
User guide for Cubint

Christian Müller

November 9, 2004

Abstract

The simply typed λ-calculus (S), system F, Fω and the calculus of construction (CC) offer
a good framework to understand the underlying theory of programming languages. Cubint
is an interpreter for these calculi that lets you play around with examples to deepen your
understanding. This document should provide all the things that you need to know in order
to work with the interpreter.

The first section crash course is intended for the audience of the semantics lecture at the
computer science department of UdS. It offers introductory material that enables students to
use the interpreter in the first few weeks of the lecture.

Contents

1 Crash Course 2
1.1 First Steps . 2
1.2 Untyped λ-Calculus . 2
1.3 Simply Typed λ-Calculus . 3

2 Getting Cubint 4

3 rlwrap or emacs 5

4 Commands 5

5 Expressions 6
5.1 S - Simply Typed λ-Calculus . 6
5.2 F - System F . 7
5.3 Fw - Fω . 7
5.4 CC - Calculus of Construction . 7
5.5 R - Type Reconstruction for Prenex Polymorphism 8
5.6 RG - Type Reconstruction Based on Graphs . 8
5.7 U - Untyped Lambda Cube . 8
5.8 UD - User Defined . 8
5.9 SUB - Subtyping . 8

6 Stepwise Reduction 8

7 Further Readings 9

1

1 Crash Course

1.1 First Steps

Download the pre-compiled package for Windows or Linux from the web page1 and extract the
package with tar xfz cubint linux.tar.gz on Linux or your favourite tool (e.g. WinZip2) on Windows
respectively. Start the interpreter with a double click on the executable (or alternatively ./cubint
on Linux). Type help;<RETURN> for information about available commands.

1.2 Untyped λ-Calculus

To switch to the untyped λ-calculus type switch tm u;<RETURN>. The syntax for untyped terms
is as follows:

calculus interpreter input
x x

λ x.t \x.t
t1 t2 t1 t2

Let’s look at some examples:

• We apply the identity function several times to itself:

(λx.x)(λx.x)(λx.x)

can be fed to the interpreter as

(\x.x) (\x.x) (\x.x)

We can also bind the identity function to the identifier id and apply the identifiers several
times. This is shown in figure 1.

Figure 1: definition and use of id

As you probably noticed there are to binding constructs, namely def and rdef. The first
one only binds a term to an identifier whereas the second one performs β-reduction before
binding.

1http://www.ps.uni-sb.de/ cmueller/cubint.html
2http://www.winzip.de

2

http://www.ps.uni-sb.de/~cmueller/cubint.html
http://www.winzip.de

• Now we define church booleans.

tru = λt.λf.t def tru = \t.\f.t
fls = λt.λf.f def fls = \t.\f.f
test = λl.λm.λn.l m n def test = \l.\m.\n. l m n

On the left hand side you can see the conventional definition in the untyped λ-calculus and
on the right hand side there is the corresponding interpreter input. We use these definitions
in the following examples:

- def v = \x.x;
> def v = <fun> : *
- def w = \x.\y.x;
> def w = <fun> : *
- test tru v w;
> def it = v : *
- rdef result = test fls v w;
> def result = w : *

• As a last example we give a definition of a fixpoint combinator:

λf.(λx.λy.f(xx)y)(λx.λy.f(xx)y)

def Fix = \f.(\x.\y.f (x x) y) (\x.\y.f (x x) y)

If you are not convinced that it works, conduct the following test:

def gauss_sum = Fix (\f.\x.if x<=0 then 0 else x+f(x-1));<RETURN>
gauss_sum 6;<RETURN>

You should get def it = 26.

1.3 Simply Typed λ-Calculus

At the end of the last section we saw that Cubint supports built-in integers. As you know from
the lecture this extension is very error-prone in the untyped calculus, i.e. it is very simple to input
terms whose evaluation get stuck (e.g. 3+(\x.x)). Therefore types are introduced. The syntax
looks as follows:

λcalculus interpreter input
x x

λx : T.t \x:T.t
t1 t2 t1 t2

T → T T->T
Int Int

The λ-abstraction needs a type annotation. Types can be built with ->. Int is the base type
for integers. For a full overview about the syntax look at 5.1.

The interpreter is started in simply typed mode at the beginning. You can also change the
mode on-the-fly by typing switch tm s;<RETURN>.

Let’s look at some basic examples:

• Term definitions work as before:

λf : Int → Int.λx : Int.f x
3

\f:Int->Int.\x:Int.f x

• You also have the possibility to bind types to an identifier and use it in a term:

def T = Int -> Int;
def f = \g:T.\x:Int.g x

This concludes the short overview about the base calculi. The following sections describe the
usage of Cubint in more detail. All available interpreter commands and syntactic entities are listed.
If you need more examples, use the tests library .

2 Getting Cubint

There are to separate packages for Windows and Linux available on the web page3. To start the
interpreter on your Linux machine you have to install mosml4. To recompile the system you need
make5. For Windows users I suggest cygwin6 in this case.

To start the interpreter, use:

./cubint [-lw n] [-s|-f|-fw|-cc|-r|-rg|-u|-ud] [files]

For windows users:

cubint.exe [-lw n] [-s|-f|-fw|-cc|-r|-rg|-u|-ud] [files]

Parameter Meaning
-s simply typed λ-calculus with iso-recursive types, integers, boolean, records,

variants

-f System F, i.e. terms depending on types, with the same extensions as S

-fw Fω, i.e. in addition to F this mode provides type operators

-cc Calculus of Construction, i.e. types may depend on terms

-r ML type reconstruction, i.e. you can leave out type annotations in λ-
abstractions

-rg same as R, but realized with cyclic graphs, so this mode provides equi-recursive
type

-u untyped λ-calculus; expressions are not type checked

-ud user defined mode

-lw n set line width to n characters, default is 80

files arbitrary number of files

All arguments are optional, but the order is significant. If you do not choose a typing mode,
then s will be chosen by default.

3http://www.ps.uni-sb.de/ cmueller/cubint.html
4http://www.dina.dk/ sestoft/mosml.html
5http://www.gnu.org/software/make/
6http://www.cygwin.com

4

http://www.ps.uni-sb.de/~cmueller/data/tests
http://www.ps.uni-sb.de/~cmueller/cubint.html
http://www.dina.dk/~sestoft/mosml.html
http://www.gnu.org/software/make/
http://www.cygwin.com

3 rlwrap or emacs

Of course you want to enjoy features like command line history, parenthesis matching and navi-
gating through an expression with the arrow keys. Suppose you work on a Linux machine, you
have two possibilities to get all these things. First you can install rlwrap7. If you then invoke the
interpreter with rlwrap ./cubint ..., the tool will catch all your input and you can replay it
with the arrow keys. The second possibility is to use the editor emacs8 with sml-mode9. If you
set up emacs for SML, follow these steps:

• Load a file and switch to the SML mode (M-x sml-mode).

• Press CTRL-C + CTRL-B. Now you (hopefully) see an input prompt like ”ML command:
” in the mini-buffer.

• Input here the location of the compiled interpreter and press ENTER.

• Answer ”Any Args: ” with any of the arguments listed in section 2 and press ENTER.

• Now the content of the buffer is passed to the interpreter and you can go on working with it
in the usual sml-mode fashion.

This approach also work with Emacs on Windows. Alternatively you can use the Windows XP shell
that offers a command line history which also works in the interpreter. To input more complicated
expressions use an arbitrary text editor and load the file with use "file" (cf. section 4).

4 Commands

The following commands are available in the toplevel environment:

Command Description
def id = expression binds the expression to id. The expression is type checked but

not evaluated. Therefore this command is good to define abbre-
viations for types. If a β redex is found, it is marked.

rdef id = expression binds the type checked and reduced expression to id. So this is
the usual way to bind terms.

rstep expression performs one evaluation step on expression and binds it to the
default identifier it.

protocol e outputs an execution protocol of the expression e.

equiv E1, E2 checks whether E1 and E2 are equal modulo full (!!!) β-reduction.

use "filename" loads a file into the interpreter

exit exits the interpreter (CTRL+D on Linux has the same effect)
help shows some information about the commands

To pass these commands to the interpreter, type ”<command>; <RETURN>”.

Furthermore there is the possibility to enter an expression at the toplevel. This is an abbrevi-
ation for ”rdef it = exp”. If you only type ”rstep”, then the interpreter tries to perform an
evaluation step on the expression bound to it. Further abbreviations are ”def id = rstep” and
”def id = rstep expression”. You can find a short example in section 6.

To change the behaviour of the interpreter use the switch command. The following alternatives
are available:

7http://freshmeat.net/projects/rlwrap/
8http://www.gnu.org/software/emacs/emacs.html
9http://www.smlnj.org/doc/Emacs/sml-mode.html

5

http://freshmeat.net/projects/rlwrap/
http://www.gnu.org/software/emacs/emacs.html
http://www.smlnj.org/doc/Emacs/sml-mode.html

Command Description
switch pm o changes the pretty printer to opaque output, i.e. hide definitions

switch pm t switches the pretty printer to transparent output to expose defi-
nitions.

switch pm ows changes the pretty printer to opaque output and tries in addi-
tion to synchronise the expressions with the environment. This
check requires full β-reduction and might therefore diverge in some
cases.

switch pm terms outputs only terms but no types.

switch pm types outputs only types but no terms.

switch pm all switches back to default to see both terms and terms.

switch tm s switches the typing mode to s. Replace s by
f, fw, cc, un, r, rg to switch to another mode.
switch [no]sub enables or disables subtyping

Note: On switching the environment, it is always modified so that it only contains definitions
which are well typed in the new mode.

5 Expressions

In the directory tests you can find some files that provide example declarations for the different
modes. They might offer a quick overview about the syntax of s, f, fw, cc, r, rg, un. The
following will give you an overview of the syntax starting with S. For all the other calculi only the
extensions are explained.

5.1 S - Simply Typed λ-Calculus

The following constructs are available in the simply typed mode:

Expression Syntax Note

λx : E1.E2 \x :E1.E2 abstraction

ΠX : E1.E2 pi X:E1.E2 quantification
E1 → E2 E1->E2 type, abbreviation for Π:E1.E2

µX.E mu X.E built-in iso-recursive types

E1 E2 application

fold E1 E2 folds the iso-recursive type of E2 once accord-
ing to E1

unfold E1 E2 unfolds the iso-recursive type E1 of E2 once

x identifier (a . . . z|A . . . Z|′)(|a . . . z|A . . . Z|0 . . . 9|′)∗

~12+3**(5-4) built-in integers and all available arithmetic
operations on them

3=3 comparison on integers,
further operators are <<,<=, >>, >=, <>
(unequal)

true and false boolean values

not E negation of boolean values

6

http://www.ps.uni-sb.de/~cmueller/data/tests

Expression Syntax Note

unit unit value

Int, Bool, Unit built-in base types

if E1 then E2 else E3 conditional

E1 as E2 ascription; both expressions must be atomic

{x=E1,y=E2} records

record@field record projection

{x:E1,y:E2} record types

<x=E1> as E2 variant

<x:E1,y:e2> variant types

case E of
<l1=x1> => E1
| ... | <ln=xn> => En

case construct to access a value inside a vari-
ant; due to the uniform syntax you have to
put parentheses around E1,. . . ,En except for
atomic and arithmetic expressions.

ref E creates a reference for E

!E dereferences E

E1 := E2 assignment

let x=E1 in E2 let expression, but only terms can be bound

Be aware of the operator for multiplication **, the smaller test << and the greater test >> that are
somewhat unconventional. In S,F and Fw records and variants can only contain terms. Moreover
a label cannot be used more than once in the same expression.
An expression sequence (E1;...;En) is available as syntactic sugar. The sequence (E1;E2) is
transformed into an application (\x:Unit.E2) E1. Therefore type errors in a sequence might be
a bit inconvenient. A expression sequence is useful when you are working with references.

5.2 F - System F

In addition to S terms may depend on types and you have universally quantified types. This is
expressed in the following way:

Expression Syntax Note
λX.E \X .E type abstraction
∀X.E \/X.E the type of a type abstraction

(abbreviation n for ΠX : E1.E2)

5.3 Fw - Fω

Type operators are available, i.e. types may be abstracted out of types. Additionally the notion
of kinds is introduced. Kinds are the types of types.

Expression Syntax Note
? * base kind ?
λx : E1.E2 \x :E1.E2 E1 might be a kind like ? → ?
∀X : E1.E2 \/X:E1.E2 E1 might be a kind like ? → ?

5.4 CC - Calculus of Construction

This is the richest available calculus. Now you can abstract terms out of types. The syn-
tax does not change. if and case can be used on type level, i.e. you can write things like

7

if E then Int else Bool. Records and variants can contain both terms and types at the same
time. There is a syntactic sugared version of Πx : Int.T , namely (x :: Int) → T .

5.5 R - Type Reconstruction for Prenex Polymorphism

Expression Syntax Note
λx.E \x .E2 blank lambda abstraction
λf : α → β.E \f :’a->’b.E use of free type variables

Do not confuse the blank lambda abstraction with the abbreviation in F, Fw and CC or the
abstraction in untyped mode. There is the possibility to annotate a term with free type variables
and all types from S mode. Therefore the expression \x.E can be seen as an abbreviation for
\x:’a.E where ’a is not used in the enclosing context.
This mode does not offer the full functionality of the previous ones. It consists of the basic elements
which are lambda abstraction, application and variables. Additionally all basic types, terms and
operations are integrated, i.e. numbers, boolean, unit, +,-, if-expression, Records are also
available. However be aware that these are different from the other constructs in an important
way: the constraint typing algorithm may fail if there is a wrong projection.
As a challenge you can try to implement further constructs. Variants are for example very similar
to records.

5.6 RG - Type Reconstruction Based on Graphs

In RG there are equi-recursive types. So you do not have to annotate terms with self application
with a fold or unfold expression, i.e. the expression λx.x x is type correct and gets the type:

- \x. x x;
> def it = <fun> : (mu A.A->’a)->’a

In the other respects the mode is just the same as R (but records are not available).
Iso-recursive types, let expressions, records, variants and references are not integrated into this
mode.

5.7 U - Untyped Lambda Cube

In this mode the type checker is switched off. Type annotations are ignored. So it is permitted to
input senseless expressions without any kind of error message. But of course this will often lead
to stuck terms which cannot evaluated further.

5.8 UD - User Defined

In this mode the type checker and evaluator are set to the user’s implementation. The user
may implement the functions in UserCheckEval.sml. You can find explanation and an example
implementation in this file in the directory src of the Cubint package.

5.9 SUB - Subtyping

This mode provides subtyping for variants and records and can be enabled in the typing modes
s,f,fw and cc. There is no Top type integrated in the calculus. Therefore the interpreter does
not accept input like if true then 3 else true as a value of type Top is not very valuable. In
subtyping mode you can leave out the variant ascription.

6 Stepwise Reduction

In figure 2 is a short example for stepwise evaluation. As you can see, the redex is always underlined
and if you want to evaluate the identifier to a value, simply pass the variable to the interpreter.
Be aware that in transparent mode the output for complicated terms, e.g. a fixpoint computation,
is in general very complex.

8

- def inc = \x:Int.x+1;
> def inc = <fun> : Int->Int
- def s = inc (inc (if 3+1<=4 then 2 else ~1));
> def s = inc (inc (if 3+1<=4 then 2 else ~1)) : Int

^^^
- rstep s;
> def it = inc (inc (if 4<=4 then 2 else ~1)) : Int

^^^^
- def s’ = rstep;
> def s’ = inc (inc (if true then 2 else ~1)) : Int

^^^^^^^^^^^^^^^^^^^^^^
- rstep s’;
> def it = inc (inc 2) : Int

^^^^^
- rstep;
> def it = inc (2+1) : Int

^^^
- it;
> def it = 4 : Int
-

Figure 2: illustration of the stepping mode

7 Further Readings

The examples in directory tests might offer you further insight to the usage of Cubint. More
information can be found in final report.pdf. This document explains the design decisions for
Cubint, which helps to understand possibly unexpected behaviour of the interpreter.

9

http://www.ps.uni-sb.de/~cmueller/data/tests

	Crash Course
	First Steps
	Untyped -Calculus
	Simply Typed -Calculus

	Getting Cubint
	rlwrap or emacs
	Commands
	Expressions
	S - Simply Typed -Calculus
	F - System F
	Fw - F
	CC - Calculus of Construction
	R - Type Reconstruction for Prenex Polymorphism
	RG - Type Reconstruction Based on Graphs
	U - Untyped Lambda Cube
	UD - User Defined
	SUB - Subtyping

	Stepwise Reduction
	Further Readings

