
Introduction Modal Logic Decision Procedure Conclusion

U
N
IVE

RSITA

S

S
A

R
A V I E N

S
I
S

Computer Science · Saarland University

June 1, 2006

Bachelor’s Thesis: Hybrid Logic Revisited
Final Talk by Moritz Hardt

Advisor: Prof. Dr. Gert Smolka
Programming Systems Lab

Winter Term 2005/2006

Introduction Modal Logic Decision Procedure Conclusion

Overview: Next 30 minutes

1. Motivation

2. Our Approach to Modal Logic

3. Our Decision Procedure

4. Conclusion

Introduction Modal Logic Decision Procedure Conclusion

Why Modal Logic?

0 Many applications in computer science

◦ Temporal Logic: Software Verification (A. Pnueli)

◦ Description Logic: Artificial Intelligence, Information Retrieval

0 Logical interest

◦ Model theory, frame definability etc.

Introduction Modal Logic Decision Procedure Conclusion

Some Modal Formulas

0 Propositional Dynamic Logic

〈(x := 8 | x := 10) ; (x := x mod 2)〉(x = 0)

0 Linear-Time Temporal Logic

#(2(x > 9) ∧ 3(x = 13))

0 Hybrid Logic
↓x.@u.222x

Introduction Modal Logic Decision Procedure Conclusion

Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications

◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification

◦ Partly internalized by standard translations

Introduction Modal Logic Decision Procedure Conclusion

Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications
◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification
◦ Partly internalized by standard translations

Introduction Modal Logic Decision Procedure Conclusion

Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications
◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification
◦ Partly internalized by standard translations

comfort of modal reasoning ! coherence of classical logic

Introduction Modal Logic Decision Procedure Conclusion

Modal Logic Considered Non-Classical

0 Ad-hoc syntax

◦ Nice for applications
◦ Frequently eliminated by standard translations

0 Kripke semantics [Kri63]

◦ Meta-level names and quantification
◦ Partly internalized by standard translations

comfort of modal reasoning ! coherence of classical logic

Trade-off necessary?

Introduction Modal Logic Decision Procedure Conclusion

Our Logical Base

0 Simply-typed lambda calculus

◦ Higher-order abstract syntax

◦ Standard semantics

0 First-order predicate logic

0 Equational deduction

Introduction Modal Logic Decision Procedure Conclusion

Specification ML

Base Types B,V

Constants 0, 1 : B

¬ : B → B

∧,∨ : B → B → B

∀,∃ : (V → B) → B

=̇ : V → V → B

R : V → V → B

Axioms See [Smo06]

Propositional variables f, g : V → B
Names u, v (either variables x, y : V or parameters a, b : V)

Introduction Modal Logic Decision Procedure Conclusion

Modal Operators

Specification includes derived modal operators:

2xf = ∀y.¬(Rxy) ∨ fy

2u(λx.t) “At u, all direct successors x satisfy t.”

3xf = ∃y.Rxy ∧ fy

3u(λx.t) “At u, some direct successor x satisfies t.”

Introduction Modal Logic Decision Procedure Conclusion

Modal Operators

Specification includes derived modal operators:

2xf = ∀y.¬(Rxy) ∨ fy

2u(λx.t) “At u, all direct successors x satisfy t.”

3xf = ∃y.Rxy ∧ fy

3u(λx.t) “At u, some direct successor x satisfies t.”

Introduction Modal Logic Decision Procedure Conclusion

Traditional Modal Syntax Becomes Notation

0 Fix single variable as point of evaluation

π : V

0 Specialize variables and operators

f̊
def
= fπ

2̊t
def
= 2π(λπ.t)

Introduction Modal Logic Decision Procedure Conclusion

We can define traditional modal logics:

t, t′ ∈ K def
= f̊ | ¬t | t ∧ t′ | 2̊t

Our minimal modal fragment:

t, t′ ∈MF def
= fu | ¬t | t ∧ t′ | 2u(λx.t)

Introduction Modal Logic Decision Procedure Conclusion

0 Certain formulas in MF do not have an equivalent in K

fa ∧ ¬(fb)

0 MF already provides naming and binding!

; Hybrid Logic

Introduction Modal Logic Decision Procedure Conclusion

Hybrid Logic

0 Introduces naming, binding and identity to modal logic

0 Early work by Arthur Prior in the 1960’s

0 Modern formulations active research topic in modal logic
since the 1990’s

◦ Areces, Blackburn

◦ Horrocks (Description Logic)

Introduction Modal Logic Decision Procedure Conclusion

0 Nominals
ů

def
= π=̇u

0 Satisfaction-Operator

@u.t
def
= (λπ.t)u

0 Down-Operator

↓x.t
def
= (λx.t)π

t, t′ ∈ HL(@, ↓) def
= f̊ | ů | ¬t | t ∧ t′ | 2̊t | @u.t |↓x.t

Introduction Modal Logic Decision Procedure Conclusion

Our equivalent:

t, t′ ∈MFI def
= fu | u=̇v | ¬t | t ∧ t′ | 2u(λx.t)

0 Introduces only =̇ to MF

0 HL(@, ↓) maps into MFI via β-reduction

0 Inverse mapping [H]

Introduction Modal Logic Decision Procedure Conclusion

0 HL(@, ↓) undecidable [tF05]

0 HL(@) PSPACE-complete [ABM99]

t, t′ ∈ HL(@)
def
= f̊ | å | ¬t | t ∧ t′ | 2̊t | @a.t

No ↓-operator in MFI. How to restrict MFI?

Introduction Modal Logic Decision Procedure Conclusion

0 HL(@, ↓) undecidable [tF05]

0 HL(@) PSPACE-complete [ABM99]

t, t′ ∈ HL(@)
def
= f̊ | å | ¬t | t ∧ t′ | 2̊t | @a.t

No ↓-operator in MFI. How to restrict MFI?

Introduction Modal Logic Decision Procedure Conclusion

0 Quasi-Monadicity
Each subterm u=̇v contains a parameter

0 Monadicity
Quasi-M. + Modal operators do not have nested scope

Introduction Modal Logic Decision Procedure Conclusion

0 Quasi-Monadicity
Each subterm u=̇v contains a parameter

0 Monadicity
Quasi-M. + Modal operators do not have nested scope

Introduction Modal Logic Decision Procedure Conclusion

0 Quasi-Monadicity
Each subterm u=̇v contains a parameter

0 Monadicity
Quasi-M. + Modal operators do not have nested scope

Not quasi-monadic 3a(λx.3x(λy.y=̇x))

Not monadic 2a(λx.3b(λy.fx))

Monadic 3a(λx.fx ∧3b(λx.fx))

Introduction Modal Logic Decision Procedure Conclusion

0 Quasi-Monadicity
Each subterm u=̇v contains a parameter

0 Monadicity
Quasi-M. + Modal operators do not have nested scope

Not quasi-monadic 3a(λx.3x(λy.y=̇x))

Not monadic 2a(λx.3b(λy.fx))

Monadic 3a(λx.fx ∧3b(λx.fx))

Prop For each quasi-monadic formula, we can compute an
equivalent monadic formula.

Introduction Modal Logic Decision Procedure Conclusion

Monadic MFI

MFI1
def
= {t ∈MFI | t monadic}

0 HL(@) maps into MFI1 via β-reduction

0 Inverse mapping [H]

Want decision procedure for MFI1

Introduction Modal Logic Decision Procedure Conclusion

Monadic MFI

MFI1
def
= {t ∈MFI | t monadic}

0 HL(@) maps into MFI1 via β-reduction

0 Inverse mapping [H]

Want decision procedure for MFI1

Introduction Modal Logic Decision Procedure Conclusion

Decision Procedure

Data structure: Clause
finite set of formulas in NNF, interpreted conjunctively

Purely monadic clause closed monadic formulas

Monadic clause monadic formulas plus “edges” Ruv

Is a purely monadic clause satisfiable?

Find out by saturation: C → C ∪ {s}
Meaningful information s inferred from C

Introduction Modal Logic Decision Procedure Conclusion

Decision Procedure

Data structure: Clause
finite set of formulas in NNF, interpreted conjunctively

Purely monadic clause closed monadic formulas

Monadic clause monadic formulas plus “edges” Ruv

Is a purely monadic clause satisfiable?

Find out by saturation: C → C ∪ {s}
Meaningful information s inferred from C

Introduction Modal Logic Decision Procedure Conclusion

Decision Procedure

Data structure: Clause
finite set of formulas in NNF, interpreted conjunctively

Purely monadic clause closed monadic formulas

Monadic clause monadic formulas plus “edges” Ruv

Is a purely monadic clause satisfiable?

Find out by saturation: C → C ∪ {s}
Meaningful information s inferred from C

Introduction Modal Logic Decision Procedure Conclusion

Decision Procedure

Data structure: Clause
finite set of formulas in NNF, interpreted conjunctively

Purely monadic clause closed monadic formulas

Monadic clause monadic formulas plus “edges” Ruv

Is a purely monadic clause satisfiable?

Find out by saturation: C → C ∪ {s}
Meaningful information s inferred from C

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

(Sc) C is not trivial (no t,¬t or ¬(t=̇t) in C)

(S∧) If s ∧ t ∈ C, then {s, t} ⊆ C.

(S∨) If s ∨ t ∈ C, then s ∈ C or t ∈ C.

(S3) If 3ut ∈ C, then {Rux, t↓x} ⊆ C for some x.

(S2) If 2ut ∈ C and Ruv ∈ C, then t↓v ∈ C.

(Ss
=̇) If u=̇v ∈ C, then v=̇u ∈ C.

(S=̇) If u=̇a ∈ C and t ∈ C, then t[u := a] ∈ C.

Introduction Modal Logic Decision Procedure Conclusion

Model Existence

Thm Saturated monadic clauses are satisfiable.

0 Given saturated clause, construct a satisfying interpretation

0 Difficulty: Weak identity conditions!

Introduction Modal Logic Decision Procedure Conclusion

Model Existence

Thm Saturated monadic clauses are satisfiable.

0 Given saturated clause, construct a satisfying interpretation

0 Difficulty: Weak identity conditions!

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Computational Counterpart: Saturation Rules

(C∧) If s ∧ t ∈ C, add s and t.

(C∨) If s ∨ t ∈ C and s 6∈ C, t 6∈ C, add s or t.

(C3) If 3ut ∈ C and 3ut not expanded in C, add Rux
and t↓x for fresh x.

(C2) If 2ut ∈ C and Ruv ∈ C, add t↓v.

(Cs
=̇) If u=̇v ∈ C, add v=̇u.

(C=̇) If u=̇a ∈ C and t ∈ C, add t[u := a].

C → D iff C ⊂ D and D is obtained from C
by applying one saturation rule

C → D1, D2 don’t know if applied (C∨),
C → D don’t care otherwise

Introduction Modal Logic Decision Procedure Conclusion

Wanted: Key Properties

Soundness If C → D don’t care, then C is satisfiable if and
only if D is satisfiable.
If C → D1, D2 don’t know, then C is satisfiable
if and only if D1 is satisfiable or D2 is satisfiable.

Completeness If C cannot be extended by a saturation rule,
then C is satisfiable iff it is not trivial.

Termination No infinite path C0 → C1 → C2 → . . .

Introduction Modal Logic Decision Procedure Conclusion

Wanted: Key Properties

Soundness If C → D don’t care, then C is satisfiable if and
only if D is satisfiable.
If C → D1, D2 don’t know, then C is satisfiable
if and only if D1 is satisfiable or D2 is satisfiable.

Completeness If C cannot be extended by a saturation rule,
then C is satisfiable iff it is not trivial.

Termination No infinite path C0 → C1 → C2 → . . .

Introduction Modal Logic Decision Procedure Conclusion

Wanted: Key Properties

Soundness If C → D don’t care, then C is satisfiable if and
only if D is satisfiable.
If C → D1, D2 don’t know, then C is satisfiable
if and only if D1 is satisfiable or D2 is satisfiable.

Completeness If C cannot be extended by a saturation rule,
then C is satisfiable iff it is not trivial.

Termination No infinite path C0 → C1 → C2 → . . .

Introduction Modal Logic Decision Procedure Conclusion

Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?
0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)

Introduction Modal Logic Decision Procedure Conclusion

Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?
0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)

Introduction Modal Logic Decision Procedure Conclusion

Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?

0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)

Introduction Modal Logic Decision Procedure Conclusion

Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?
0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)

Introduction Modal Logic Decision Procedure Conclusion

Checking Key Properties

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule!
If trivial, then not satisfiable
If not trivial, then saturated, thus satisfiable by
Model Existence

Termination ?
0 Saturation increases clause size, how to obtain a bound?

0 Bound the number of variables introduced by (C3)

Introduction Modal Logic Decision Procedure Conclusion

Termination: Observation

Partition clause C (excluding edges) into
Ca = {t ∈ C | t closed}
Cx = {t ∈ C | FVt = {x}} for each x ∈ FVC

0 Degree degC = maxt∈C |t| does not increase

0 When applying (C3), resulting in a new variable x

◦ We have a unique term 3ut that “justifies” x

◦ We receive witness {Rux, t↓x}

◦ If t ∈ Cx, then there is s ∈ Cu with |t| < |s|

Introduction Modal Logic Decision Procedure Conclusion

Termination: Observation

Partition clause C (excluding edges) into
Ca = {t ∈ C | t closed}
Cx = {t ∈ C | FVt = {x}} for each x ∈ FVC

0 Degree degC = maxt∈C |t| does not increase

0 When applying (C3), resulting in a new variable x

◦ We have a unique term 3ut that “justifies” x

◦ We receive witness {Rux, t↓x}

◦ If t ∈ Cx, then there is s ∈ Cu with |t| < |s|

Introduction Modal Logic Decision Procedure Conclusion

Termination: Observation

Partition clause C (excluding edges) into
Ca = {t ∈ C | t closed}
Cx = {t ∈ C | FVt = {x}} for each x ∈ FVC

0 Degree degC = maxt∈C |t| does not increase

0 When applying (C3), resulting in a new variable x

◦ We have a unique term 3ut that “justifies” x

◦ We receive witness {Rux, t↓x}

◦ If t ∈ Cx, then there is s ∈ Cu with |t| < |s|

Introduction Modal Logic Decision Procedure Conclusion

Termination: Observation

Partition clause C (excluding edges) into
Ca = {t ∈ C | t closed}
Cx = {t ∈ C | FVt = {x}} for each x ∈ FVC

0 Degree degC = maxt∈C |t| does not increase

0 When applying (C3), resulting in a new variable x

◦ We have a unique term 3ut that “justifies” x

◦ We receive witness {Rux, t↓x}

◦ If t ∈ Cx, then there is s ∈ Cu with |t| < |s|

Introduction Modal Logic Decision Procedure Conclusion

Central Invariants: Admissibility

C is n-admissible if

1. C is monadic and degC ≤ n.

2. If Rux ∈ C, then degCu > degCx.

3. ϕ is injective and
∀x ∈ FVC : ∃u, t : ϕx = 3ut ∧ {Rux, t↓x} ⊆ C

Introduction Modal Logic Decision Procedure Conclusion

Central Invariants: Admissibility

C is n-admissible if

1. C is monadic and degC ≤ n.

2. If Rux ∈ C, then degCu > degCx.

3. ϕ is injective and
∀x ∈ FVC : ∃u, t : ϕx = 3ut ∧ {Rux, t↓x} ⊆ C

Introduction Modal Logic Decision Procedure Conclusion

Central Invariants: Admissibility

C is n-admissible if there is ϕ ∈ FVC → C such that

1. C is monadic and degC ≤ n.

2. If Rux ∈ C, then degCu > degCx.

3. ϕ is injective and
∀x ∈ FVC : ∃u, t : ϕx = 3ut ∧ {Rux, t↓x} ⊆ C

Introduction Modal Logic Decision Procedure Conclusion

Ca

Cx Cx′

deg Ca

deg Cx

deg Cy

>

R
ax

R
ax ′

R
xy

>

Cy

C

Introduction Modal Logic Decision Procedure Conclusion

Ca

Cx Cx′

ϕϕ
deg Ca

deg Cx

deg Cy

>

R
ax

R
ax ′

R
xy

>

Cy

!xs

C

!at !=!at′

Introduction Modal Logic Decision Procedure Conclusion

Ca

Cx Cx′

ϕϕ
deg Ca

deg Cx

deg Cy

>

R
ax

R
ax ′

R
xy

>

Cy

!xs

C

!at !=!at′

(C=̇)

Introduction Modal Logic Decision Procedure Conclusion

0 Prove n-admissibility is preserved by saturation

0 Obtain exponential bound on the size of n-admissible
clauses

0 Purely monadic clause C is degC-admissible

Thm By means of saturation we can decide whether or not a
purely monadic clause is satisfiable.

Introduction Modal Logic Decision Procedure Conclusion

Conclusion: Modal Logic

0 Traditional modal syntax & semantics we still consider
harmful

0 First-order predicate logic as such syntactically too weak to
cope with modal logic

Higher-order syntax + First-order predicate logic

Introduction Modal Logic Decision Procedure Conclusion

Conclusion: Modal Logic

0 Traditional modal syntax & semantics we still consider
harmful

0 First-order predicate logic as such syntactically too weak to
cope with modal logic

Higher-order syntax + First-order predicate logic

Introduction Modal Logic Decision Procedure Conclusion

Conclusion: Decision Procedure

0 Local termination arguments & no external data structures
as opposed to [Tza99, BB05].

0 Fully internal deduction as in [Bla00], but still explicit
access relation

0 Fewer and simpler rules for identities

Our approach: Appropriate for decision procedures!

Introduction Modal Logic Decision Procedure Conclusion

Conclusion: Decision Procedure

0 Local termination arguments & no external data structures
as opposed to [Tza99, BB05].

0 Fully internal deduction as in [Bla00], but still explicit
access relation

0 Fewer and simpler rules for identities

Our approach: Appropriate for decision procedures!

Introduction Modal Logic Decision Procedure Conclusion

Further Work

0 Generalizing modal logics in our system, e.g., complex
relational argument (subsumes universal modalities):

3(λxλy.1)af

0 Space optimal saturation algorithm for MFI1

◦ Previous results not saturation-based
◦ Our PSPACE saturation algorithm submitted to HyLo 2006

0 More about decision procedures

Introduction Modal Logic Decision Procedure Conclusion

Thank you for your attention!

Introduction Modal Logic Decision Procedure Conclusion

C. Areces, P. Blackburn, and M. Marx.

A road-map on complexity for hybrid logics.
In J. Flum and M. Rodŕıguez-Artalejo, editors,
Computer Science Logic, number 1683 in
LNCS, pages 307–321. Springer, 1999.

Thomas Bolander and Torben Bräuner.

Two Tableau-Based Decision Procedures for
Hybrid Logic, volume 194 of
Informatik-Berichte.
4th Workshop: Methods for Modalities,
Proceedings, 2005.

Patrick Blackburn.

Internalizing labelled deduction.
Journal of Logic and Computation, 10(1):137
– 168, 2000.

Moritz Hardt.

Bachelor’s Thesis: Hybrid Logic Revisited.
Saarland University,
http://www.ps.uni-sb.de/∼hardt/hlrev.html,
2006.

Saul A. Kripke.

Semantical analysis of modal logic I: Normal
modal propositional calculi.
Zeitschrift für Mathematische Logik und
Grundlagen der Mathematik, 9:67–96, 1963.

Gert Smolka.

Lecture Notes: Introduction to Computational
Logic.
Saarland University, http://www.ps.uni-
sb.de/courses/cl-ss06/script/index.html,
2006.

Balder ten Cate and Massimo Franceschet.

On the complexity of hybrid logics with
binders, 2005.

M. Tzakova.

Tableau calculi for hybrid logics.
In N. V. Murray, editor, Analytic Tableaux
and Related Methods, TABLEAUX’99,
volume 1617 of LNAI. Springer, 1999.

http://www.ps.uni-sb.de/~hardt/hlrev.html
http://www.ps.uni-sb.de/courses/cl-ss06/script/index.html
http://www.ps.uni-sb.de/courses/cl-ss06/script/index.html

	Introduction
	Modal Logic
	Decision Procedure
	Conclusion

