4 40 2.4 40 3.5 9 1.6 17 5.4 9 1.4 25 9.8
4 38 11.5 38 11.3 32 12.0 34 12.2 0 — 9 3.2 9 6.2 9 19.9
6 29 19.2 29 17.9 13 14.9 19 17.0 0 — 0 — 5 15.6 0 —

Table 1: 180 3CNFK formulas (upper part: 45 formulas with N=5, L=110;
lower part: 3×45 formulas with N=3, L=30..150)
Note: LB is effective on hard propositional subproblems. PBB and LB are in-
creasingly effective with growing modal depth.

Test T S pbb- T,lb- CWB FaCT++ HTab *SAT
branch n 9 18.8 9 19.0 8 12.3 8 42.5 12 36.4 10 48.5 4 4.0 12 50.0
branch p 11 58.9 11 59.6 8 12.3 8 21.3 21 6.2 9 11.6 5 58.0 18 57.1

d4 n 21 0.2 21 0.2 6 54.4 21 0.2 21 7.2 21 27.9 6 15.2 21 0.2
lin n 21 0.0 21 0.0 21 0.0 21 0.0 21 13.3 21 0.1 21 0.1 13 50.5

path n 21 0.6 21 0.6 9 50.8 21 0.9 21 51.8 21 0.1 9 37.1 21 0.2
path p 21 0.6 21 0.5 10 46.7 21 0.9 21 46.0 21 0.1 10 36.1 21 0.1
ph n 21 1.2 21 1.2 21 1.2 21 4.0 9 33.1 12 20.0 16 30.4 21 1.9
ph p 8 46.1 8 44.4 8 43.6 8 58.4 7 53.6 7 11.4 6 8.3 8 3.8

Table 2: Tableaux’98 benchmarks for K (8×21 formulas)
Note: PBB is crucial for competitiveness. The rule application strategy chosen
for Spartacus is suboptimal for branch p [9].

V, D T S pbb- T,lb- CWB FaCT++ HTab *SAT
4,4 40 0.1 40 0.0 40 0.1 40 0.1 27 5.7 40 0.4 39 1.1 40 0.1
4,6 40 0.1 40 0.1 40 3.0 40 0.2 19 5.8 33 3.2 22 12.5 40 0.8
8,4 40 0.6 40 0.5 15 9.6 40 1.0 12 7.3 21 6.1 8 11.0 40 8.7
8,6 39 3.7 38 2.8 9 8.9 36 6.3 8 6.4 15 3.8 4 26.2 26 8.5
16,4 38 2.7 38 3.6 4 11.8 37 4.6 7 19.0 19 7.6 0 — 24 6.9
16,6 39 1.9 39 2.3 3 22.4 37 4.4 6 17.5 16 3.4 0 — 24 9.7

4,4 40 4.9 40 5.7 40 5.3 25 30.5 27 30.3 40 1.3 12 15.5 15 23.9
4,6 4 29.9 3 27.9 4 33.2 1 4.4 1 14.5 21 11.7 2 16.0 0 —

Table 3: TANCS-2000 benchmarks (upper part: 6×40 cnfSSS formulas; lower
part: 2×40 cnfLadn formulas)
Note: PBB is useful for cnfSSS, LB for cnfLadn. The rule application strategy
chosen for Spartacus is suboptimal for cnfLadn [9].

V, D T S pbb- T,lb- CWB FaCT++ HTab *SAT
4,4 40 0.4 40 0.3 4 34.6 40 0.4 13 8.4 39 2.4 0 — 40 0.5
4,6 40 5.2 39 3.6 0 — 38 3.8 8 9.2 25 6.0 0 — 40 5.1
8,4 33 9.9 33 9.8 0 — 31 10.3 6 14.1 19 5.0 0 — 26 10.9
8,6 24 3.7 24 3.3 0 — 24 6.8 0 — 16 7.5 0 — 18 5.4
16,4 22 7.3 22 7.2 0 — 21 10.2 1 23.4 16 3.8 0 — 17 5.2
16,6 23 6.3 23 5.3 0 — 21 8.1 0 — 15 3.3 0 — 18 8.2

4,4 40 0.3 40 0.3 0 — 40 0.3 0 — 38 13.3 0 — 40 1.8
4,6 40 0.6 40 0.5 0 — 40 0.6 0 — 21 26.5 0 — 40 2.9
8,4 40 1.1 40 1.1 0 — 40 1.3 0 — 2 40.8 0 — 18 27.0
8,6 40 2.3 40 2.3 0 — 40 2.8 0 — 0 — 0 — 18 25.8
16,4 40 5.2 40 4.9 0 — 40 8.3 0 — 0 — 0 — 0 —
16,6 40 9.9 40 9.8 0 — 40 18.9 0 — 0 — 0 — 0 —

Table 4: 480 modalized MQBF formulas (upper part: 6×40 modKSSS formulas;
lower part: 6×40 modKLadn formulas)
Note: PBB is crucial. LB is effective on the more complex problems.



Spartacus: A Tableau Prover for Hybrid Logic 5

The evaluation displays no significant differences in performance between the
two implementations of the pattern store, but fully confirms the effectiveness of
PBB and LB. The techniques are particularly successful on inputs of high modal
depth and on hard propositional subproblems, demonstrating an improvement
up to several orders of magnitude. In no case do PBB or LB lead to notable per-
formance penalties. Compared to other systems, the performance of Spartacus
proves highly competitive, yielding a promising basis for further research.

References

1. Tsarkov, D., Horrocks, I.: FaCT++ description logic reasoner: System description.
In Furbach, U., Shankar, N., eds.: IJCAR 2006. Volume 4130 of LNCS., Springer
(2006) 292–297

2. Haarslev, V., Möller, R.: RACER system description. In Goré, R., Leitsch, A.,
Nipkow, T., eds.: IJCAR 2001. Volume 2083 of LNCS., Springer (2001) 701–705

3. Kaminski, M., Smolka, G.: Terminating tableau systems for hybrid logic with
difference and converse. To appear in J. Log. Lang. Inf. (2009)

4. Kripke, S.A.: Semantical analysis of modal logic I: Normal modal propositional
calculi. Z. Math. Logik Grundlagen Math. 9 (1963) 67–96

5. Kaminski, M., Smolka, G.: Hybrid tableaux for the difference modality. In: 5th
Workshop on Methods for Modalities (M4M-5). (2007)

6. Giunchiglia, E., Tacchella, A.: A subset-matching size-bounded cache for testing
satisfiability in modal logics. Ann. Math. Artif. Intell. 33(1) (2001) 39–67

7. Hoffmann, J., Koehler, J.: A new method to index and query sets. In Dean,
T., ed.: Proc. 16th Intl. Joint Conf. on Artificial Intelligence (IJCAI’99), Morgan
Kaufmann (1999) 462–467

8. Tsarkov, D., Horrocks, I., Patel-Schneider, P.F.: Optimizing terminological reason-
ing for expressive description logics. J. Autom. Reasoning 39(3) (2007) 277–316

9. Götzmann, D.: Spartacus: A Tableau Prover for Hybrid Logic. M.Sc. thesis,
Saarland University (2009)

10. Giunchiglia, E., Giunchiglia, F., Tacchella, A.: SAT-based decision procedures for
classical modal logics. J. Autom. Reasoning 28(2) (2002) 143–171

11. Balsiger, P., Heuerding, A.: Comparison of theorem provers for modal logics:
Introduction and summary. In de Swart, H., ed.: TABLEAUX’98. Volume 1397 of
LNCS. (1998) 25–26

12. Massacci, F., Donini, F.M.: Design and results of TANCS-2000 non-classical
(modal) systems comparison. In Dyckhoff, R., ed.: TABLEAUX 2000. Volume
1847 of LNCS., Springer (2000) 52–56

13. Massacci, F.: Design and results of the Tableaux-99 non-classical (modal) sys-
tems comparison. In Murray, N.V., ed.: TABLEAUX’99. Volume 1617 of LNCS.,
Springer (1999) 14–18

14. Goré, R., Postniece, L.: An experimental evaluation of global caching for ALC:
System description. In Armando, A., Baumgartner, P., Dowek, G., eds.: IJCAR
2008. Volume 5195 of LNCS., Springer (2008) 299–305

15. Hoffmann, G., Areces, C.: HTab: A terminating tableaux system for hybrid logic.
In: 5th Workshop on Methods for Modalities (M4M-5). (2007)

16. Giunchiglia, E., Tacchella, A.: System description: *SAT: A platform for the devel-
opment of modal decision procedures. In McAllester, D.A., ed.: CADE-17. Volume
1831 of LNCS., Springer (2000) 291–296


