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Overview: Next 30 minutes
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2. Our Approach to Modal Logic

3. Our Decision Procedure

4. Conclusion
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Why Modal Logic?

0 Many applications in computer science

◦ Temporal Logic: Software Verification (A. Pnueli)

◦ Description Logic: Artificial Intelligence, Information Retrieval

0 Logical interest

◦ Model theory, frame definability etc.
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Some Modal Formulas

0 Propositional Dynamic Logic

〈(x := 8 | x := 10) ; (x := x mod 2)〉(x = 0)

0 Linear-Time Temporal Logic

#( 2(x > 9) ∧ 3(x = 13) )

0 Hybrid Logic
↓x.@u.222x
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Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications

◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification

◦ Partly internalized by standard translations
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Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications
◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification
◦ Partly internalized by standard translations

comfort of modal reasoning ! coherence of classical logic

Trade-off necessary?
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Our Logical Base

0 Simply-typed lambda calculus

◦ Higher-order abstract syntax

◦ Standard semantics

0 First-order predicate logic

0 Equational deduction
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Specification ML

Base Types B,V

Constants 0, 1 : B

¬ : B → B

∧,∨ : B → B → B

∀,∃ : (V → B) → B

=̇ : V → V → B

R : V → V → B

Axioms See [Smo06]

Propositional variables f, g : V → B
Names u, v (either variables x, y : V or parameters a, b : V)
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Modal Operators

Specification includes derived modal operators:

2xf = ∀y.¬(Rxy) ∨ fy

2u(λx.t) “At u, all direct successors x satisfy t.”

3xf = ∃y.Rxy ∧ fy

3u(λx.t) “At u, some direct successor x satisfies t.”
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Traditional Modal Syntax Becomes Notation

0 Fix single variable as point of evaluation

π : V

0 Specialize variables and operators

f̊
def
= fπ

2̊t
def
= 2π(λπ.t)
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We can define traditional modal logics:

t, t′ ∈ K def
= f̊ | ¬t | t ∧ t′ | 2̊t

Our minimal modal fragment:

t, t′ ∈MF def
= fu | ¬t | t ∧ t′ | 2u(λx.t)
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0 Certain formulas in MF do not have an equivalent in K

fa ∧ ¬(fb)

0 MF already provides naming and binding!

; Hybrid Logic
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Hybrid Logic

0 Introduces naming, binding and identity to modal logic

0 Early work by Arthur Prior in the 1960’s

0 Modern formulations active research topic in modal logic
since the 1990’s

◦ Areces, Blackburn

◦ Horrocks (Description Logic)
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0 Nominals
ů

def
= π=̇u

0 Satisfaction-Operator

@u.t
def
= (λπ.t)u

0 Down-Operator

↓x.t
def
= (λx.t)π

t, t′ ∈ HL(@, ↓) def
= f̊ | ů | ¬t | t ∧ t′ | 2̊t | @u.t |↓x.t
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Our equivalent:

t, t′ ∈MFI def
= fu | u=̇v | ¬t | t ∧ t′ | 2u(λx.t)

0 Introduces only =̇ to MF

0 HL(@, ↓) maps into MFI via β-reduction

0 Inverse mapping [H]
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0 HL(@, ↓) undecidable [tF05]

0 HL(@) PSPACE-complete [ABM99]

t, t′ ∈ HL(@)
def
= f̊ | å | ¬t | t ∧ t′ | 2̊t | @a.t

No ↓-operator in MFI. How to restrict MFI?
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0 Quasi-Monadicity
Each subterm u=̇v contains a parameter

0 Monadicity
Quasi-M. + Modal operators do not have nested scope

Not quasi-monadic 3a(λx.3x(λy.y=̇x))

Not monadic 2a(λx.3b(λy.fx))

Monadic 3a(λx.fx ∧3b(λx.fx))

Prop For each quasi-monadic formula, we can compute an
equivalent monadic formula.
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Monadic MFI

MFI1
def
= {t ∈MFI | t monadic}

0 HL(@) maps into MFI1 via β-reduction

0 Inverse mapping [H]

Want decision procedure for MFI1
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Decision Procedure

Data structure: Clause
finite set of formulas in NNF, interpreted conjunctively

Purely monadic clause closed monadic formulas

Monadic clause monadic formulas plus “edges” Ruv

Is a purely monadic clause satisfiable?

Find out by saturation: C → C ∪ {s}
Meaningful information s inferred from C
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Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.
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Thm Saturated monadic clauses are satisfiable.

0 Given saturated clause, construct a satisfying interpretation

0 Difficulty: Weak identity conditions!
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Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise
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Wanted: Key Properties

Soundness If C → D don’t care, then C is satisfiable if and
only if D is satisfiable.
If C → D1, D2 don’t know, then C is satisfiable
if and only if D1 is satisfiable or D2 is satisfiable.

Completeness If C cannot be extended by a saturation rule,
then C is satisfiable iff it is not trivial.

Termination No infinite path C0 → C1 → C2 → . . .
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Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?
0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)
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Termination: Observation

Partition clause C (excluding edges) into
Ca = {t ∈ C | t closed}
Cx = {t ∈ C | FVt = {x}} for each x ∈ FVC

0 Degree degC = maxt∈C |t| does not increase

0 When applying (C3), resulting in a new variable x

◦ We have a unique term 3ut that “justifies” x

◦ We receive witness {Rux, t↓x}

◦ If t ∈ Cx, then there is s ∈ Cu with |t| < |s|
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Central Invariants: Admissibility

C is n-admissible if

1. C is monadic and degC ≤ n.

2. If Rux ∈ C, then degCu > degCx.

3. ϕ is injective and
∀x ∈ FVC : ∃u, t : ϕx = 3ut ∧ {Rux, t↓x} ⊆ C
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0 Prove n-admissibility is preserved by saturation

0 Obtain exponential bound on the size of n-admissible
clauses

0 Purely monadic clause C is degC-admissible

Thm By means of saturation we can decide whether or not a
purely monadic clause is satisfiable.
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Conclusion: Modal Logic

0 Traditional modal syntax & semantics we still consider
harmful

0 First-order predicate logic as such syntactically too weak to
cope with modal logic

Higher-order syntax + First-order predicate logic
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Conclusion: Decision Procedure

0 Local termination arguments & no external data structures
as opposed to [Tza99, BB05].

0 Fully internal deduction as in [Bla00], but still explicit
access relation

0 Fewer and simpler rules for identities

Our approach: Appropriate for decision procedures!
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Further Work

0 Generalizing modal logics in our system, e.g., complex
relational argument (subsumes universal modalities):

3(λxλy.1)af

0 Space optimal saturation algorithm for MFI1

◦ Previous results not saturation-based
◦ Our PSPACE saturation algorithm submitted to HyLo 2006

0 More about decision procedures
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Thank you for your attention!
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In J. Flum and M. Rodŕıguez-Artalejo, editors,
Computer Science Logic, number 1683 in
LNCS, pages 307–321. Springer, 1999.

Thomas Bolander and Torben Bräuner.
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