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Abstract

This paper surveys terminological representation languages and feature-based unification gram-

mars pointing out the similarities and differences between these two families of attributive

description formalisms. Emphasis is given to the logical foundations of these formalisms.

1 Introduction

Research in knowledge representation and linguistics has led to the development of two families of

formalisms which can jointly be characterized as attributive description formalisms. The members of

the first family are known as terminological representation languages and are offsprings of Brachman’s

kl-one [9], which grew out of research in semantic networks and frame systems. The second family

whose members are known as unification grammars originated with Kaplan and Bresnan’s Lexical-

Functional Grammar [17] and Kay’s Functional Unification Grammar [19, 21, 20].

This paper surveys terminological representation languages and unification grammars in an at-

tempt to clarify the similarities and differences between the two approaches. Both approaches

1. rely on attributes as the primary notational primitive for representing knowledge

2. are best formalized as first-order logics with Tarski-style models

3. employ compositional set descriptions.

The two approaches differ significantly, however, both in the representational constructs and the

reasoning operations they provide. Unification grammars employ functional attributes called fea-

tures while terminological representation languages rely on more general relational attributes called

roles. The semantically minor-looking difference between features and roles results in very different

computational properties. Moreover, terminological representation systems infer set inclusion and

set membership relations on user-defined symbols, while parsers based on unification grammars solve

constraints in a domain consisting of so-called feature graphs.

Surprisingly, the similarities of terminological representation languages and unification grammars

have not been recognized for quite a while. The main reason for this ignorance is probably that
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the communities of researchers working in the respective fields are almost non-overlapping although

recently ideas from feature constraint languages used with unification grammars found their way into

terminological representation systems. Nevertheless, so far, a paper putting both approaches into

perspective by giving a comprehensible survey of the commonalities and differences is missing—a

situation we hope to remedy with this paper.

We emphasize the logical foundations of the two approaches since it is here that the similarities

and differences show up most clearly. Moreover, only the development of the logical foundations of

terminological representation languages and unification grammars provided the base for the recent

surge of important results on and extensions of these formalisms.

The structure of the paper is straightforward. Section 2 discusses terminological representational

languages and Section 3 discusses feature-based unification grammars.

Acknowledgement. Our presentation of unification grammars profited from discus-

sions with Jochen Dörre and Bill Rounds.

2 Terminological Representation and Reasoning

One important task in modeling an application domain in artificial intelligence systems is to fix

the vocabulary intended to describe the domain—the terminology—and to define interrelationships

between the atomic parts of the terminology. Representation systems supporting this task are kl-

one [9] and its descendants [8, 51, 33, 29, 24]. The main idea is to introduce each concept by

a terminological axiom that associates the new concept with a concept description specifying the

intended meaning in terms of other concepts.

If we intend to talk, for instance, about persons, we may introduce the concepts Person, Adult,

Man, and Woman by relating them to each other as follows:

Adult ⊑ Person

Woman ⊑ Adult

Man
.
= Adult ⊓ ¬Woman.

In other words, Adult is introduced as something specializing Person, Woman as specializing Adult,

and men as adults who aren’t women.

2.1 The Representational Inventory

Formal terminologies, such as the one above, are composed out of terminological axioms (TA) which

relate a concept (the left hand side) to a concept description (the right hand side) using the special-

ization operator “⊑” and the equivalence operator “
.
=”:

TA→ A ⊑ C | A
.
= C

with the additional restriction that no concept may occur more than once as a left hand side in a

terminology.

For the moment, let us assume that the right hand sides of terminological axioms—the concept

descriptions (denoted by C and D)—are composed out of concepts (denoted by A and B) and the



following description-forming operators:

C, D → A | C ⊓D | C ⊔D | ¬C.

In order to specify the meaning of terminologies formally, we define an interpretation I as a

pair 〈DI , ·I〉 with DI an arbitrary set—the domain—and ·I a function from concepts to subsets of

DI—the interpretation function. Based on that, the interpretation of concept descriptions is defined

inductively:

(C ⊓D)I = CI ∩DI

(C ⊔D)I = CI ∪DI

(¬C)I = DI \ CI .

This means that a concept is interpreted as standing for a set of objects—its extension—and a

concept descriptions is interpreted as standing for the set resulting from straightforward applications

of set operations corresponding to the description-forming operations. The concepts ⊤ and ⊥ will

be used as abbreviations for A ⊔ ¬A and A ⊓ ¬A, respectively, where A is any concept. Thus, ⊤ is

interpreted as the set of everything and ⊥ is interpreted as the empty set.

An interpretation I satisfies a terminological axiom σ, written |=I σ, iff the sets denoted by

the right hand and left hand side relate to each other as suggested by the symbols:

|=I A
.
= D iff AI = DI

|=I A ⊑ D iff AI ⊆ DI .

Furthermore, an interpretation I is a model of a terminology T , written |=I T , iff all terminological

axioms in T are satisfied by I.

Having defined the formal meaning of terminologies, we can now say which terminological formulas

are entailed by a terminology. Here, we will permit arbitrary formulas C
.
= D and C ⊑ D. Such

a formula τ is entailed by a terminology T , written T |= τ , iff τ is satisfied by all models of T .

Applying this definition to the introductory example, it is easy to see that the following formulas are

entailed:

Man ⊑ Person

Man ⊓Woman
.
= ⊥

Man ⊔Woman
.
= Adult.

Based on the entailment relation between terminologies and formulas, it is possible to define a

relation on the set of concept descriptions, namely, the subsumption relation �T defined as

C �T D iff T |= C ⊑ D.

This relation is obviously a preorder (that is, transitive and reflexive) on the set Cd(T ) of concept

descriptions composed from symbols appearing in T , and a partial order on the quotient of Cd(T )

with respect to the equivalence relation ≈T defined by

C ≈T D iff T |= C
.
= D.



Although the language defined so far gives a good first impression of the general idea behind

terminological representation formalisms, one essential ingredient is missing. All such languages

contain constructs to describe concepts by specifying attributes—a property which led to the title of

this paper.

Reconsidering the introductory example, we note that this terminology contains a certain asym-

metry; the meaning of Man is derived from the meaning of Woman but not vice versa. In order to

remove this asymmetry it is tempting to define these concepts by referring to the sex attribute of a

person. Before we can do this, our description language has to be extended, however.

First of all, we need features (denoted by f , g and h), which we will interpret as unary partial

functions fI :D(fI) → DI with D(fI) ⊆ DI . Second, we need constants (denoted by a, b, and c),

such as male and female, which are interpreted as elements of DI under the unique name assumption,

that is, different constants are assumed to denote different objects:

if aI = bI then a = b.

Employing these new syntactic categories, the description-forming language is extended to

C, D → . . . | c | f : C

with the interpretation

cI = {cI}

(f : C)I = {d ∈ D(fI)| fI(d) ∈ CI}.

Note that our notation is overloaded since a constant c is interpreted as the singleton {cI} if it

appears as a concept description.

With this machinery, the introductory example can be rephrased as

Person ⊑ sex: (male ⊔ female)

Adult ⊑ Person

Woman
.
= Adult ⊓ sex: female

Man
.
= Adult ⊓ sex: male.

Although describing concepts by placing restrictions on features results already in a powerful

description language, it is possible to generalize this a bit further. Instead of permitting only single-

valued attributes, we may conceive multi-valued attributes. For instance, when we want to talk

about the children of a person, we cannot represent them as values of a feature. Accounting for this,

we introduce multi-valued attributes, called roles and denoted by r, that are interpreted as total

functions rI :DI → 2D
I

from elements of DI to subsets of DI . The set rI(d) will be called the

role-filler set of d for role r.

Using roles for forming concept description, at least something like “all objects of a role-filler set

are of a certain type” and “there exist objects of a certain type” seem to make sense. Thus, let us

extend our syntax by role restrictions

C, D→ . . . | ∀r: C | ∃r: C



and assume the interpretations

(∀r: C)I = {d ∈ DI | rI(d) ⊆ CI}

(∃r: C)I = {d ∈ DI | rI(d) ∩ CI 6= ∅}.

With this extension of our concept description language1 we can, for instance, describe the im-

portant persons in a family:

Person ⊑ sex: (male ⊔ female)

Parent
.
= Person ⊓ ∃child:⊤⊓ ∀child: Person

Mother
.
= Parent ⊓ sex: female

Grandparent
.
= Person ⊓ ∃child: Parent ⊓ ∀child: Person

Grandmother
.
= Grandparent ⊓ sex: female.

Although this terminology looks quite natural, one might ask why we did not mention the role child

when introducing the Person concept, that is,

Person ⊑ sex: (male ⊔ female) ⊓ ∀child: Person.

Actually, this would have been possible. However, it would have resulted in a terminological

cycle, a direct (or indirect) occurrence of the concept introduced on the left hand side in the concept

description on the right hand side. Such cycles, which are usually not supported in terminological

representation systems, are problematical for at least two reasons:

1. the intuitive meaning of a concept containing a terminological cycle is not fully clear

2. it is not straightforward to design subsumption algorithms (see Section 2.2) which deal correctly

with terminological cycles.

Concerning the first problem, the semantics of concepts containing cycles, we will note here only that

the formal semantics provided so far is adequate to deal with such structures in a satisfying way (see

[27, Chapter 5]). A solution for the second problem will be sketched in Section 2.3.

While so far we have talked about how to represent knowledge about concepts by employing

terminological axioms, the question comes up: what can you do with your represented knowledge—

what are the computational services provided by a terminological representation system?

2.2 Computational Services

One service terminological representation systems such as kl-one provide, called classification, is the

computation of a concept taxonomy, such as the one in Figure 1, which represents the subsumption

relation between concepts for the terminology in the previous subsection. Such a concept taxonomy

represents the subsumption relation in a quite dense format. Defining �T as a base of �T , that is,

a minimal relation such that the reflexive, transitive closure of �T is identical with �T , the relation

computed by the classification process can be described as the base of the subsumption relation on

the quotient of the set of concepts with respect to ≈T . Since the base of a finite partial order is

always unique, for every terminology there is a unique concept taxonomy.

1Note that the story we told so far is oversimplified. Terminological formalisms used in existing representation

systems such as kl-one [9], kandor [33], back [29], classic [6] use different formalisms. In particular, features are

used only in classic. For the purpose of giving the general idea, the current presentation should suffice, though.
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Figure 1: A concept taxonomy.

Evidently, subsumption and classification are intertwined. In order to compute the concept

taxonomy, subsumption between concepts must be determined. Once the concept taxonomy has been

computed, subsumption between concepts can be read off from the taxonomy,2 that is, classification

can be regarded as a kind of assert-time inference technique.

As can be seen from the example in Figure 1, classification is a non-trivial service. It has to

take into account all concept descriptions used in terminological axioms and has to compare them in

order to determine the subsumption relationship. For instance, the relationship between Grandparent

and Parent, which is not explicitly stated in the terminology, has to be derived by comparing the

restrictions on the child role. Although in this example the subsumption relation seems to be quite

obvious, the task of determining subsumption can become arbitrarily difficult as we will see in

Section 2.3.

Ignoring this unpleasant situation for the moment, we note that classification is a versatile service

for the knowledge acquisition task. Classification points out all implicit relationships between con-

cepts which might have been missed when introducing a concept. As shown in [1, 10], classification

can be used to drive the knowledge acquisition process by employing a number of reasonable heuris-

tics such as that different concepts should not denote the same set and that no concept should be

incoherent, that is, equivalent to ⊥. Note that such incoherent concepts are quite useless because

they denote the empty set, but they do not “infect” the knowledge base in the sense a contradictory

proposition in logic does. Terminologies always have at least one model, namely, the trivial one

interpreting every concept, feature, and role as the empty set.

Proposition 2.1 Every terminology has a model.

Knowledge acquisition is not the only application where classification can be put to use. In

general, any problem requiring classification-based reasoning [15] can exploit this service. This kind

2Actually, in some representation systems not only the concept taxonomy but also the transitive closure is stored.



of reasoning proceeds along the following line. Given some concept description, identify the concepts

which most accurately characterize the given description and use information associated with the

identified concepts to do something meaningful, that is, the concepts are used as a kind of conceptual

coat rack [52].

Making this idea less abstract, let us assume that we want to identify a plan in order to solve a

problem. Now, we may define a hierarchy of problem concepts associating with each such problem

concept a plan for solving the problem. Thus, given a particular problem description, classification

can determine the most specialized set of problem concepts for which plans are known in order to

solve the given problem [30]. Such an organization of problem-solving knowledge is not only very

elegant and natural, but also makes maintenance of such a knowledge base easier and supports

explanation facilities. Other examples of where this kind of representation and reasoning can be

profitably exploited are computer configuration [31], natural language generation [49], presentation

planning [4], and information retrieval [50, 35, 5].

However, in most of the applications cited above, one does not start with a description of, say,

a particular problem, but one has a collection of objects and relationships between them. Given

such a world description,3 one wants to know the set of concepts most accurately describing those

objects. In order to capture this formally, let us again extend our formalism. This time, however,

we do not add new description-forming expressions or terminological axioms, but something, which

will be called world axioms (WA) in order to describe objects by naming the concepts they shall be

an instance of and to describe relationships between two objects by specifying features or roles:

WA→ C(c) | f(c, d) | r(c, d).

Using the interpretation of constants, concepts, roles, and features given above, we will say that

a world axiom is satisfied by an interpretation, written |=I ω, under the following conditions:

|=I C(c) iff cI ∈ CI

|=I f(c, d) iff fI(cI) = dI

|=I r(c, d) iff dI ∈ rI(cI).

Similar to the definition of a model of a terminology, we can say what we mean by a model of a

world description W or by a model of a world description W combined with a terminology

T , namely, an interpretation which satisfies all world axioms in W or all terminological and world

axioms in T ∪W , respectively. Furthermore, we will say that c is an instance of C iff T ∪W |= C(c).

Using this extension of our formalism, we can describe a world specifying the objects and rela-

tionships of interest by a world description W employing a terminology T . For instance, we may use

the family terminology in order to describe a particular family constellation:

Parent(harry)

(Parent ⊓ sex: female)(mary)

child(mary, tom)

child(mary, harry).

3In the kl-one terminology, such a world description is usually called ABox—the assertional box—contrasting it

with the terminological box, the TBox.



From this constellation it follows that mary is a Grandmother and that tom is a Person.

In general, representation systems supporting the reasoning with terminological and world axioms

provide a computational service called realization which computes for each constant c the set of

most specialized concepts MSC(c) the constant is an instance of. Formally, MSC(c) is a minimal set

of concepts4 such that

if A ∈ MSC(c) then T ∪W |= A(c) (1)

if T ∪W |= B(c) then there exists A : A ∈ MSC(c) and T ∪W |= A ⊑ B. (2)

In our case, the second condition (2) can be simplified because world descriptions form an (almost)

conservative extension of terminologies, that is, entailment of terminological formulas depends (in

all interesting cases) only on the terminology and not on the world description.

Theorem 2.2 If a world description W and a terminology T are jointly satisfiable, and if no constant

that is used in a terminological axiom occurs in a world axiom, then

T ∪W |= τ iff T |= τ

for all terminological formulas τ .

Proof: The “if” direction is obvious. For the “only if” direction let us assume that there are two

descriptions C and D with T ∪W |= C ⊑ D but T 6|= C ⊑ D. Since we can extend any model of

T ∪W by a disjoint union of a model of T (only agreeing in the interpretation of constants used in

terminological axioms), there must be a model of T ∪W which does not satisfy C ⊑ D. Thus, our

assumption must be wrong.

This means that we can formulate condition (2) equivalently as

if T ∪W |= B(c) then there exists A : A ∈ MSC(c) and A �T B,

provided the assumptions of the theorem hold. This means in particular that after MSC(c) has been

computed, instance relationships for c can be determined by looking up subsumption in the concept

taxonomy.5

In a presentation planning application (see, for instance, [4]) the information associated with

the concepts in MSC might be used to decide how to represent a given object. In a database

or information retrieval application, MSC can be used to index the data objects by the concepts in

MSC [35, 5]. Query processing can then be implemented as classification of a query concept, retrieval

of all objects indexed by the immediate superconcepts of the query concept in the concept taxonomy,

and filtering by testing each retrieved object against the query concept.

There are a number of points we have omitted in the presentation of the representational inventory

provided by terminological representation systems. In particular, most terminological formalisms

allow for a richer repertoire of description-forming operators. First, instead of a simple existential

4Actually, of equivalence classes of concepts in order to guarantee uniqueness.
5Note that this property heavily depends on the fact that the world axioms have very limited expressiveness. If

arbitrary first-order formulas are permitted, as in krypton, the computation of instance relationships becomes much

more complicated.



quantification, numerical quantification is usually permitted, for instance, “at least 2 children.”

Second, roles are not necessarily treated as primitive entities, but they can be defined similarly to

the way concepts can be defined. For instance, defining an unspecific subrole of a role or defining

a role by restricting the range of another role is a common operation. An example for the latter is

the definition of a role son, which can be done by restricting the range of child to sex: male. Third,

so-called role-value-maps—equality constraints on role-filler sets—are often used, which correspond

to agreements to be discussed in Section 3.3.

2.3 Algorithmic Considerations and Complexity

Although we have talked about computational services, we haven’t given algorithms which do the

actual computations. However, instead of specifying inference algorithms (see, e.g. [23, 32, 29, 27]),

we will investigate the computational properties of the problems. In particular, it will be shown that

terminological reasoning is inherently intractable.

As we have seen in the previous section, subsumption determination is the central operation in a

terminological knowledge representation system. This point is reinforced by the fact that all other

interesting properties and relations, such as equivalence of two concepts (C ≈T D), incoherency of a

concept (C ≈T ⊥), and disjointness of two concepts ((C ⊓D) ≈T ⊥) can be reduced to subsumption

in linear time.

Proposition 2.3 Given a terminology T and two concept descriptions C, D:

1. C ≈T ⊥ iff C �T ⊥

2. C ≈T D iff C �T D and D �T C

Similarly, subsumption can be reduced to incoherency and equivalence.

Proposition 2.4 Given a terminology T and two concept descriptions C, D:

1. C �T D iff (¬C ⊓D) ≈T ⊥.

2. C �T D iff C ≈T (C ⊓D).

In other words, when looking for efficient inference algorithms for terminological reasoning sys-

tems, we have to find efficient subsumption, equivalence, or incoherency detection algorithms. In

order to simplify matters, we will show how subsumption in arbitrary terminologies can be reduced

to subsumption in the empty terminology, denoted by ∅. First, we will show that the specializa-

tion operator “⊑” is not essential for the expressiveness of terminological formalisms. Terminologies

without this operator will be called equational terminologies.

Lemma 2.5 Any terminology T can be transformed in linear time into a equational terminology T ′

such that for all C, D ∈ Cd(T ):

C �T D iff C �T ′ D.



Proof: Rewrite each axiom of the form A ⊑ D to A
.
= A ⊓ D, where A is a fresh concept, called

primitive component of A. Obviously, for any model I of T there exists a model I ′ of T ′ (setting

A
I

= AI) such that

CI = CI′

for all C ∈ Cd(T )

and vice versa. Since the interpretation of all concept descriptions is identical, the subsumption

relation on Cd(T ) is identical.

As the second step, a function Exp from concept descriptions and equational terminologies to

concept descriptions is defined. This function repeatedly replaces all concepts A appearing in a given

concept description C by the right hand side of the introduction of A until no further replacements

are possible. Thus, Exp(C, T ) contains only concepts that do not appear as the left hand side of

a terminological axiom in T . This function clearly terminates if T does not contain terminological

cycles. Moreover, for every model I of T

CI = (Exp(C, T ))I (3)

since the replaced subexpressions and the replacing expressions in C are identically interpreted in T .

From this observation it is almost immediate that subsumption in terminologies can be reduced to

subsumption in the empty terminology ∅.

Theorem 2.6 Given a equational terminology T and two concept descriptions C, D:

C �T D iff Exp(C, T ) �∅ Exp(D, T ).

Proof: For the “if” direction note that any interpretation is a model of the empty terminology ∅.

Thus, subsumption in ∅ implies subsumption in any particular terminology. Furthermore, because of

(3) the “if” direction holds. The converse direction follows from (3) and the fact that subsumption

between concept descriptions of the form Exp(C, T ) depend only on interpretations of concepts

unconstrained by T .

This means when developing inference algorithms, we have to consider only the description-

forming part of the formalism. Concentrating on the description-forming language introduced in

Section 2.1, which will be called ALC following [43],6 it is easy to see that subsumption is decidable

for this language.

Lemma 2.7 Let C and D be ALC concept descriptions, then it is decidable whether C �∅ D.

Proof Sketch: In order to decide C �∅ D, it suffices to check whether (¬C ⊓ D)I = ∅ for all I.

Note that if there is a non-empty interpretation of (¬C ⊓D), that is, there is an x ∈ (¬C⊓D)I , then

there must be an interpretation of (¬C ⊓D) such that there are only n elements y with fI(x) = y

or y ∈ rI(x), where n is the number of feature and role restrictions in the top-level expression of

(¬C ⊓D). Furthermore, this holds also for the (finite number of) concept descriptions embedded in

feature and role restrictions. This means, if (¬C ⊓ D) has a non-empty interpretation at all, then

there is also a finite non-empty interpretation bounded in size by (¬C⊓D). Thus, it suffices to check

6Actually, in [43] the description-forming language does not contain features. These do not add to the principal

complexity of the subsumption problem, however.



only a finite number of finite interpretations in order to decide whether (¬C ⊓D) has a necessarily

empty interpretation, and, by that, to decide subsumption.

Based on this, it is easy to see that subsumption determination for the terminological formalism

based on ALC is decidable—provided there are no terminological cycles in the terminology

Theorem 2.8 Let T be a cycle-free ALC terminology and let C, D be concept descriptions. Then it

is decidable whether C �T D.

Proof: Immediate by Lemma 2.5, Theorem 2.6, and Lemma 2.7.

Interestingly, decidability is preserved even if terminological cycles are introduced. Although in

this case subsumption in a terminology cannot be reduced to subsumption in the empty terminology

because Exp doesn’t terminate, it is possible to define a similar expansion function which expands the

concept descriptions only to a finite depth. The main argument for decidability is that the descriptive

power of ALC does not allow to distinguish between infinite interpretations and finite interpretations

containing “assertional cycles.”7

Now there may be the question, what kind of additional description-forming operator would

result in the undecidability of subsumption. As has been shown in some recent papers [41, 42, 34], if

some very natural looking extensions are added to our language, for instance, equality constraints on

role-filler sets or role-negation and role-composition, then subsumption becomes undecidable, even if

we consider only the empty terminology.

Despite the positive result concerning decidability, ALC has an unsatisfying property. Subsump-

tion in the empty terminology is PSPACE-complete as shown in [43]. Since a terminological rep-

resentation system is supposed to provide its computational services in reasonable time, this is an

unacceptable state of affairs. Most terminological representation systems support therefore only less

expressive description-forming languages [33] or limit the inference capabilities in a way such that

only “interesting” inferences are drawn [26], where “interesting” may be defined by an alternative,

weaker set-theoretic semantics [32] or by enumerating (perhaps only implicitly) the possible inference

rules.

Following the first suggestion of limiting the expressiveness of the description-forming language,

let us analyze some subsets of ALC. First, it should be obvious that any subset containing ¬, ⊔, and

⊓ has still an intractable subsumption problem, because the satisfiability problem of propositional

logic can be reduced to the problem of determining coherency of a concept description.

Proposition 2.9 Given a description-forming language that includes ¬, ⊔, and ⊓, it is co-NP-hard

to decide whether C �∅ D.

For this and other reasons, disjunction is usually banned from terminological formalisms and

negation is only permitted on primitive components (see proof of Lemma 2.5). However, even with

these severe restrictions we do not necessarily achieve tractable subsumption. For the description-

forming language containing only ∀, ∃, ⊓, and ¬ on primitive components, it is unknown whether

a polynomial subsumption algorithm exists. Only in the case when the second argument of the ∃

7See [27, Chapter 5] for a decidability proof for a related language.



operator is always ⊤, subsumption is known to be polynomial [23].8 Although this language, which

has been called FL− in [7, 23], can be slightly extended without “falling off the computational cliff,”

the expressiveness is severely restricted if we confine ourselves to description-forming languages that

are tractable with respect to subsumption.

Moreover, even if we adopt the point of view that subsumption determination in the empty

terminology should be tractable, does that really help? When reducing subsumption in a terminology

to subsumption in the empty terminology in Theorem 2.6, nothing was said about time and space

bounds of the function Exp. As a matter of fact, the application of Exp can lead to expressions that

are not polynomially bounded in the size of its arguments, as the following example demonstrates:

C1

.
= ∀r: C0 ⊓ ∀r

′: C0

C2

.
= ∀r: C1 ⊓ ∀r

′: C1

...

Cn

.
= ∀r: Cn−1 ⊓ ∀r

′: Cn−1.

Here, the size of Exp(Cn, T ) is obviously proportional to 2n. Of course, better algorithms are con-

ceivable. But as it turns out, the subsumption problem in terminologies cannot be reduced generally

to the subsumption problem in the empty terminology in linear time, as the following theorem shows

[28]:

Theorem 2.10 Given a terminological formalism containing only the operators
.
=, ⊓, and ∀, the

problem of deciding whether C �T D in cycle-free terminologies is co-NP-complete.

Proof Sketch: The problem of inequivalence of nondeterministic finite automatons that generate

finite languages, which is known to be NP-complete [11, p. 265], can be reduced to inequivalence of

concept descriptions in a cycle-free terminology by a straightforward mapping of states to concepts,

input symbols to roles, and transitions to ∀ role restrictions.9 Concepts which correspond to final

states of the automatons are labeled with a primitive component. Then two automatons are inequiv-

alent if, and only if, the two concepts corresponding to the respective initial states are inequivalent.

For this reason, equivalence determination in terminologies, which is a special case of subsumption,

is co-NP-hard. Since nonsubsumption can be easily shown to be in NP, the subsumption problem

itself is co-NP-complete.

From a theoretical point of view this result means that “the goal of forging a powerful system

out of tractable parts” [23, p. 89] cannot be achieved in the area of terminological reasoning.10

Furthermore, it means that almost all terminological reasoning systems described in the literature

that have been conjectured or proven to be tractable with respect to subsumption over the description

forming language (in the empty terminology) can be blown up with a carefully thought out example.

However, nobody seems to have noticed this fact, and, indeed, terminologies occurring in applications

appear to be well-behaved. In this respect and with regard to the structure, our problem is similar

to the type inference problem in ml, which seems to be solvable in linear time in all practical

8Again, the addition of features would not add to the principal complexity.
9One could use features instead without invalidating the argument.

10Under the reasonable assumption that we have
.
=, ⊓, and ∀ restrictions (respectively, feature restrictions) with

the standard semantics—which is probably something nobody wants to give up on.



applications encountered so far, but is PSPACE-hard in general [16]. The conclusion one can draw

from this strange situation is that although the theory of computational complexity can shade some

light on the structure of a problem, one should not be scared by intractability in the first place. It

may well be the case that it is possible to find algorithms that are well-behaved in all “normal cases.”

3 Unification Grammars

In the last decade a new type of grammar formalisms, now commonly referred to as unification gram-

mars, has evolved from research in linguistics, computational linguistics and artificial intelligence.11

In contrast to augmented transition networks, one of their precursors, unification grammar formalisms

provide for the declarative or logical specification of linguistic knowledge. Nevertheless, unification

grammars are aimed towards operational use in parsing and generating natural language.

Like any grammar formalism, unification grammars define sets of sentences. But in addition, a

unification grammar assigns to every grammatical sentence one or several so-called feature graphs

representing syntactic and semantic information. For instance, the syntactic structure of the sentence

John sings a song

can be represented by the feature graph in Figure 2. This graph states that the sentence consists

of a subject (John), a predicate (sings) and an object (a song). It also states that the agent of the

singing is given by the subject of the sentence and what is sung is given by the object of the sentence.

Moreover, the graph states that the tense of the sentence is present.
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Figure 2: A feature graph.

The linguistic knowledge represented by a unification grammar can be used for parsing and

generating sentences in natural language. Suppose “U(S, G)” is the relation between strings of

symbols and feature graphs specified by some grammar U . Then a string of symbols S is a sentence

of U if and only if there exists at least one feature graph G such that U(S, G) holds. A parser

computes for a given string of symbols S the set {G | U(S, G)} of all feature graphs related to S,

11For the sake of a short name, we use the term unification grammars to stand for feature-based unification grammars,

which excludes term-based unification grammars such as Definite Clause Grammars [37].



and a generator computes for a given feature graph G the set {S | U(S, G)} of all sentences related

to G.

Unification grammars are written in some formalism providing for the declarative specification of

grammar relations “U(S, G)”. Ideally, a unification grammar formalism should be general enough to

adopt easily to different linguistic theories. Since unification grammars are supposed to be declarative

specifications, seeing a unification grammar formalism as a logic for specifying grammar relations

makes good sense.

Obviously, there is a strong analogy between logic programs and unification grammars. A logic

program is a specification in Horn clause logic that can be employed operationally in various ways.

In fact, Definite Clause Grammars [37], which are specified as Horn clauses (which are one possible

form of definite clauses), are an early form of unification grammars lacking the notion of features

and feature graphs, which evolved independently in (computational) linguistics. So what we need to

capture unification grammars as logical specifications is an integration of features and feature graphs

with definite clauses. This can be nicely accomplished with the new model of logic programming

called Constraint Logic Programming (clp) [13, 12]. In contrast to Kowalski’s [22] classical Horn

clause model, clp is parameterized with respect to a general notion of constraint language. Thus, in

order to capture unification grammars as logical specifications, one needs a suitable constraint lan-

guage for describing feature graphs. Feature constraint languages are in fact the essence of unification

grammar formalisms.

The thing feature-based unification grammars have in common with the terminological axioms

discussed in the previous section is that both formalisms rely mainly on attributes for representing

knowledge. However, the descriptions used and the reasoning services supported are quite different.

In kl-one-like systems two kinds of attributes—features and roles—are used and the primary rea-

soning services are determining inclusion between concepts and membership of constants in concepts.

Descriptions in unification grammars employ only features and the primary reasoning operation is

constructing the most general feature graphs satisfying a description.

The outline of this section is as follows. We start with a formal definition of feature graphs and

then devise a suitable constraint language for partially describing feature graphs. Then we show

how unification grammars can be written as definite clauses over this constraint language, discuss

possible extensions of the basic model, and give pointers to the literature. Finally, we prove the most

important properties of our constraint language and give a constraint solving algorithm.

Our view of unification grammars as definite clauses over feature constraint languages is by no

means standard and, to our knowledge, has not appeared explicitly in the literature. Our presentation

is often informal and relies on previous work on feature logic [48] and definite relations over constraint

languages [12].

3.1 A Simple Feature Logic

We assume that an infinite set of variables (denoted by x, y, z), a set of features (denoted by f ,

g, h), and a set of constants (denoted by a, b, c) are given.

A feature graph is a finite, rooted, connected and directed graph whose edges are labeled with

feature symbols such that the labels of the edges departing from a node are pairwise distinct. More-

over, every inner node of a feature graph is a variable and every terminal node is either a constant

or a variable.



Formally, an f-edge from x to s is a triple xfs such that x is a variable, f is a feature, and

s is either a variable or a constant. A feature graph is either a pair (a, ∅), where a is a constant

and ∅ is the empty set, or a pair (x0, E), where x0 is a variable (the root) and E is a finite, possibly

empty set of edges such that

1. the graph is determinate, that is, if xfs ∈ E and xft ∈ E, then s = t

2. the graph is connected, that is, if xfs ∈ E, then E contains edges leading from the root x0 to

the node x.

To obtain the right notion of feature graph, we will identify all feature graphs that are equal up to

consistent variable renaming.

A feature algebra is a pair (DI , ·I) consisting of a nonempty set DI (the domain of I) and an

interpretation function ·I assigning to ever constant a an element aI ∈ DI and to every feature

f a unary partial function fI from DI to DI such that the following conditions are satisfied:

1. if a 6= b, then aI 6= bI (unique name assumption)

2. for no feature f and no constant a, the partial function fI is defined on aI (constants are

primitive).

Note that feature algebras are interpretations in the sense of the previous section, where there are

no roles and concepts, and no feature is defined on a constant. Feature algebras can also be seen as

Tarski interpretations of the predicate calculus, if we view features equivalently as binary predicates

that must be interpreted as functional relations.

There are three reasons for introducing feature algebras. First, we will see that the set of all

feature graphs can be regarded naturally as a feature algebra. Second, the constraint language we

are going to develop can be interpreted over every feature algebra and we will see that the algebra

of all feature graphs takes a prominent position with respect to this constraint language. And third,

this approach makes explicit the close connection between Predicate Logic and the particular feature

logic we are going to develop.

The feature graph algebra F is obtained as follows:

1. DF is the set of all feature graphs

2. aF is the feature graph (a, ∅)

3. fF is defined on a feature graph if and only if there is an f -edge departing from its root

4. if G = (x, E) and xfs ∈ E, then fF(G) is the largest feature graph (s, E ′) such that E ′ ⊆ E.

One verifies easily that F is a feature algebra.

Next we define the constraint language. From features, constants and variables we obtain terms

as in Predicate Logic. To ease our notation, we omit parentheses and write fs for f(s). A feature

equation is a pair s
.
= t consisting of two terms. Feature equations are the only primitive constraints

we need.



Let I be a feature algebra. As in Predicate Logic, an I-assignment is a mapping from the set

of all variables to the domain of I. The interpretation of terms in I under an I-assignment α are

defined as one would expect:

I[[x]]α = α(x)

I[[a]]α = aI

I[[fs]]α = fI(I[[s]]α).

Note that the interpretation of a term fs is not always defined since features are interpreted as

partial functions. In particular, no term having a subterm fa has an interpretation. A solution of

an equation s
.
= t in I is an I-assignment α such that I[[s]]α and I[[t]]α are defined and I[[s]]α = I[[t]]α.

A feature clause is a finite, possibly empty set of feature equations representing their conjunc-

tion. Consequently, a solution of a feature clause C in a feature algebra I is an I-assignment that

solves every feature equation in C. If I is a feature algebra, C is a feature clause and α is a solution

of C in I, then we call α(x) a solution of x in C and I.

One verifies easily that the feature graph in Figure 2 is a solution of x in the feature graph algebra

F and the feature clause C consisting of the equations

pred subj x
.
= john

num subj x
.
= sg

person subj x
.
= 3rd

agent pred x
.
= subj x

verb pred x
.
= sing

what pred x
.
= obj x

spec obj x
.
= a

num obj x
.
= sg

pred obj x
.
= song

tense x
.
= present.

This clause admits infinitely many other solutions for x that are obtained by adding further edges to

the inner nodes of the feature graph in Figure 2. However, the graph in Figure 2 is the most general

solution of x in C in that it realizes exactly what is required by the clause and nothing else.

To capture the idea of being more general formally, we define a partial order on feature graphs

usually called subsumption.12 A morphism is a function that maps every variable to a variable

or a constant, and that maps every constant to itself. If (s, E) and (s′, E ′) are feature graphs, we

write (s, E) ≤ (s′, E ′) and say that (s′, E ′) is more specific than (s, E) or conversely that (s, E)

is more general than (s′, E ′) if and only if there exists a morphism γ such that γ(s) = s′ and

γ(E) ⊆ E ′, where γ(E) = {γ(x)fγ(t) | xft ∈ E}. Since we identify feature graphs that are equal up

to consistent variable renaming, this definition yields in fact a partial order on the set of all feature

graphs.

Proposition 3.1 For every feature graph G and every variable x one can compute in linear time a

feature clause C such that G is the most general solution of x in C and F .

Proof: If G = (a, ∅), then {x
.
= a} is a clause as claimed. If G = (x, E), then {fy

.
= s | yfs ∈ E} is

a clause as claimed. Otherwise, if some variable other than x is the root node of G, x can be made

the root node by consistent variable renaming.

12Note that the subsumption relation on feature graphs defined here is different from the subsumption relation on

concept descriptions defined in Section 2.



The most important properties of our constraint language are stated by the following theorem,

which we will prove in Subsection 3.4.

Theorem 3.2 Let C be a feature clause, x be a variable, and F be the feature graph algebra. Then

the following conditions are equivalent:

1. C has a solution in some feature algebra

2. C has a solution in F

3. x has a most general solution in C and F .

Furthermore, there is a quadratic time algorithm that, given a clause C and a variable x, either

returns fail if C has no solution or returns the most general feature graph solution of x in C.

3.2 Unification Grammars as Definite Clauses over Feature Logic

We will now outline a simple unification grammar formalism in which a grammar is given as a set of

definite clauses over the feature logic just presented. Such definite clauses can be seen as context-free

syntax rules constrained with feature equations.

Figure 3 shows how ordinary context-free grammars translate into Horn clauses. This translation,

which is well-known from Definite Clause Grammars [37], assumes that a string of symbols w1, . . . , wn

is represented as the term w1. · · · .wn.nil, where the dot is a binary function symbol written in right-

associative infix notation. A string of symbols S is a sentence of the grammar if and only if the

statement s(S) follows logically from the Horn clause translation of the grammar.

S −→ NP VP

VP −→ V NP

NP −→ D N

NP −→ john

V −→ sings

D −→ a

N −→ song.

s(X)← np(X, Y) ∧ vp(Y, nil)

vp(X, Y)← v(X, Z) ∧ np(Z, Y)

np(X, Y)← d(X, Z) ∧ n(Z, Y)

np(john.X, X)←

v(sings.X, X)←

d(a.X, X)←

n(song.X, X)← .

Figure 3: A context-free grammar and its translation into Horn clauses.

Given the Horn clause translation of a context-free grammar, we can introduce for every phrase

predicate an additional argument that ranges over feature graphs. Furthermore, in the body of every

clause constraints for these additional feature graph arguments can be given. For instance, consider

the clauses

np(X, Y, NP)← d(X, Z, D) ∧ n(Z, Y, N) ∧ NP
.
= D ∧ D

.
= N

d(a.X, X, D)← spec(D)
.
= a ∧ num(D)

.
= sg

n(song.X, X, N)← pred(N)
.
= song ∧ num(N)

.
= sg,

which may be written in the following more intelligible syntax:



NP −→ D N

NP
.
= D

.
= N

D −→ a

spec D
.
= a ∧

num D
.
= sg

N −→ song

pred N
.
= song ∧

num N
.
= sg.

These clauses already illustrate one possible way unification grammars can enforce agreement between

the numerus of a noun and its determiner. Since the determiner and the noun are forced by the

first clause to carry the same feature graphs (which must also be the feature graphs of the entire

noun phrase), it suffices if the rules for the determiner and the noun constrain the feature num

independently. In case they constrain the feature num with conflicting values, there exists no feature

graph satisfying both constraints.

Saying that a unification grammar consists of definite clauses over a feature constraint language is

a little bit oversimplified. Our rules actually employ a three-sorted constraint language providing the

sort of all feature graphs, the sort of all words, and the sort of all strings of words. It is straightforward

to accommodate this technically. It is also possible to have a single-sorted approach if one codes

strings of words as feature graphs.

Figure 4 shows a unification grammar that covers our example sentence “John sings a song”. The

grammar is given in a sugared syntax that can be translated automatically into definite clauses.13

S −→ NP VP

S
.
= VP ∧ subj S

.
= NP

VP −→ V NP

VP
.
= V ∧ obj VP

.
= NP

NP −→ D N

NP
.
= D

.
= N

NP −→ john

pred NP
.
= john ∧

num NP
.
= sg ∧

person NP
.
= 3rd

V −→ sings

tense V
.
= present ∧

verb pred V
.
= sing ∧

agent pred V
.
= subj V ∧

what pred V
.
= obj V ∧

num subj V
.
= sg ∧

person subj V
.
= 3rd

D −→ a

spec D
.
= a ∧

num D
.
= sg

N −→ song

pred N
.
= song ∧

num N
.
= sg

Figure 4: A unification grammar.

Since our unification grammars are definite clauses over feature logic, they enjoy a logical seman-

tics provided by the constraint logic programming model [12]. Let x be a fixed variable and let,

for every feature graph G, C[x, G] denote a feature clause such that G is the unique most general

solution of x in C[x, G] and F . Then a grammar U with the sentence predicate sU defines a relation

“U(S, G)” between strings of symbols and feature graphs as follows:

U(S, G) ⇐⇒ U |= C[x, G]→ sU(S, x) ∧

∀G′: U |= C[x, G′]→ sU(S, x) ⇒ G ≤ G′,

13An equation, say, agent pred V
.
= subj V in our term-oriented syntax would be written in PATR’s [47] syntax as

< V pred agent > = < V subj >.



where U |= C[x, G]→ sU(S, x) means that the implication C[x, G]→ sU(S, x) follows logically from

U and G ≤ G′ means that G′ is more specific than G.

It is possible to verify that the unification grammar in Figure 4 relates the sentence “John sings

a song” to the feature graph in Figure 2 and to no other feature graph.

The word problem of a grammar U is to decide for a given string S of symbols whether there exists

a feature graph G such that U(S, G) holds. One can show that our formalism allows for grammars

having an undecidable word problem by adapting proofs given by Johnson [14] and Rounds and

Manaster-Ramer [40] for slightly different formalisms.

Every grammar U in our formalism comes with a context-free grammar CF[U ] such that U is

obtained from CF[U ] by adding feature equations to the rules of U . A grammar U satisfies the off-line

parsability constraint [17] if the number of different derivations of a string of symbols in CF[U ] is

bounded by a computable function of the length of that string. Using the operational semantics of

definite clauses [12], it is easy to see that for a grammar U satisfying the off-line parsability constraint

the word problem is decidable, and that, for every string of symbols S, the set {G | U(S, G)} is finite

and can be computed from S. The off-line parsability constraint is, for instance, satisfied if the right-

hand side of every rule of CF[U ] contains either at least one terminal or at least two nonterminals.

3.3 Background and Extensions

The simple unification grammar formalism sketched here bears much resemblance with the patr

formalism developed at SRI International by Stuart Shieber and his colleagues [47, 44]. It is also

closely related to Kaplan and Bresnan’s Lexical-Functional Grammar formalism (lfg) [17]. lfg and

patr were conceived and developed at a time when the constraint logic programming model was

not available and have been described quite differently by their inventors. In fact, even the most

recent attempts at formalizing unification grammar formalisms [14, 46] still don’t make use of the

constraint logic programming model.

Shieber’s [45] introduction to unification-based approaches to grammar is an excellent survey of

existing formalisms and provides the linguistic motivations our presentation is lacking. Other state

of the art guides into this fascinating area of research are [38] and [36]. Johnson’s thesis [14] gives a

formal account of lfg and investigates a feature constraint language with disjunctions and negations.

Furthermore, Shieber’s [46] thesis gives a rigorous formalization of the patr formalism.

Why are unification grammars called “unification” grammars? In this context unification is

understood as the operation that, given two feature graphs G1 and G2, decides whether there exists

a feature graph that is more specific than both G1 and G2 and, if so, returns the most general

such feature graph (which then in fact uniquely exists). Feature graph unification can be seen as an

operation combining the information given by two feature graphs provided it doesn’t conflict. Due to

the close relation between clauses and feature graphs, feature graph unification can be employed as

the central operation of a parser emulating a unification grammar, an implementation technique that

is elaborated carefully in [46]. Nevertheless, the name “unification grammar”, which can be traced

back to Martin Kay’s [19, 21, 20] Functional Unification Grammar, is rather misleading since it is

derived from an operation that may or may not be employed in implementations of these grammar

formalisms. Incidentally, in Kaplan and Bresnan’s [17] clear and insightful presentation of lfg feature

graph unification is not even mentioned.

Kay’s Functional Unification Grammar (fug) [19, 21, 20] is more general than our formalism



since it is not based on context-free rules but uses more flexible mechanisms for establishing word

order. Rounds and Manaster-Ramer [40] present a logical formalization of fug.

The operational semantics of the constraint logic programming model [13, 12] given by goal

reduction results in a top-down parsing strategy when applied to our unification grammar formalism.

The role of term unification in ordinary Horn clause programming is taken by a constraint solver

that simplifies sets of feature equations and thereby checks their solvability. Such a constraint solver

generalizes feature graph unification. Existing unification grammar systems often employ chart

parsing techniques realizing a bottom up strategy.

The feature constraint language presented here restricts constraints to conjunctions of equations.

One obvious extension is to admit other logical connectives such as disjunction, negation or implica-

tion. For instance, a lexical rule for the verb “sing” may come with an implicational constraint:

V −→ sing

(person subj V
.
= 3rd → num subj V

.
= pl) ∧ . . . .

Deciding for such general constraints whether they have a solution is an NP-complete problem

[14, 48]. Furthermore, such a general constraint can have more than one most general feature graph

solution, but at most finitely many. Feature constraint languages with all propositional connectives

have been investigated by Johnson [14] and Smolka [48].

The integration of Prolog-like logic programming with feature constraint languages seems to be

a very promising line of research. Concrete language proposals based on this idea are login [3] and

cil [25]. The theoretical foundations for this kind of languages have been established in [48, 13, 12].

Kasper and Rounds [18, 39] were the first to develop a constraint logic for feature graphs. Their

logic accounts for concept descriptions interpreted in the feature graph algebra F . Their concept

descriptions, which we call feature terms, are given by the abstract syntax rule

S, T −→ a |p ↓ q |f : S |S ⊓ T |S ⊔ T.

The new construct p ↓ q, which we call agreement, consists of two strings p and q of features (called

paths). Given a feature algebra I, the interpretation pI of a string of features p = fn · · · f1 is the

partial function obtained as the composition of the partial functions fI
n , . . . , fI

1 , where fI
1 is applied

first. The empty string denotes the identity function of DI . Now the interpretation of an agreement

p ↓ q in I is the greatest subset of DI on which pI and qI agree, that is,

(p ↓ q)I = {d ∈ D(pI) ∩D(qI) | pI(d) = qI(d)},

where D(pI) and D(qI) are the domains of the partial functions pI and qI , respectively. Agreements

are needed for expressing coreferences in feature graphs, that is, the fact that two paths lead to the

same node. Interpreted in the feature graph algebra F , every feature term denotes a set of feature

graphs.

Figure 5 gives an example of a feature term written in matrix notation. The feature terms given

as the rows of a matrix are connected by intersection. The feature graph in Figure 2 is the most

general element of the set of feature graphs denoted by the feature term in Figure 5 in the feature

graph algebra F .

Agreements generalize to roles and are known as role value maps in kl-one [9]. A recent paper

of Schmidt-Schauß [42] shows that role value maps result in an undecidable subsumption relation on
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Figure 5: A feature term in matrix notation.

concept descriptions. This is in sharp contrast to agreements for feature terms, which don’t cause a

blow-up of the computational complexity.

Feature terms can be used for constraining variables if the logic provides for memberships x: S

consisting of a variable and a feature term, where an I-assignment α is a solution of x: S in a feature

algebra I if and only if α(x) ∈ SI . One can show that memberships not employing unions have the

same expressivity as conjunctions of feature equations. Smolka [48] investigates various feature term

languages and shows how they reduce to equational constraint languages.

Unification grammars usually have most of their structural information in their lexical rules.

Since lexica for realistic subsets of natural language are large, techniques are needed for expressing

lexical generalizations so as to allow lexical entries to be written in a compact notation. One such

technique is the use of so-called templates in the patr formalism, which turn out to be noncyclic

equational terminological axioms based on feature terms. Figure 6 gives an example.

present3rdsg
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Figure 6: A lexical entry using templates.

3.4 Solving Feature Clauses

We now prove Theorem 3.2 by exhibiting a quadratic-time algorithm for solving feature clauses.

The algorithm is given abstractly as a collection of simplification rules providing for the solution-

preserving transformation of feature clauses to a solved form.14

14Theorem 3.2 and the algorithm are taken from [48].



We use I[[C]] to denote the set of all solutions of a feature clause C in a feature algebra I. Two

feature clauses C and D are called equivalent if I[[C]] = I[[D]] for every feature algebra I. Let V

be a set of variables. Then two feature clauses C and D are called V -equivalent if for every feature

algebra I the following two conditions are satisfied:

1. if α ∈ I[[C]], then there exists β ∈ I[[D]] such that α and β agree on V

2. if α ∈ I[[D]], then there exists β ∈ I[[C]] such that α and β agree on V .

Proposition 3.3 Let C and D be V -equivalent feature clauses, x ∈ V and I be a feature algebra.

Then d ∈ DI is a solution of x in C and I if and only if d is a solution of x in D and I.

Our solution algorithm for feature clauses consists of a linear-time unfolding phase followed by a

quadratic-time normalization phase.

A feature clause is unfolded if each of its equations has either the form s
.
= t or fs

.
= t, where s

and t range over variables and constants. In other words, a feature clause is unfolded if each of its

equations contains either no feature or exactly one feature that occurs on its left-hand side.

Let C be a feature clause. Then we use

1. VC to denote the set of all variables occurring in C

2. [x/s]C to denote the clause that is obtained from C by replacing every occurrence of the

variable x with the term s

3. s
.
= t &C to denote the feature clause {s

.
= t} ∪ C provided s

.
= t /∈ C.

Unfolding is done by iteratively replacing a term fs in an unfolded position with a fresh variable

x and adding the constraint fs
.
= x. For instance, the clause {fgx

.
= hy} can be unfolded to

{fz
.
= u, gx

.
= z, hy

.
= u}

by introducing the new variables u and z. Unfolding steps are justified by the following proposition:

Proposition 3.4 Let D be a feature clause, fs
.
= x ∈ D, C = [x/fs](D − {fs

.
= x}), and let x not

occur in fs. Then C and D are VC-equivalent.

Proposition 3.5 For every feature clause C one can compute in linear time a VC-equivalent un-

folded feature clause D.

Next we present the solved form for feature clauses to which the normalization phase of our

solution algorithm attempts to transform unfolded feature clauses.

A feature clause C is solved if it satisfies the following conditions:

1. every equation in C has one of the following forms: x
.
= y, x

.
= a, fx

.
= y or fx

.
= a

2. if fx
.
= s and fx

.
= t are in C, then s = t

3. if x
.
= s is in C, then x occurs only once in C.



Let C be a solved feature clause. Then x→C y ⇐⇒ ∃ fx
.
= y ∈ C defines a binary relation

→C on the variables occurring in C. We use→∗
C

to denote the reflexive and transitive closure of→C

on the set of all variables. If x is a variable, then

FG[x, C] :=















(a, ∅) if x
.
= a ∈ C

FG[y, C] if x
.
= y ∈ C

(x, {yfs | fy
.
= s ∈ C ∧ x→∗

C
y}) otherwise

defines a feature graph.

Theorem 3.6 If C is a solved feature clause and x is a variable, then FG[x, C] is the most general

solution of x in C and F .

The proof of this theorem is straightforward.

Next we present the normalization phase of the algorithm, which is given by the following solution-

preserving simplification rules for unfolded feature clauses:

1. s
.
= s & C → C

2. x
.
= s & C → x

.
= s & [x/s]C if x ∈ VC and x 6= s

3. s
.
= x & C → x

.
= s & C if s is not a variable

4. fx
.
= s & fx

.
= t & C → fx

.
= s & s

.
= t & C.

A clause is called normal if it is unfolded and no normalization rule applies to it.

Proposition 3.7 Let C be an unfolded feature clause. Then:

1. if D is obtained from C by a normalization rule, then D is an unfolded feature clause that is

equivalent to C

2. there is no infinite chain of normalization steps issuing from C.

Proof: The verification of the first claim is straightforward. To show the second claim, suppose

there is an infinite sequence C1, C2, · · · of unfolded feature clauses such that, for every i ≥ 1, Ci+1

is obtained from Ci by a normalization rule. First note that every variable occurring in some Ci

must also occur in C1, that is, normalization steps don’t introduce new variables. A variable x is

called isolated in a clause C if C contains an equation x
.
= s and x occurs exactly once in C. Now

observe that no normalization rule decreases the number of isolated variables, and that the second

normalization rule increases this number. Hence we can assume without loss of generality that the

infinite sequence doesn’t employ the second normalization rule. However, it is easy to see that the

remaining normalization rules cannot support an infinite sequence.

Proposition 3.8 For every feature clause one can compute in quadratic time a VC-equivalent nor-

mal feature clause.



Proof: Let C be a clause. We have seen that we can compute in linear time an unfolded clause D

that is VC-equivalent to C. By the previous proposition we know that we can compute a normal

feature clause E that is equivalent to D using the normalization rules. The normalization of D to

E can be done in quadratic time by employing the normalization rules together with an efficient

union-find method [2] for maintaining equivalence classes of variables and constants.

A clash is an equation that has either the form fa = s or the form a
.
= b, where a and b are

different constants. A feature clause is clash-free if it contains no clash.

Proposition 3.9 If a feature clause has a solution in some feature algebra, then it is clash-free.

Furthermore, a feature clause is solved if and only if it is normal and clash-free.

Now Theorem 3.2 follows easily from Propositions 3.8 and 3.9 and Theorem 3.6.
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[3] H. Äıt-Kaci and R. Nasr. LOGIN: a logic programming language with built-in inheritance. The

Journal of Logic Programming, 3:185–215, 1986.

[4] Y. Arens, L. Miller, S. C. Shapiro, and N. K. Sondheimer. Automatic construction of user-

interface displays. In Proceedings of the 7th National Conference of the American Association

for Artificial Intelligence, pages 808–813, Saint Paul, Minn., Aug. 1988.

[5] H. W. Beck, S. K. Gala, and S. B. Navathe. Classification as a query processing technique

in the CANDIDE semantic data model. In Proceedings of the International Data Engineering

Conference, IEEE, pages 572–581, Los Angeles, Cal., Feb. 1989.

[6] R. J. Brachman, A. Borgida, D. L. McGuinness, and L. A. Resnick. The CLASSIC knowledge

representation system, or, KL-ONE: the next generation. In Preprints of the Workshop on

Formal Aspects of Semantic Networks, Two Harbors, Cal., Feb. 1989.

[7] R. J. Brachman and H. J. Levesque. The tractability of subsumption in frame-based description

languages. In Proceedings of the 4th National Conference of the American Association for

Artificial Intelligence, pages 34–37, Austin, Tex., Aug. 1984.

[8] R. J. Brachman, V. Pigman Gilbert, and H. J. Levesque. An essential hybrid reasoning system:

knowledge and symbol level accounts in KRYPTON. In Proceedings of the 9th International

Joint Conference on Artificial Intelligence, pages 532–539, Los Angeles, Cal., Aug. 1985.

[9] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledge representation

system. Cognitive Science, 9(2):171–216, Apr. 1985.



[10] T. W. Finin and D. Silverman. Interactive classification as a knowledge acquisition tool. In

L. Kerschberg, editor, Expert Database Systems—Proceedings From the 1st International Work-

shop, pages 79–90, Benjamin/Cummings, Menlo Park, Cal., 1986.

[11] M. R. Garey and D. S. Johnson. Computers and Intractability—A Guide to the Theory of

NP-Completeness. Freeman, San Francisco, Cal., 1979.
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