Perfect Derived Propagators

Christian Schulte! and Guido Tack?

L ICT, KTH - Royal Institute of Technology, Sweden, cschulte@kth.se
PS Lab, Saarland University, Saarbriicken, Germany, tack@ps.uni-sb.de

Abstract. When implementing a propagator for a constraint, one must
decide about variants: When implementing min, should one also imple-
ment max? Should one implement linear equations both with and with-
out coefficients? Constraint variants are ubiquitous: implementing them
requires considerable (if not prohibitive) effort and decreases maintain-
ability, but will deliver better performance.

This paper shows how to use variable views, previously introduced for
an implementation architecture, to derive perfect propagator variants. A
model for views and derived propagators is introduced. Derived propaga-
tors are proved to be indeed perfect in that they inherit essential proper-
ties such as correctness and domain and bounds consistency. Techniques
for systematically deriving propagators such as transformation, gener-
alization, specialization, and channeling are developed for several vari-
able domains. We evaluate the massive impact of derived propagators.
Without derived propagators, Gecode would require 140 000 rather than
40000 lines of code for propagators.

1 Introduction

When implementing a propagator for a constraint, one typically needs to decide
whether to also implement some of its variants. For example, when implementing
a propagator for max]* ; z; = y, should one also implement min}’_; z; = y? When
implementing the linear equation Y ., a;z; = c for integer variables x; and
integers a; and ¢, should one also implement Z?Zl x; = c for better performance?
When implementing the reified linear equation (}.; , z; = ¢) < b, should one
also implement its almost identical algebraic variant (3., @; # ¢) < b?

Implementing inflates code and documentation. Not implementing increases
space and runtime: by using more general propagators or by decomposing into
several other constraints. Worse, given the potential code explosion, one may be
able to only implement some variants (say, minimum and maximum). Other vari-
ants important for performance (say, minimum and maximum for two variables)
may be infeasible due to excessive programming and maintenance effort.

Here, we follow a third approach: we derive propagators from already exist-
ing propagators using variable views. In [12], we introduced an implementation
architecture for variable views to reuse generic propagators without performance
penalty. This architecture has been implemented in Gecode [5], and is in fact
essential for the system, as it saves approximately 100000 lines of code. Due to

the massive use of views in Gecode, it is vital to develop a model that allows us
to prove that derived propagators have the desired properties.

In this paper, we argue that propagators that are derived using variable views
are indeed perfect: they are not only perfect for performance, we prove that they
inherit all essential properties such as correctness and completeness from their
original propagator.

Last but not least, we show common techniques for deriving propagators with
views and demonstrate their wide applicability. In Gecode, every propagator
implementation is reused 3.6 times on average. Without views, Gecode would
feature 140000 rather than 40000 lines of propagator implementation to be
written, tested, and maintained.

Variable views. Consider a bounds consistent propagator for max(x,y) = z.
Assume that T (z) returns the maximum (minimum) of the finite domain variable
x, whereas T «— n (z < n) adjusts the maximum (minimum) value of = to
min(Z,n) (max(z, n)), only taking variable bounds into account. The propagator
is implemented by performing the following operations on its variables:

T+—Z g§«—z 7z max(T,7) z + max(z,y)
Given three more propagators for '’ = —z, ¥’ = —y, and 2z’ = —z, we could
propagate the constraint min(z’,y’) = 2’. In contrast to this decomposition,

we propose to use generic propagators that perform operations on views rather
than variables. Views provide the same interface (set of operations) as variables
while enabling additional transformations. For example, an operation on a minus
view 2’ on a variable behaves as if executed on —x: 2’ is defined as —z and
2’ «— n is defined as z «— —n. With views, the implementation of the maximum
propagator can be reused: we derive a propagator for the minimum constraint
by instantiating the maximum propagator with minus views for its variables.
The feasibility of variable views rests on today’s programming languages’
support for generic (or polymorphic) constructions (for example, templates in
C++) and that the simple transformations provided by views are optimized away.

Contributions. This paper contributes an implementation independent model
for views and derived propagators, techniques for deriving propagators, and an
evaluation that shows that views are widely applicable, drastically reduce pro-
gramming effort, and are more efficient than decomposition.

More specifically, the key contribution is the identification of properties of
views that are essential for deriving perfect propagators. To this end, the pa-
per establishes a formal model that defines a view as a function and a derived
propagator as functional composition of views (mapping values to values) with a
propagator (mapping variable domains to variable domains). This model yields
all the desired results: derived propagators are indeed propagators; derived prop-
agators faithfully implement the intended constraints; domain consistency carries
over to derived propagators; different forms of bounds consistency over integer
variables carry over provided that the views satisfy additional properties.

After establishing the fundamental results, we address further properties of
derived propagators such as idempotence, subsumption, and events. Finally, we
clarify the connection between derived propagators and path consistency when
regarding views as binary constraints.

We introduce techniques for deriving propagators that use views for special-
ization and generalization of propagators, channeling between variable domains,
and general domain-specific transformations. We show how to apply these tech-
niques for different variable domains using various views. We provide a break-
down of how successful the use of derived propagators has been for Gecode.

Overview. The next section introduces the basic notions we will use. Sect. 3
presents views and derived propagators and proves fundamental properties like
correctness and completeness. The following three sections develop techniques for
deriving propagators: transformation, generalization, specialization, and chan-
neling. Sect. 7 presents extensions of the model, and Sect. 8 discusses its limita-
tions. Sect. 9 provides empirical evidence that views are useful in practice.

2 Preliminaries
This section sets the stage for the paper with definitions of the basic concepts.

Variables and constraints. We assume a finite set of variables Var =
{z1,...,2,} and a finite set of values Val. Constraints are characterized by
assignments a € Asn that map variables to values: Asn = Var — Val. A
constraint ¢ € Con is a relation over the variables, represented as the set of
all assignments that satisfy the constraint, Con = 245", We base constraints
on full assignments, defined for all variables in Var. However, for typical con-
straints, only a subset vars(c) of the variables is significant; the constraint
is the full relation for all x ¢ vars(c). We write a constraint in extension
(c={(z— 0,y —1),(x+— 1,y +— 2)}) or intensionally (¢ =z < y).

Domains. Constraints are implemented by propagators over domains, which
are constructed as follows. A domain d € Dom maps each variable to a finite set
of possible values, the variable domain d(x) C Val.

A domain d can be identified with a set of assignments d € 245", We can
therefore treat domains as constraints. In particular, for any assignment a, {a}
is a domain as well as a constraint. We simply write domain for domains and
variable domains when there is no risk of confusion.

A domain d; is stronger than a domain dy (written di C dg), iff for all
variables z, di (z) C da(x). By dom(c) we refer to the strongest domain including
all valid assignments of a constraint, defined as min{d € Dom | ¢ C d} =
{a | Yz 3b € c. a(x) = b(x)}. The minimum exists as domains are closed under
intersection, and the definition is non-trivial because not every constraint can
be captured by a domain. Now, for a constraint ¢ and a domain d, dom(c N d)
refers to removing all values from d not supported by the constraint c.

Propagators. Propagators serve here as implementations of constraints. They
are sometimes also referred to as constraint narrowing operators or filter func-
tions. A propagator is a function p € Dom — Dom that is contracting (p(d) C d)
and monotone (d' C d = p(d') C p(d)). Idempotence is not required.

Propagators are contracting, they only remove values from variable domains.
For an assignment a, a propagator p hence has only two options: accept it
(p({a}) = {a}), or reject it (p({a}) = #). Monotonicity guarantees that if some
domain d contains an assignment a € d that p accepts, then p will not remove a
from d: a € p(d). The propagator therefore behaves like a characteristic function
for the set of accepted assignments. This set is the associated constraint of p.

We say that a propagator p implements its associated constraint ¢, = {a €
Asn | p({a}) = {a}}. Monotonicity implies that for any domain d, we have
dom(c, N'd) C p(d): no solution of ¢, is ever removed by p. We say that p
is sound for any ¢ C ¢, and weakly complete for any ¢’ O ¢, (meaning that
it accepts all assignments in ¢ and rejects all assignments not in ¢). For any
constraint ¢, we can find at least one propagator p such that ¢ = ¢,. Typically,
there are several propagators, differing by propagation strength (see Sect. 3).

Our definitions of soundness and different notions of completeness for prop-
agators are based on and equivalent to Benhamou’s [2] and Maher’s [9]. We
specify what is computed by constraint propagation and not how. Approaches
for performing constraint propagation can be found in [2,1, 11].

3 Views and Derived Propagators

We now introduce our central concepts, views and derived propagators.

A view on a variable z is an injective function ¢, € Val — Val’, mapping
values from Val to values from a possibly different set Val'. We lift a fam-
ily of views ¢, (one for each = € Var) point-wise to assignments as follows:
vasn(a)(x) = pz(a(x)). Finally, given a family of views lifted to assignments,
we define a view p € Con — Con on constraints as ¢(c) = {@asn(a) | a € c}.
The inverse of that view is defined as ¢~ (¢) = {a € Asn | pasn(a) € c}.

In the implementation, a view on x presents the same interface as x, but
applies transformations when a propagator adjusts or accesses the domain of x
through the view. In our model, ¢ performs the transformations for accessing,
and ¢~ for adjusting the variable domains. Views can now be composed with a
propagator: a derived propagator is defined as @(p)(d) = ¢~ (p(¢(d))), or, using
function composition, as $(p) = ¢~ opo .

Example. Given a propagator p for the constraint ¢ = (z = y), we want to
derive a propagator for ¢’ = (x = 2y) using a view ¢ such that ¢~ (¢) = ¢.

It is usually easier to think about the other direction: ¢(¢’) C c. Intuitively,
the function ¢ leaves = as it is and scales y by 2, while ¢~ does the inverse
transformation. We thus define ¢, (v) = v and ¢, (v) = 2v. We have a subset
relation because some tuples of ¢ may be ruled out by ¢. For instance, with ¢
defined as above, there is no assignment a such that ¢ 4s,(a)(y) = 3, but the
assignment (z — 3,y — 3) is in c.

This example also makes clear why the set Val is allowed to differ from Val.
In this particular case, Val’ has to contain all multiples of 2 of elements in Val.

The derived propagator is p(p) = ¢~ o po . We say that @(p) “uses a scale
view on” y, meaning that ¢, is the function defined as ¢, (v) = 2v. Similarly,
using an identity view on x amounts to ¢, being the identity function on Val.

Given the assignment a = (z — 2,y — 1), we first apply ¢as, and get
vasn(a) = (x — 2,y — 2). This is accepted by p and returned unchanged,
so ¢~ transforms it back to a. Another assignment, o’ = (z — 1,y — 2), is
transformed to pae,(a’) = (z — 1,y — 4), rejected (p({@asn(a’)}) = 0), and
the empty domain is mapped to the empty domain by ¢~. The propagator ¢(p)
implements ¢~ (c). 0

Views and derived propagators satisfy a number of essential properties:

1. A derived propagator @(p) is in fact a propagator.

2. The associated constraint of @(p) is ¢~ (cp).

3. A view ¢ preserves contraction of a propagator p: If p(¢(d)) C ¢(d), then
?(p)(d) C d. This property makes sure that if the propagator makes an
inference, then this inference will actually be reflected in a domain change.

In the following, we will prove these properties. For the proofs, we employ some
direct consequences of the definitions of views and derived propagators: (1) ¢
and ¢~ are monotone by construction; (2) ¢~ op = id (the identity function); (3)
le({a})| =1, p(0) = 0; (4) for any view ¢ and domain d, we have p(d) € Dom
and ¢~ (d) € Dom (as views are defined point-wise).

Theorem 1. A derived propagator is a propagator: for all propagators p and
views ¢, @(p) is a monotone and contracting function in Dom — Dom. o

Proof. The derived propagator is well-defined because both ¢(d) and ¢~ (d) are
domains (see (4) above). Monotonicity is obvious, as compositions of monotone
functions are monotone. For contraction, we have p(p(d)) C ¢(d) as p is con-
tracting. By monotonicity of ¢, we know that ¢~ (p(p(d))) C ¢ (p(d)). As
v~ o =1id, we have o~ (p(¢(d))) C d, which proves that $(p) is contracting. In
summary, for any propagator p, $(p) = ¢~ o po ¢ is a propagator. .

Theorem 2. If p implements ¢, then @(p) implements ¢~ (c;). O

Proof. As p implements c¢,, we know p({a}) = ¢, N {a} for all assignments a.
With |p({a})| = 1, we have p(p({a})) = ¢, N ¢({a}). Furthermore, we know
that ¢, N ¢({a}) is either @ or p({a}). Case 0: We have ¢~ (p(¢({a}))) =0 =
{a} N (). Case w({a}): As ¢~ 0 = id, we have o~ (p(p({a}))) = {a}.
Furthermore:

¢ Ne({a}) = v({a}) = Fbec b=p(a)
=a€c{ad €dsn|p(d)ec,t = acp(c)

Together, this shows that ¢~ ocpop({a}) = {a} Ny~ (cp). .

Theorem 3. Views preserve contraction: for any domain d, if p(¢(d)) C ¢(d),
then p(p)(d) C d. o

Proof. Recall the definition of ¢~ (c¢) as {a € Asn | pasn(a) € c}. It clearly
follows that |¢~(c)| < |¢|. Similarly, we know that |¢(c)| = |¢|. From p(¢(d)) C
©(d), we know that |p(o(d))| < |p(d)|. Together, this yields |p(p)(d)| < |p(d)| =
|d|. We have already seen in Theorem 1 that @(p)(d) C d, so we can conclude
that @(p)(d) C d. .

Completeness. Weak completeness, as introduced above, is the minimum re-
quired for a constraint solver to be complete. A weakly complete propagator does
not have to prune variable domains, it only has to check if an assigned domain
is a solution of the constraint. The success of constraint propagation however
crucially depends on strong propagators that prune variable domains.

The strongest possible inference that a single propagator can do establishes
domain consistency (also known as generalized arc consistency): a domain d
is domain consistent for a constraint ¢, iff for all variables x; and all values
v; € d(x;), there exist values v; € d(x;) for all other variables z; such that the
assignment (21 — v1,...,2; — Vi, ..., 2, — vy,) is a solution of c.

A propagator is domain complete (or simply complete) for a constraint ¢ if
it establishes domain consistency. More formally, a propagator p is complete for
a constraint ¢ iff for all domains d, we have p(d) C dom(c Nd). A complete
propagator thus removes all assignments from d that are inconsistent with c.

We will now prove that propagators derived from complete propagators are
also complete. In Sect. 5, we will extend this result to weaker notions of com-
pleteness, such as bounds(Z) and bounds(R) completeness.

For this proof, we need two auxiliary definitions. A constraint ¢ is a ¢ con-
straint iff for all a € ¢, there is a b € Asn such that a = YA, (b). A view ¢ is
dom injective iff p~(dom(c)) = dom(p~(c)) for all ¢ constraints c.

For the completeness proof, we need a lemma that states that any view is
dom injective.

Proof. By definition of ¢~ and dom(-), we have ¢~ (dom(c)) = {a €
Asn | Vz.3b € c.pasn(a)(z) = b(z)}. As ¢ is a ¢ constraint, we can find such
a b that is in the range of @4y, if and only if there is also a b’ € ¢~ (¢) such
that @ 44, (') = b. Therefore, we get {a € Asn | Vx.3V' € o~ (¢).a(z) =b'(z)} =
dom(yp~ (). .

Furthermore, we need a lemma that states that views commute with set
intersection: For any view ¢, the equation ¢~ (c; Nec2) = ¢~ (¢1) N¢~ (c2) holds.

Proof. By definition of ¢~, we have ¢ (c1 Nc2) = {a € Asn | pasn(a) €
1 AN pasn(a) € ca}. As v sy is a function, this is equal to {a € Asn | pasn(a) €
cr}N{a € Asn | pasn(a) € ca} =@~ (c1) N~ (c2). .

Theorem 4. If p is complete for ¢, then @(p) is complete for ¢~ (c). 0

Proof. By monotonicity of ¢ and completeness of p, we know that ¢~ opop(d) C
¢~ (dom(cNp(d))). We now use the fact that ¢~ is dom injective and commutes
with set intersection:

¢~ (dom(c N p(d))) = dom(p~ (cNp(d))) =
dom(p~(¢) N~ (¢(d))) = dom(p~(c) N d) .

4 Boolean Variables: Transformation

This section discusses views and derived propagators for Boolean variables where
Val = {0,1}. Not surprisingly, the only view apart from identity for Boolean
variables captures negation. That is, using a negation view on z defines @, (v) =
1—w for x € Var and v € Val.

Negation views are more widely applicable than one would initially believe.
They demonstrate how views can be used systematically to obtain implementa-
tions of constraint variants by transformation.

Boolean connectives. The immediate application of negation views is to derive
propagators for all Boolean connectives from just three propagators: A negation
view for x in x = y yields a propagator for —z = y. From disjunction xVy = z one
can derive conjunction z Ay = z with negation views on z, y, z, and implication
r — y = z with a negation view on x. From equivalence x < y = z one can
derive exclusive or x @ y = z with a negation view on z.

As Boolean constraints are widespread in models, it pays off to optimize fre-
quently occurring cases. One important propagator is disjunction \/?:1 T, =Y
for arbitrarily many variables; again conjunction can be derived with negation
views on the x; and on y. Another important propagator is for the constraint
\/?=1 x; = 1, stating that the disjunction must be true. A propagator for this
constraint is essential as the constraint occurs frequently and as it can be im-
plemented efficiently using watched literals, see for example [6]. With views and
derived propagators all implementation work is readily reused for conjunction.
This shows a general advantage of views: effort put into optimizing a single
propagator directly pays off for all other propagators derived from it.

Boolean cardinality. Like the constraint \/[_, z; = 1, the Boolean cardinality
constraint » ., x; > ¢ occurs frequently and can be implemented efficiently
using watched literals (requiring ¢ + 1 watched literals, Boolean disjunction cor-
responds to the case where ¢ = 1). But also a propagator for Y 1, z; < ¢ can
be derived using negation views with the following transformation:

n n n
Zizlmigc@—;izlmiz—c @nzzi:lxiZn—c
= Y l-z,>n—c <= Y ~z;,>n—c

Reification. Many reified constraints (such as (3, z; = ¢) < b) also exist in
a negated version (such as (3.1, z; # ¢) < b). Deriving the negated version is
trivial by using a negation view on the Boolean control variable b. This contrasts
nicely with the effort without views: either the entire code must be duplicated or
the parts that perform checking whether the constraint or its negation is entailed
must be factorized out and combined differently for the two variants.

5 Integer Variables: Generalization, Bounds Consistency,
Specialization

Common views for finite domain integer variables capture linear transformations
of the integer values. In [12], the following views are introduced for a variable
x and values v: a minus view on z is defined as ¢, (v) = —v, an offset view for
0 € Z on x is defined as ¢, (v) = v+ o0, and a scale view for a € Z on z is defined
as @, (v) =a-v.

Propagators for integer variables offer a greater degree of freedom concern-
ing their level of completeness. While Boolean propagators most often will be
domain complete, bounds completeness is important for integer propagators. Be-
fore we discuss transformation and generalization techniques for deriving integer
propagators, we study how bounds completeness is affected by views.

Bounds consistency and bounds completeness. There are several different
notions of bounds consistency in the literature (see [4] for an overview). For our
purposes, we distinguish bounds(D), bounds(Z), and bounds(R) consistency:

— A domain d is bounds(D) consistent for a constraint c, iff for all variables x;
there exist v; € d(x;) for all other variables x; such that {z1 — v1,...,2; —
min(d(x;)),...,%n — vy} € ¢ and analogously for z; — max(d(z;)).

— A domain d is bounds(Z) consistent for a constraint ¢, iff for all variables
x;, there exist integers v; with min(d(z;)) < v; < max(d(z;)) for all other
variables z; such that {zy — v1,...,2; — min(d(z;)),..., 2, — vy} € c and
analogously for z; — max(d(z;)).

— A domain d is bounds(R) consistent for a constraint c, iff for all variables
x;, there exist real numbers v; € R with min(d(z;)) < v; < max(d(x;)) for
all other variables z; such that {z1 — v1,...,2; — min(d(z;)),...,z,
vp} € cr and analogously for x; — max(d(z;)), where cg is ¢ relaxed to R
(for constraints like arithmetics where relaxation makes sense).

A propagator p is bounds(X) complete for its associated constraint c,,
iff p(d) is bounds(X) consistent for ¢, for every domain d that is a fix-
point of p. We use an equivalent definition based on the strongest con-
vex domain that contains a constraint, conv(¢) = min{d € Dom | ¢ C
d and d convex}. A convex domain maps each variable to an interval, so that
conv(c)(z) = {minge.(a(z)),...,maxec(a(x))}. Note that conv(c) is weaker
than the strongest domain that contains ¢: conv(c) 2 dom(c) for all constraints
c. In the same way as Benhamou [2] and Maher [9], we define

— p is bounds(D) complete for ¢ iff p(d) C conv(cNd).

— p is bounds(Z) complete for ¢ iff p(d) C conv(c N conv(d)).

— pis bounds(R) complete for ¢ iff p(d) C conv(cg Nconvr(d)), where convg(d)
is the convex hull of d in R, and cg is ¢ relaxed to R.

Bounds completeness of derived propagators. Theorem 4 states that prop-
agators derived from domain complete propagators are domain complete. A sim-
ilar theorem holds for bounds completeness, if views commute with conv(-) in
the following ways:

A view ¢ is interval injective iff ¢~ (conv(c)) = conv(y¢(c)) for all ¢ con-
straints c. It is interval bijective iff it is interval injective and ¢(conv(d)) =
conv(p(d)) for all domains d.

Proving bounds completeness of derived propagators is now similar to proving
domain completeness. We only formulate bounds(Z) completeness.

Theorem 5. If p is bounds(Z) complete for ¢ and ¢ is interval bijective, then

©(p) is bounds(Z) complete for ¢(c). O

Proof. By monotonicity of ¢ and bounds(Z) completeness of p, we know that
v~ opop(d) C ¢ (conv(eNconv(p(d)))). We now use the fact that both ¢ and
@~ commute with conv and intersection:

¢(conv(c N conv(p~1(d)))) = p(conv(cN p~L(conv(d)))) =
conv(p(e N ¢! (conv(d)))) = conv(p(c) N (™ (conv(d)))) =
conv(p(c) Nconv(d))]
The proof for bounds(D) is analogous, but we only require interval injectivity
for the view. With an interval injective view, one can also derive bounds(R) com-

plete propagators from bounds(R) or bounds(Z) complete propagators. Table 1
summarizes how completeness depends on view bijectivity.

Table 1. Completeness of derived propagators

propagator view

interval bijective [interval injective [arbitrary
domain domain domain domain
bounds(D)|| bounds(D) bounds(D) weakly
bounds(Z) bounds(Z) bounds(R) weakly
bounds(R) bounds(R) bounds(R) weakly

The views for integer variables presented at the beginning of this section have
the following properties: minus and offset views are interval bijective, whereas a
scale view for a € Z on z is always interval injective and only interval bijective
if a =1 or a = —1 (in which cases it coincides with the identity view or a minus
view, respectively). An important consequence is that a bounds(Z) complete
propagator for the constraint), x; = ¢, when instantiated with scale views for
the z;, results in a bounds(R) complete propagator for) . a;z; = c.

Transformation. Like the negation view for Boolean variables, minus views for
integer variables help to derive propagators following simple transformations: for
example, min(z,y) = z can be derived from max(x,y) = z by using minus views
for z, y, and z.

Transformations through minus views can improve performance in subtle
ways. Consider a bounds(Z) consistent propagator for multiplication = x y =
z. Propagation depends on whether zero is still included in the domains of =z,
y, or z. Testing for inclusion of zero each time the propagator is executed is
not very efficient. Instead, one would like to rewrite the propagator to special
variants where x, ¢, and z are either strictly positive or negative. These variants
can propagate more efficiently, in particular because propagation can easily be
implemented to be idempotent (see Section 7). Implementing three different
propagators (all variables strictly positive, x or y strictly positive, only z strictly
positive) seems excessive. Here, a single propagator assuming that all views are
positive is sufficient, the others can be derived using minus views.

Generalization. Offset and scale views are useful for generalizing propagators.
Generalization has two key advantages: simplicity and efficiency. A more spe-
cialized propagator is often simpler to implement than a generalized version.
The possibility to use the specialized version when the full power of the general
version is not required may save space and time during execution.

The propagator for a linear equality constraint Y ., ; = ¢ is efficient for the
common case that the linear equation has only unit coefficients. The more general
case » ., a;x; = ¢ can be derived by using scale views for a; on z; (This of
course also holds true for linear inequality and disequality rather than equality).
Similarly, a propagator for alldifferent(z;) can be generalized to alldifferent(c; +
x;) by using offset views for ¢; € Z on z;. Likewise, a propagator for the element
constraint (ci,...,¢,) [z] =y can be generalized to {c1,...,¢,) [x + 0] =y with
an offset view, where o € Z provides a useful offset for the index variable x.
It is important to recall that propagators are derived: in Gecode, the above
generalizations are applied to domain as well as bounds complete propagators.

Specialization. We employ constant views to specialize propagators. A con-
stant view behaves like a fixed variable. In practice, specialization has two ad-
vantages: Fewer variables are needed, which means less space consumption. And
specialized propagators can be compiled to more efficient code, if constants are
known at compile time.

Examples for specialization are a propagator for binary linear inequality x +
y < ¢ derived from a propagator for + y + z < ¢ by using a constant 0 for
z; a Boolean propagator for x Ay < 1 from x Ay < z and constant 1 for
z; a propagator for the element constraint (ci,...,c,)[y] = z derived from a
propagator for (z1,...,z,)[y] = z; a reified propagator for (x = ¢) < b from
(x = y) < b and a constant ¢ for y; a propagator for counting |{i | x; = y}| = ¢
from a propagator for |[{i | ; = y}| = z; and many more.

We have to extend our model to support constant views. Propagators may
now be defined with respect to a superset of the variables, Var’ O Var. A

10

constant view for the value k on a variable z € Var’\ Var translates between
the two sets of variables as follows:

¢~ () ={a)var | a € c}
plc) = {alk/z] [a c ¢}

Here, a[k/z] means augmenting the assignment a so that it maps z to k, and
a|var is the functional restriction of a to the set Var. It is important to see that
this definition preserves failure: if a propagator returns a failed domain d that
maps z to the empty set, then ¢~ (d) is the empty set, too.

Indexicals. Views that perform arithmetic transformations are related to in-
dexicals [3,13]. An indexical is a propagator that prunes a single variable and is
defined in terms of range expressions. A view is similar to an indexical with a
single input variable. However, views are not used to build propagators directly,
but to derive new propagators from existing ones. Allowing the full expressivity
of indexicals for views would imply giving up our completeness results.

Another related concept are arithmetic expressions, which can be used for
modeling in many systems (such as ILOG Solver [10]). In contrast to views, these
expressions are not used for propagation directly and, like indexicals, yield no
completeness guarantees.

6 Set Variables: Channeling

Set constraints deal with variables whose domains are sets of finite sets. This
powerset lattice is a Boolean algebra, so typical constraints are constructed from
the Boolean primitives disjunction (union), conjunction (intersection), and nega-
tion (complement), and the relations equality and implication (subset).

Transformation and Specialization. As for Boolean and integer variables,
views on set variables enable transformation and specialization. Using comple-
ment views (analogous to Boolean negation) on z,y,z with a propagator for
x Ny = z yields a propagator for x Uy = z. A complement view on y gives us
xz\y = z. Constant views like the empty set or the universe enable specialization;
for example, x Ny = z implements set disjointness if z is the constant empty set.

Channeling views. A channeling view changes the type of the values that a
variable can take. Our model already accommodates for this as a view ¢, maps
elements between different sets Val and Val'.

An important channeling view is a singleton view on an integer variable z,
defined as @, (v) = {v}. It presents an integer variable as a singleton set variable.
Many useful constraints involve both integer and set variables, and some of them
can be expressed with singleton views. The simplest constraint is « € y, where x
is an integer variable and y a set variable. Singleton views let us implement it as
{z} C y, and just as easily give us the negated and reified variants. Obviously,
this extends to {z} oy for all other set relations .

11

Singleton views can also be used to derive pure integer constraints from set
propagators. For example, the constraint same([z1, ..., 2], [y1,.-.,Ym]) states
that the two sequences of integer variables take the same values. With singleton
views, U;_,{zi} = Uj~,{y;} implements this constraint.

Channeling between domain implementations. Most systems approxi-
mate finite set domains as convex sets defined by a lower and an upper bound [7].
However, Hawkins et al. [8] introduced a complete representation for the do-
mains of finite set variables using ROBDDs. Channeling views can translate
between interval- and ROBDD-based implementations. We can derive a propa-
gator on ROBDD-based variables from a set-interval propagator, and thus reuse
set-interval propagators for which no efficient ROBDD representation exists.

7 Extended Properties of Derived Propagators

This section discusses how views can be composed, how derived propagators
behave with respect to idempotence and subsumption, and how events can be
used to schedule derived propagators. Finally, we discuss the relation between
views and path consistency.

Composing views. A derived propagator permits further derivation: @(g;’ (p))
for two views , ¢’ is perfectly acceptable, properties like correctness and com-
pleteness carry over. For instance, we can derive a propagator for z —y = ¢ from
a propagator for + y = 0 by combining an offset view and a minus view on y.

Idempotent propagators. A propagator is idempotent iff p(p(d)) = p(d) for
all domains d. Some systems require all propagators to be idempotent, others
apply optimizations if the idempotence of a propagator is known [11]. If a propa-
gator is derived from an idempotent propagator, the result is idempotent again:

= p(d) for a propagator p and a domain d, then, for any
2(p)(d). O

Proof. Function composition is associative, so we can write @(p)(p(p)(d)) as
p - opo(pop)opop(d). We know that oo~ = id for all domains that contain
only assignments on which ¢~ is fully defined, meaning that |¢~(d)| = |d|. As we
first apply ¢, this is the case here, so we can remove o™, leaving ¢~ opopoy(d).
As p is idempotent, this is equivalent to ¢~ o po ¢(d) = @(p)(d). .

Theorem 6. If p(p(d))
view ¢, ¢(p)(2(p)(d)) =

Subsumption. A propagator is subsumed for a domain d iff for all stronger
domains d’ C d, p(d’) = d’. Subsumed propagators do not contribute any prop-
agation in the remaining subtree of the search, and can therefore be removed.
Deciding subsumption is coNP-complete in general, but for most propagators an
approximation can be decided easily. This can be used to optimize propagation.

Theorem 7. p is subsumed by ¢(d) iff p(p) is subsumed by d. o

12

Proof. The definition of ¢ gives us that Vd' C d. ¢~ (p(p(d’))) = d' is equiv-
alent with Vd' C d. ¢~ (p(e(d'))) = ¢ (p(d'). As ¢~ is a function, and
because it is contraction-preserving (see Theorem 3), this is equivalent with
Vd' C d. p(e(d')) = ¢(d"). Because all p(d’) are subsets of ¢(d), we can rewrite
this to Vd" C (d). p(d") = d”, concluding the proof. .

Events. Many systems control propagator invocation using events (for a de-
tailed discussion, see [11]). An event describes how a domain changed. Typi-
cal events for finite domain integer variables are: the variable x becomes fixed
(fix(x)); the lower bound of variable x changes (Ibc(z)); the upper bound of vari-
able = changes (ubc(z)); the domain of variable x changes (dmc(x)). In some
systems, Ibc(x) and ubc(z) are collapsed into one event, be(z) = Ibe(x) Vube(z).
Events are monotone: if events(d,d”) is the set of events occurring when the
domain changes from d to d’ (with d” C d), then we have events(d,d”) =
events(d, d’) U events(d’, d”) for any d’ C d’ C d. Propagators are associated
with event sets: A propagator p depends on an event set es(p) iff

1. for all d if p(d) # p(p(d)), then events(d, p(d)) N es(p) # 0
2. for all d,d’ where p(d) =d, d’ Cd, p(d') # d’, then events(d,d’) N es(p) # 0

If a propagator p depends on es(p), what event set does @(p) depend on? We
can construct a safe approximation of es(p(p)): If fix(z) € es(p), put fix(x) €
es(@(p)). For any other event e € es(p), put dme(z) € es(@(p)). This is correct
because @, is injective. If ¢, is monotone with respect to the order on Val,,
a <b= p;(a) < ¢;(b), we can also use bounds events. If ¢, is anti-monotone
with respect to that order, we have to switch lbc with ubc.

Arc and path consistency. Instead of regarding a view ¢ as transforming a
constraint ¢, we can regard ¢ as additional constraints, implementing the decom-
position. Assuming Var = {z1,...,z,}, we use additional variables i, ..., .
Instead of ¢, we have ¢’ = c[x1/2), ..., z,/x}], which enforces the same relation
as ¢, but on # ...x7,. Finally, we have n view constraints c, ;, each equivalent
to the relation ;(z;) = «. The solutions of the decomposition model, restricted

to the x1...x,, are exactly the solutions of the original view-based model.

Example. Assume the equality constraint ¢ = (x = y). In order to propagate
¢ = (x =y+1), we could use a domain complete propagator p for ¢ and a
view ¢ with ¢, (v) = v, @, (v) = v + 1. The alternative model would be defined
with additional variables 2’ and y’, a view constraint ¢, , for 2’ = z, a view
constraint ¢, , for y' — 1 =y, and c[z/a’, y/y], yielding =’ = y/'. 0

Every view constraint ¢, ; shares exactly one variable with ¢ and no variable
with any other ¢, ;. Thus, the constraint graph is Berge-acyclic, and we can reach
a fixpoint by first propagating all the c, ;, then propagating c[z;/z}, ..., z,/2'n],
and then again propagating the c, ;. This is exactly what ¢~ opo ¢ does. In this
sense, views can be seen as a way for specifying a perfect order of propagation,
which is usually not possible in constraint programming systems.

If $(p) is domain complete for ¢~ (c), then it achieves path consistency for
clzy/xh, ...,z /x),] and all the ¢, ; in the decomposition model.

13

8 Limitations

Although views are widely applicable, they are no silver bullet. This section
explores some limitations of the presented architecture.

Beyond injective views. Views as defined in this paper are required to be
injective. This excludes some interesting views, such as a view for the absolute
value of a variable, or a view of a variable modulo some constant. None of the
basic proofs makes use of injectivity, so non-injective views can be used to derive
(bounds) complete, correct propagators.

However, event handling changes when views are not injective:

— A domain change event on a variable does not necessarily translate to a
domain change event on the view. For instance, given a domain d with d(x) =
{-1,0, 1}, removing the value —1 from z is a domain change event on z, but
not on abs(x).

— A domain change event on a variable may result in a value event on the
view. For instance, removing 0 instead of —1 in the above example results
in d(x) = {—1,1}, but in abs(z) there is only a single value left.

These effects may lead to unnecessary propagtor invocations, or even to in-
correct behavior if a propagator relies on the accuracy of the reported event.
As propagators in Gecode may assume that events are crisp in this sense, we
decided not to allow non-injective views.

Multi-variable views. Some multi-variable views that seem interesting for
practical applications do not preserve contraction, for instance a view on the
sum or product of two variables. The reason is that removing a value through
the view would have to result in removing a tuple of values from the actual
domain. As domains can only represent cartesian products, this is not possible
in general. For views that do not preserve contraction, Theorem 7 does not hold.
That means that a propagator p cannot easily detect subsumption any longer,
as it would have to detect it for @(p) instead of just for itself, p. In Gecode,
propagators report whether they are subsumed, so that they are not considered
for propagation again. This optimization is vital for performance, so we only
allow contraction-preserving views.

For contraction-preserving views on multiple variables, all our theorems still
hold. Some useful views we could identify are

— A set view of Boolean variables [by, ..., b,], behaving like {i | b; = 1}.
— An integer view of Boolean variables [by, ..., by,], where b; is 1 iff the integer
has value i.

— The inverse views of the two views above.

These views are of limited use, and the decomposition approach will probably
work just as well in these cases.

14

Table 2. Applicability of views: number of generic vs. derived propagators

lVariable type“Generic propagators[Derived propagators[Ratio‘

Integer 69 230 3.34
Boolean 23 72| 3.13
Set 24 114| 4.75
Owerall 116 416| 3.59

Propagator invariants. Propagators typically rely on certain invariants of a
variable domain implementation. If idempotence or completeness of a propagator
depend on these invariants, channeling views lead to problems, as the actual
variable implementation behind the view may not respect the same invariants.

For example, a propagator for interval-based finite set variables can assume
that adjusting the lower bound of a variable does not affect its upper bound.
If this propagator is instantiated with a channeling view for an ROBDD-based
set variable, this invariant is violated: if, for instance, the current domain is
{{1,2},{3}}, and you add 1 to the lower bound, the 3 is removed from the
upper bound (in addition to 2 being added to the lower bound). A propagator
that relies on the invariant may lose idempotence.

9 Experiments

Our experiments in [12] showed that deriving propagators using views incurs no
runtime overhead. Here, we present empirical evidence for two more facts: views
are highly applicable in real-world constraint programming systems, and they
are clearly superior to a decomposition-based approach.

Applicability. The Gecode C++ library [5] makes heavy use of views. Table 2
shows the number of generic propagators implemented in Gecode, and the num-
ber of derived instances. On average, every generic propagator results in 3.59
propagator instances. Propagators in Gecode account for more than 40 000 lines
of code and documentation. As a rough estimate, generic propagators with views
save around 100000 lines of code and documentation to be written, tested, and
maintained. On the other hand, the views are implemented in less than 8000
lines of code, yielding a 1250% return on investment.

Views vs. decomposition. In order to relate derived propagators to arc and
path consistency, Sect. 7 decomposed a derived propagator $(p) into additional
variables and propagators for the individual ¢, and p. Of course, one has to ask
why we advertise variable views instead of always using decomposition. Table 3
shows the runtime and space requirements of several benchmarks implemented in
Gecode. The numbers were obtained on a Intel Pentium IV at 2.8 GHz running
Linux and Gecode 2.1.1. The figures illustrate that derived propagators clearly
outperform the decomposition, both in runtime and space.

15

Table 3. Runtime and space comparison: derived propagators vs. decomposition

Benchmark derived decomposed

time (ms)[space (kB)|relative time (%)[relative space (%)
Alpha 91.25 83.22 405.62 167.32
Eq-20 1.37 70.03 613.61 219.95
Queens 100 24.72 2110.00 705.10 103.03
Golf 8-4-9 310.40| 10502.00 211.47 231.64
Steiner triples 9 135.72 957.03 108.38 100.03

10 Conclusion and Future Work

The paper has developed variable views as a technique to derive perfect prop-
agator variants. Such variants are ubiquitous, and the paper has shown how
to systematically derive propagators using techniques such as transformation,
generalization, specialization, and channeling.

We have presented a model of views that allowed us to prove that derived
propagators are indeed perfect: they inherit correctness and domain complete-
ness from their original propagator, and preserve bounds completeness given
additional properties of views.

As witnessed by the empirical evaluation, deriving propagators saves huge
amounts of code to be written and maintained in practice, and is clearly superior
to decomposing constraints into additional variables and simple propagators.

For future work, it will be interesting to investigate how views can be gener-
alized, even if that means that derived propagators are not perfect any more.

Acknowledgements. We thank Mikael Lagerkvist and Gert Smolka for fruitful
discussions about views and helpful comments on a draft of this paper.

References

1. K. Apt. Principles of Constraint Programming. Cambridge University Press, 2003.

2. F. Benhamou. Heterogeneous Constraint Solving. In Proceedings of the fifth Inter-
national Conference on Algebraic and Logic Programming (ALP’96), volume 1139
of LNCS, pages 62-76. Springer, 1996.

3. M. Carlsson, G. Ottosson, and B. Carlson. An open-ended finite domain constraint
solver. In H. Glaser, P. H. Hartel, and H. Kuchen, editors, Programming Languages:
Implementations, Logics, and Programs, 9th International Symposium, PLILP’97,
volume 1292 of LNCS, pages 191-206, Southampton, UK, 1997. Springer.

4. C. W. Choi, W. Harvey, J. H. M. Lee, and P. J. Stuckey. Finite domain bounds
consistency revisited. In A. Sattar and B.-H. Kang, editors, AI 2006: Advances in
Artificial Intelligence, volume 4304 of LNCS, pages 49-58. Springer, 2006.

5. Gecode: Generic constraint development environment, 2008. Available as an open-
source library from www.gecode.org.

6. I. P. Gent, C. Jefferson, and I. Miguel. Watched literals for constraint propagation
in Minion. In F. Benhamou, editor, Twelfth International Conference on Principles

16

10.

11.

12.

13.

and Practice of Constraint Programming, volume 4204 of LNCS, pages 182-197,
Nantes, France, 2006. Springer.

C. Gervet. Interval propagation to reason about sets: Definition and implementa-
tion of a practical language. Constraints, 1(3):191-244, 1997.

P. Hawkins, V. Lagoon, and P. Stuckey. Solving set constraint satisfaction problems
using ROBDDs. J. Artif. Intell. Res. (JAIR), 24:109-156, 2005.

M. J. Maher. Propagation completeness of reactive constraints. In ICLP ’02:
Proceedings of the 18th International Conference on Logic Programming, volume
2401 of LNCS, pages 148-162, London, UK, 2002. Springer.

J.-F. Puget and M. Leconte. Beyond the glass box: Constraints as objects. In
J. Lloyd, editor, Proceedings of the International Symposium on Logic Program-
ming, pages 513-527, Portland, OR, USA, Dec. 1995. The MIT Press.

C. Schulte and P. J. Stuckey. Efficient constraint propagation engines. Transactions
on Programming Languages and Systems, 2008. To appear.

C. Schulte and G. Tack. Views and iterators for generic constraint implementations.
In Recent Advances in Constraints (2005), volume 3978 of LNAI, pages 118-132.
Springer, 2006.

P. Van Hentenryck, V. Saraswat, and Y. Deville. Design, implementation, and
evaluation of the constraint language cc(FD). The Journal of Logic Programming,
37(1-3):139-164, Oct. 1998.

17

