
HyLo 2006

Higher-Order Syntax and Saturation
Algorithms for Hybrid Logic

Moritz Hardt1 Gert Smolka1

Programming Systems Lab
Saarland University

Saarbrücken, Germany

Abstract

We present modal logic on the basis of the simply typed lambda calculus with a system of equational
deduction. Combining first-order quantification and higher-order syntax, we can maintain modal reasoning
in terms of classical logic by remarkably simple means. Such an approach has been broadly uninvestigated,
even though it has notable advantages, especially in the case of Hybrid Logic.
We develop a tableau-like semi-decision procedure and subsequently a decision procedure for an alternative
characterization of HL(@), a well-studied fragment of Hybrid Logic.
With regards to deduction, our calculus simplifies in particular the treatment of identities. Moreover,
labeling and access information are both internal and explicit, while in contrast traditional modal tableau
calculi either rely on external labeling mechanisms or have to maintain an implicit accessibility relation by
equivalent formulas.
With regards to computational complexity, our saturation algorithm is optimal. In particular, this proves
the satisfiability problem for HL(@) to be in PSPACE, a result that was previously not achieved by the
saturation approach.

Keywords: Hybrid logic, modal logic, lambda calculus, tableau systems, decision procedures

1 Introduction

When explaining the features of a modal logic, modal logicians stress the point
that these languages support an internal view on a relational structure, while on
the contrary classical logic employs external mechanisms such as quantification and
variable-binding [4]. Consequently, modal logics deserve special-purpose syntax
and semantics which capture this essential idea. Surprisingly though, most texts on
modal logic introduce “standard translations”, mappings which recursively elimi-
nate modal syntax in favor of first-order predicate logic. This exhibits a trade-off.
On the one hand, modal reasoning is comfortable in its traditional presentation.
On the other hand, the coherence of classical syntax with standard semantics is
desirable.

1 {hardt,smolka}@ps.uni-sb.de

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs

Taking these points into consideration, we develop a formulation of modal logic
based on the simply typed lambda calculus [7] with a system of equational deduc-
tion [14]. By combining first-order quantification and higher-order syntax, Kripke
semantics is fully internalized in our approach. With a few key definitions, syntax,
semantics and deduction is set up for modal logics. While we make a commitment
to classical logic, we maintain the “local perspective” of modal logic in our native
syntax. Even more so, traditional modal syntax is preserved on a notational level.
This way, standard translations are obsolete. Along the line, our approach remedies
the problems with β-conversion as they appear in the work of Fitting [11,9] who
gives examples of β/η-equal modal terms denoting differently, which is clearly in
conflict with the lambda calculus. In order to avoid phenomena like these, we make
names for points of evaluation explicit, already in the case of our minimal modal
logic MF .

This leads us to the consideration of Hybrid Logic. In a common formulation,
often referred to as HL(@, ↓), Hybrid Logic enriches the minimal modal logic K
with naming, binding, and referencing constructions, as well as an implicit identity
judgement [5,1,4]. We offer an equivalent logic called MFI that extends MF with
the identity predicate. Once HL(@) is characterized as the monadic fragment of
MFI, we develop a tableau calculus and a tableau-based decision procedure for
this logic. The first such algorithm is due to Tzakova [15]. Recently, Bolander and
Braüner [6] extended Tzakova’s system by a treatment of the universal modalities
and a proof of termination using loop-checking techniques. A semi-decision pro-
cedure in form of a tableau calculus is given by Blackburn [3] who discusses the
advantages of internalizing labeled deduction in Hybrid Logic. However, none of
these results is optimal with respect to computational complexity.

Contributions and Overview
In Section 3, we present syntax, semantics, and deduction for modal logics on the

basis of classical logic. Traditional modal syntax is preserved on a notational level,
which makes standard translations dispensable. We solve previous problems with
β-conversion that are inherent in traditional modal syntax. Proving equivalence,
we provide alternative characterizations of HL(@, ↓) and HL(@).

In Section 4, we develop a tableau-based semi-decision procedure for monadic
MFI, i.e., HL(@). Careful analysis of the role of the identity predicate in monadic
MFI leads to simple saturation rules. Moreover, deduction is fully internal carrying
forward [3], but in contrast to [3] we still profit from an explicit access relation at
the object level.

In Section 5, we extend our saturation approach to a polynomial space decision
procedure for the satisfiability problem of monadic MFI. We are not aware of
any previous tableau-based result that matches the PSPACE lower bound for this
problem.

Extended discussion of the sections 3 and 4 can be found in [13].

2 The Logical Base

We consider a simply typed lambda calculus where every term has a unique type.
Interpretation for terms and types is provided by standard semantics. In our sys-
tem, logical constants are axiomatized by equations and deduction itself is purely
equational. For a full discussion of this topic see [14].

Figure 1 specifies a system of first-order predicate logic which includes derived
modal operators. The axioms are known to enforce a canonical interpretation of
the constants.

Theory ML

Base Types B,V

Constants 0 : B

→ : B → B → B

∀ : (V → B) → B

=̇ : V → V → B

R : V → V → B

Axioms 0 → x = 1
1 → x = x

x ∨ y = y ∨ x Commutativity
f0 → f1 → fx = 1 Boolean Case Analysis
∀(λx.1) = 1
∀f → fx = 1 Instantiation
x=̇x = 1 Reflexivity
x=̇y → fx → fy = 1 Replacement

Derived Constants 1 = 0 → 0
¬x = x → 0
x ∨ y = (x → y) → y

x ∧ y = ¬(¬x ∨ ¬y)
∃f = ¬(∀(λx.¬(fx)))
2xf = ∀y.Rxy → fy

3xf = ∃y.Rxy ∧ fy

Notation ∀x.t = ∀(λx.t)
∃x.t = ∃(λx.t)

Fig. 1. First-order Predicate Logic with Modal Operators

For each type we assume a countably infinite set of variables. For a term t, FV t

denotes the set of free variables of type V occurring in t. If FV t = ∅, we say that t

is closed. We furthermore assume a countably infinite set Par of constants of type V
called parameters. The set of parameters occurring in a term t is denoted by Par t.

Variables of type B and V are written as x, y, while we use a, b for parameters.
The letters u, v may either refer to a variable of type V or a parameter.

We denote by t[u := v] the term obtained from t by replacing all (capture-free)
occurrences of u by v. The size of a term t, denoted by |t|, is defined by structural
recursion as usual. A formula is a term of type B.

3 Modal Logic Revisited

Our presentation of modal logic relies on the following key components.

• Type constant V

• Names u, v : V

• Propositional variables f, g : V → B

• Relational constant R : V → V → B

• Modal operators 3,2 : V → (V → B) → B

The type constant V is interpreted by a non-empty set of objects called vertices.
Propositional variables denote predicates on vertices. Accordingly, the modal oper-
ators enable judgments about a vertex and a property of vertices. It is straightfor-
ward to pin down the semantics of the modal operators by means of the two axioms
depicted in Figure 1. Arranged in a more suggestive way, these terms enjoy the
intuitive reading:

2u(λx.t) “At u, all direct successors x satisfy t.”

3u(λx.t) “At u, some direct successor x satisfies t.”

Surprisingly, a “traditional” modal syntax is still available on a notational level.
For this purpose, we reserve a single fixed variable π : V and think of π as the
current point of evaluation in our model. This is the standard technique to mimic
the external positional argument in Kripke semantics. In a next step, we situate
propositional variables as well as the modal operators at π, and hide the free variable
by the notation introduced in Figure 2. This allows us to define a traditional
minimal modal logic as follows.

Definition 3.1 t ∈ K ::= f̊ | ¬t | t ∧ t | 2̊t

By dropping the restriction to a single name, we arrive at the first modal fragment
of our choice.

Definition 3.2 t ∈MF ::= fu | ¬t | t ∧ t | 2u(λx.t)

MF subsumes our modal notation. On the other hand, there are certain formulas
which lack a single-variable equivalent, e.g., fa ∧ ¬(fb). The point is that MF
already is hybrid in that it delivers certain naming and binding capabilities which
are absent in K.

3.1 Hybrid Logic, Identity and MFI

Hybrid Logic is an extension of K with the advantage that it allows to name and
identify vertices. For this purpose, HL introduces three new constructions as de-
picted in Figure 2.

Definition 3.3 t ∈ HL ::= f̊ | ů | ¬t | t ∧ t | 2̊t | @u.t | ↓x.t

Notation Definition Remark

π fixed variable, current point of evaluation
f̊ fπ

2̊t 2π(λπ.t)
ů π=̇u

@u.t (λπ.t)u occurrences of π captured and replaced by u

↓x.t (λx.t)π introduces x as a name for π

Fig. 2. Modal and Hybrid Notation

A formula ů is called a nominal, @ the satisfaction-operator, and ↓ the down-
operator. HL is often referred to as HL(@, ↓) to distinguish the fragment HL(@)
which excludes the down-operator. In this case, u ∈ Par, by convention. Since the
remaining free variable π may be replaced by a fresh parameter with the help of the
satisfaction-operator, we assume without loss of generality that terms in HL(@) are
closed.

Via β-reduction, HL maps into the following extension of MF .

Definition 3.4 t ∈MFI ::= fu | u=̇v | ¬t | t ∧ t | 2u(λx.t)

Interestingly, this time there exists an inverse mapping. While K and MF do not
match up, we find essentially for every term in MFI an equivalent one in modal
notation.

Proposition 3.5 Consider the following mapping ϕ ∈ MFI → HL defined by
recursion on t ∈MFI. It holds for all t ∈MFI with π 6∈ FV t that ML ` t = ϕt.

ϕ(fu) = @u.f̊

ϕ(¬t) = ¬(ϕt)
ϕ(t ∧ t′) = (ϕt) ∧ (ϕt′)
ϕ(u=̇v) = @u.̊v

ϕ(2u(λx.t)) = @u.2̊(↓x.ϕt)

As a matter of fact, HL and MFI coincide in a natural way. But, is there a
similar result for HL(@)? The operators ↓and @ are eliminated by β-reduction and
therefore indistinguishable in MFI. There is no operator we could simply omit.
Instead, we must find a different characterization of HL(@).

Considering nominals å, we find that each identity in HL(@) contains a param-
eter. We call this property quasi-monadicity.

Definition 3.6 (Quasi-Monadic Formula) We call a formula t ∈ MFI quasi-
monadic, if every subterm of the form u=̇v contains a parameter.

Moreover, the scope of the quantifiers is well-nested. That is, every term can be
represented with a single bound variable.

Definition 3.7 (Monadic Formula) A formula t ∈MFI is called monadic, if it
is quasi-monadic and every subterm of the form λx.t′ is closed.

Definition 3.8 MFI1
def= {t ∈MFI | t monadic and closed}

It is straightforward to prove the analogon of Proposition 3.5, that is, to define a
mapping ϕ ∈ MFI1 → HL(@) such that for all t ∈ MFI, it holds ML ` t = ϕt.
Proof of this fact and the following proposition is found in [13].

Proposition 3.9 For every quasi-monadic formula, we can compute an equivalent
monadic formula.

3.2 The Case of Modal Base Syntax

Let us evaluate modal notation as a possible base syntax. More precisely, we con-
sider 2̊ a constant of type B → B, f̊ a constant of type B and so on. Now, with
respect to modal semantics, the terms t1 = 2̊f̊ and t2 = (λq.2̊q)f̊ must denote
differently, if f̊ is a “non-rigid” constant. For that reason we should be able to
distinguish these formulas. However, λq.2̊q η-reduces in one step to 2̊, and t2 even
β-equals t1. So, with respect to the underlying lambda calculus, there is absolutely
no justification to discriminate t1 and t2.

Surprisingly, on a notational level these terms are uncritical. The formula t2 is
a short hand for (λq.2π(λπ.q))(fπ). As substitution does not capture, this term
β-reduces to 2π(λπ′.fπ) in contrast to t1 = 2π(λπ.fπ). In fact, analyzing t2
deductively in ML yields the modal formula with the intended semantics.

t2 = 2π(λπ′.fπ) = 2π(λπ′.0 ∨ fπ) = 2π(λπ′.0) ∨ fπ = 2̊0 ∨ f̊

The third equation can be derived from well-known quantifier laws. Remarkably,
by classical reasoning, we solve a problem related to modal syntax.

4 A Saturation Procedure for MFI1

In this section, we devise a tableau-like semi-decision procedure for MFI1. In a
way that will be suitable for our later analysis, we restate a version of MFI in
negation normal form as well as slightly modified syntactic characterizations.

Definition 4.1 MFI is the set of formulas of the following form.
t ::= fu | ¬(fu) | u=̇v | ¬(u=̇v) | Ruv | t ∧ t | t ∨ t | 2u(λx.t) | 3u(λx.t)

Definition 4.2 A formula t ∈MFI is called

• proper, if it does not contain any subterm of the form Ruv.
• quasi-monadic, if it is proper and every subterm of the form u=̇v contains a

parameter.
• monadic, if it is quasi-monadic, |FV t| ≤ 1 and every subterm of the form λx.t′ is

closed.

Definition 4.3 MFI1
def= {t ∈MFI | t monadic and closed}

Definition 4.4 (Trivial) A set of formulas C is called trivial if either {t,¬t} ⊆ C

or ¬(t=̇t) ∈ C for some term t.

Definition 4.5 (Purely Monadic) A set of formulas C is purely monadic, if C ⊆
MFI1. It is monadic, if all members are either monadic or of the form Ruv.

Definition 4.6 A set of formulas is satisfiable if and only if there exists an inter-
pretation I and an assignment σ such that I |= ML and I, σ |= t = 1 for every
t ∈ C

Definition 4.7 (Clause) A clause is a finite set of formulas. The degree of an
empty clause is 0, otherwise deg C

def= maxt∈C |t|.

Definition 4.8 We will use the notation (λx.t)↓u
def= t[x := u].

4.1 Saturatedness

The design space for our later calculus will be given in this section in terms of
saturatedness conditions. The idea is that if a set of formulas respects these closure
conditions and we cannot observe an obvious contradiction, then, in fact, this set
must be satisfiable. We will formulate this result as a model existence theorem.

Definition 4.9 (Saturatedness) A set of formulas C is saturated, if it satisfies
all of the following conditions.

(Sc) C is not trivial

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Definition 4.10 For a set of formulas C, we define ∼C to be the least equivalence
relation such that u ∼C v whenever u=̇v ∈ C. We write [u]C

def= {v | u ∼C v} to
denote the equivalence class of u with respect to ∼C . An equivalence class [u]C is
called trivial, if [u]C = {u}.

Proposition 4.11 (Parameter Existence) Let C be a monadic set of formulas.
Every nontrivial equivalence class [u]C contains a parameter.

Proposition 4.12 (Agreement) Let C be a saturated monadic set of formulas.
Given u 6= a, it holds u ∼C a if and only if u=̇a ∈ C.

A proof of the following result can be found in [13].

Theorem 4.13 (Model Existence) Every (finite) saturated monadic set of for-
mulas is satisfiable in a (finite) model.

Proof (Sketch) Given a saturated monadic set of formulas C, our goal is to con-
struct a model satisfying C. The interpretation of V will be the set of all equivalence
classes of ∼C . To connect this domain of our model with the terms in C, we need
representatives. The crucial idea is to choose a parameter as the representative of a
nontrivial equivalence class (cf. Parameter Existence). Having done so, we can use
Agreement (Proposition 4.12) and (S=̇) to argue that this parameter holds a copy
of the appropriate terms. 2

4.2 Saturation

Previously, we established the notion of a saturated monadic set of formulas and
proved that such sets are satisfiable. The computational counterpart is a procedure
which performs saturation steps. We approach this goal by defining a binary relation
between clauses by means of a few easily computable rules.

Definition 4.14 (Saturation) We let γ be a mapping from clauses to variables
of type V such that γC 6∈ FV C. The saturation relation → over clauses is defined
as follows:

C → D if and only if C ⊂ D and D can be obtained from C by applying one of
the following rules.

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and neither s ∈ C nor t ∈ C, add s or t.

(C3) If 3ut ∈ C, add Ru(γC) and t↓(γC).

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

We say C → D don’t care, if C → D by one of the saturation rules excluding (C∨).
We say C → D1, D2 don’t know, if D1 and D2 are the two alternative results of
applying (C∨) to some s ∨ t ∈ C.

It is a simple task to show that these rules satisfy the key properties Soundness and
Completeness. Soundness ensures that satisfiability propagates back and forth over
the application of a saturation rule.

Proposition 4.15 (Soundness) (i) If C → D don’t care, then C is satisfiable if
and only if D is satisfiable.

(ii) If C → D1, D2 don’t know, then C is satisfiable if and only if D1 is satisfiable
or D2 is satisfiable.

To formulate completeness, we will call a purely monadic clause C consistent, if
from C we cannot derive a conflict. More precisely, there exists no clause D with
C ⊆ D such that D can be obtained from C by applying any finite sequence of
saturation steps.

Proposition 4.16 (Completeness) Consistent purely monadic clauses are satis-
fiable.

Proof. Let C be a consistent purely monadic clause. We can apply the saturation
rules in a systematic way in order to obtain a (not necessarily finite) set of formulas
D with C ⊆ D such that D cannot be extended by application of a saturation
rule. This is a standard technique as described in, for example, [11,3]. Since C is
consistent, D is not trivial. Moreover, D is monadic, since monadicity is preserved
by saturation [13].

Consequently, C is a saturated monadic set of formulas and thus satisfiable by
our previous model existence theorem. 2

4.3 Related Tableau Calculi

Tzakova [15] was the first to introduce a tableau-based decision procedure for
HL(@). Besides the standard modal and boolean rules, her system comprises four
rules concerning @ and nominals (identity). In order to achieve termination, Tza-
kova states an involved special-purpose branch extension procedure. Shortly after,
Blackburn [3] discusses the advantages of internalizing labeled deduction for Hybrid
Logic. He stresses the point that nominals should be considered formulas in order to
establish labeling discipline at the object level. To handle identities, Blackburn in-
troduces four rules: Reflexivity, Symmetry, Replacement and a rule called “Bridge”.
Finally, Bolander and Bräuner [6] extend the calculi of Tzakova and Blackburn by
a treatment of the universal modalities and give a simplified discussion. In the case
of Tzakova’s system, they recognize that two of her rules are subsumed by a strong
replacement rule as used by Blackburn. However, such a strong replacement rule
immediately requires loop-checking as shown in [13].

Our calculus carries forward the arguments of Blackburn, as state labels are inte-
gral parts of formulas. Blackburn avoids the use of meta-level information and thus
represents the successor relation Ruv by an equivalent formula like 3u(λx.x=̇v) or
@u.3̊v̊, respectively. To maintain this representation, he must install the additional
rule “Bridge”.

@ů.3̊v̊ @v̊.̊a

@u.3̊å

In our system, the access relation itself is a formula. But then, “Bridge” is just a
special case of (C=̇): {Ruv, v=̇a} → {. . . , Rua}.

In contrast to Blackburn’s system, many modal tableaux as those of Fitting
[8,10] and Gabbay [12] maintain external state labels and access information. It
turns out that both of these can be naturally represented at the object level.

5 Saturation in Polynomial Space

In this section we describe a decision procedure for the satisfiability problem of
MFI1 based on our saturation rules. A central feature of this algorithm is that it
matches the PSPACE lower bound for HL(@) [2].

In the case of MF , that is in the absence of identities, a simple standard tech-
nique yields an optimal tableau-based decision procedure. We describe this tech-
nique as depth-first saturation: When a clause C does not admit any further appli-
cation of the saturation rules except for (C3), we pick a diamond 3ut ∈ C, gather
all boxes 2ut1, . . . ,2utk and start saturating the clause {t↓x, t1 ↓x, . . . , tk ↓x}. If
no contradiction occurs, we continue with C\{3ut}.

The intuitive reason why this algorithm uses only polynomial space is that the
possibly large set of “edges” Ruv is not stored explicitly. Instead, this graph is
traversed “manually” in a depth-first manner. However, in the case of MFI (even
MF) this procedure is without modification incomplete. Closed terms might occur
which would have been required at an earlier stage of the algorithm in order to
reveal a contradiction.

We can anticipate this problem as follows.

(i) On input of a monadic clause, we guess an equivalence relation on its parame-
ters. With fixed representatives for the equivalence classes, we “simplify” the
clause in accordance with our choice. This will decrease the size of the result-
ing clause and it will prevent us from storing terms several times for related
parameters.

(ii) Additionally, we guess which subterms occurring in this updated clause will (for
example by means of (C=̇)) eventually be added to the parameter component,
i.e., the sub-clause consisting of only closed terms.

(iii) We perform the standard depth-first saturation with respect to these additional
information and verify our choice.

To make these points precise, we introduce the following notation.

Definition 5.1 Let C be a monadic clause.

(i) For each equivalence relation on Par C we consider a fixed system of represen-
tatives ρ ∈ Par C → Par C. We write ρt to denote the term obtained from t by
replacing each occurring parameter a with its representative ρa.

Accordingly, ρC
def= {ρt | t ∈ C}.

(ii) We define Clo C to be the clause containing all subterms of C where the possible
free variable has been replaced by a parameter a ∈ Par C.

(iii) For 3ut ∈ C, we define C3ut
def= {t↓x, t1 ↓x, . . . , tk ↓x} where 2ut1, . . . , 2utk

are all terms in C of the form 2ut′. Furthermore, x is a fresh variable, which
we call the characteristic variable of the clause C3ut.

1. AC =
∨

ρ

∨
B AB(B ∪ ρC) where B ⊆ Clo(ρC)

2. ABC = false if C is trivial or conflicting†

3. ABC = ABD if C → D don’t care, excluding (C3)

4. ABC = ABD1
∨
ABD2 if C → D1, D2 don’t know

5. ABC =
∧

3ut∈C ABC3ut otherwise

†C is conflicting, if a=̇b ∈ C and a 6= b or there is a closed term t ∈ (C\B).

Fig. 3. Saturation Algorithm

Figure 3 introduces our saturation algorithm.

Lemma 5.2 The saturation algorithm terminates on input of a purely monadic
clause C and uses polynomial space.

Proof. Let C be a purely monadic clause and let us consider |C| · (deg C) as the
input size.

Observe that that each choice of ρ and B in (1) is of polynomial size. In par-
ticular, there are finitely many such choices. Moreover, consecutive calls to (3) and
(4) have a polynomial bound as we have ruled out (C3). On the other hand, when-
ever we execute (5) on a clause D ⊆ C we know that for every 3ut ∈ D, we have
deg D > deg D3ut. Thus, the depth of such recursive calls is bounded in the degree

of the input clause C.
If we reuse space in (1), (4), and (5) we achieve an overall space consumption

which is bounded by a polynomial in the size of the input. 2

Theorem 5.3 By means of the saturation algorithm we can decide in polynomial
space whether or not a purely monadic clause is satisfiable.

Proof. Let C be a purely monadic clause. After the previous lemma, it remains to
prove that C is satisfiable if and only if AC = true.

If C is satisfiable, there exists a clause D which is a saturated extension of
C. From D we obtain appropriate ρ and B for which it is simple to show that
AB(B ∪ ρC) = true. Consequently, AC = true.

Conversely, from the fact that AC = true we construct a saturated extension of
C. That is, if AC = true, then AB(B∪ρC) = true for some ρ and B. By traversing
the recursion tree for this procedure call, we obtain clauses D1, . . . , Dm where each
of these clauses Di has the property that ABDi =

∧
3ut∈Di ABDi

3ut = true, and
each Di was computed by executing ABDj for some j < i where we let D0 = B∪ρC.
We assume that all characteristic variables are disjoint.

Furthermore, let R be the set of terms Rux whenever x is the the characteristic
variable of a clause Dj that was obtained by executing ABDi

3ut for some 3ut ∈ Di

and i < j. We must also add Rua in case x=̇a ∈ Dj for some parameter a.
Finally, we define D to be the clause obtained from D′ =

(⋃
i D

i
)
∪ R, by

adding for each formula t ∈ D′ all those copies of t where the parameters a1, . . . , ak

occurring in t have been replaced by arbitrary b1, . . . , bk with ρbi = ai.
Clearly, C ⊆ D. Moreover, we can prove that D is saturated and thus satisfiable

by Model Existence (Theorem 4.13).

(Sc) Arguing by contradiction, assume D is trivial and {t,¬t} ⊆ D. Then, we
have {ρt,¬(ρt)} ⊆ D′ where ρt ∈ Di and ¬(ρt) ∈ Dj for some i, j. If ρt is
closed, then {ρt,¬(ρt)} ⊆ B, since neither Di nor Dj is conflicting. But then,
AB(B ∪ ρC) = false. If ρt contains a free variable x, then x is the characteristic
variable of both Di and Dj . Thus, i = j and ABDi = false follows. Either way
it is a contradiction. The case of ¬(t=̇t) ∈ D is clear.

(S∧), (S∨), (Ss
=̇) Straightforward.

(S3) Assume 3ut ∈ D, then 3(ρu)(ρt) ∈ Di for some i. Then, there is Dj with
j > i and a characteristic variable x such that R(ρu)x ∈ R and (ρt)↓x ∈ Dj ⊆ D′.
Consequently, {Rux, t↓x} ⊆ D.

(S2) Suppose {2ut,Ruv} ⊆ D. We demonstrate the case where u is a variable, but
v is a parameter. We have 2u(ρt) ∈ Di. But, to obtain the edge Ruv ∈ R, there
must be a clause Dj with j > i and a characteristic variable y such that t↓y ∈ Dj

and y=̇v ∈ Dj . Thus, by application of (C=̇), we have (ρt)↓ v ∈ D′ and ρt ∈ D.
The case u, v ∈ Par is analogous. The remaining two cases are straightforward.

(Sρ
=̇) Assume {u=̇a, t} ⊆ D. We have ρu=̇ρa ∈ D′ and ρt ∈ D′. If u is a parameter,
then ρu = ρa, since no Di is conflicting. But then, t[u := a] ∈ D follows from the
way we constructed D. If u = x and x ∈ FV t, then {x = ρa, ρt} ⊆ Di where x is
the characteristic variable of Di. By application of (C=̇), (ρt)[x := ρa] ∈ Di ⊆ D′

and hence, t[x := a] ∈ D.

2

6 Conclusion and Future Work

We presented modal logic on the basis of the simply typed lambda calculus. Our
focus was to give modal logic a uniform and natural treatment in terms of classical
logic. On the one hand, first-order quantification was strong enough to express the
semantics of the modal operators, on the other hand, first-order predicate logic as
such was syntactically too weak for our purposes. This is why higher-order syntax
came to play such an important role. We employed higher-order variables, derived
higher-order constants and finally expressed operators of Hybrid Logic by means of
λ-abstraction. We eventually arrived at three different levels of reasoning:

Notational Level On a notational level, we preserved the traditional syntax of
modal logics as in K and HL.

Native Modal Syntax It turned out that modal notation was naturally sub-
sumed and explained by our native syntax and the fragments MF and MFI
which we defined in terms of this syntax. However, in the case of HL we ob-
tained a tight equivalence of notation and syntax.

Quantifiers At the bottom, quantifiers were employed to give modal operators
their precise meaning. Validities of modal logic could be derived by equational
deduction.

From our point of view, traditional studies in correspondence between modal and
first-order predicate logic suffered from their syntactical weakness.

When designing the tableau calculus for MFI1, our syntax proved to be the
appropriate data structure without the need of modification. Both deductively
and later with regards to computational matters, the analysis of our procedure
notably seized upon the rich object-level in our system. Although our tamed rule of
replacement gives insight into the limited power of the identity predicate in MFI1,
the question remains open whether one can achieve local termination criteria for
such a calculus. In the literature, e.g., [6], the argumentation is often that as soon
as identities are involved, one faces the same problems as in K over transitive frames
where formulas have to be passed along a chain of successors.

With ideas similar to those in [2], the analysis of identities was also crucial
to arrive at a space efficient formulation of our algorithm. It was interesting to
see that the design space given by the saturation conditions allowed for nontrivial
modifications of our saturation procedure.

We are interested in refinements of our saturation algorithm that make it more
practical. Techniques, such as “lazy-guessing”, are required to avoid the large com-
putational overhead caused by the initial guessing.

Acknowledgments

We thank an anonymous referee for pointing out a flaw in a previous version of the
paper. We appreciate the time the editors gave us for reorganizing the results.

References

[1] Areces, C., P. Blackburn and M. Marx, Hybrid logic is the bounded fragment of first order logic, in:
Proceedings of 6th Workshop on Logic, Language, Information and Computation, 1999, pp. 33–50.

[2] Areces, C., P. Blackburn and M. Marx, A road-map on complexity for hybrid logics, in: J. Flum and
M. Rodŕıguez-Artalejo, editors, Computer Science Logic, number 1683 in LNCS (1999), pp. 307–321.

[3] Blackburn, P., Internalizing labelled deduction, Journal of Logic and Computation 10(1) (2000), pp. 137
– 168.

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge Tracks in Theoretical Computer
Science, Cambridge University Press, 2001.

[5] Blackburn, P. and J. Seligman, What are hybrid languages?, , 1, CSLI Publications, Stanford University,
1998 pp. 41–62.

[6] Bolander, T. and T. Braüner, “Two Tableau-Based Decision Procedures for Hybrid Logic,” Informatik-
Berichte 194, 4th Workshop: Methods for Modalities, Proceedings, 2005, 79-96 pp.

[7] Church, A., A formulation of the simple theory of types, Journal of Symbolic Logic 5 (1940), pp. 56–68.

[8] Fitting, M., “Proof Methods for Modal and Intuitionistic Logics,” D. Reidel Publishing Co., Dordrecht,
1983.

[9] Fitting, M., Higher-order modal logic – a sketch (2001).

[10] Fitting, M., “Types, tableaus, and Gödel’s god,” Trends in Logic : Studia Logica Library 012, Kluwer
Academic Publishers, 2002.

[11] Fitting, M. and R. L. Mendelsohn, “First-Order Modal Logic,” Kluwer Academic Publishers, 1998.

[12] Gabbay, D., “Labelled Deductive Systems,” Oxford University Press, 1996.

[13] Hardt, M., “Bachelor’s Thesis: Hybrid Logic Revisited,” Saarland University, 2006.
URL http://www.ps.uni-sb.de/~hardt/hlrev.html

[14] Smolka, G., “Lecture Notes: Introduction to Computational Logic,” Saarland University, 2006.
URL http://www.ps.uni-sb.de/courses/cl-ss06/script/index.html

[15] Tzakova, M., Tableau calculi for hybrid logics, in: N. V. Murray, editor, Analytic Tableaux and Related
Methods, TABLEAUX’99, LNAI 1617 (1999), pp. 278–292.

http://www.ps.uni-sb.de/~hardt/hlrev.html
http://www.ps.uni-sb.de/courses/cl-ss06/script/index.html

	Introduction
	The Logical Base
	Modal Logic Revisited
	Hybrid Logic, Identity and MFI
	The Case of Modal Base Syntax

	A Saturation Procedure for MFI1
	Saturatedness
	Saturation
	Related Tableau Calculi

	Saturation in Polynomial Space
	Conclusion and Future Work
	References

