イロト イポト イヨト イヨト

Computer Science · Saarland University June 1, 2006

Bachelor's Thesis: Hybrid Logic Revisited Final Talk by Moritz Hardt

Advisor: Prof. Dr. Gert Smolka Programming Systems Lab Winter Term 2005/2006

イロト イポト イヨト イヨト

3

Overview: Next 30 minutes

- 1. Motivation
- 2. Our Approach to Modal Logic
- 3. Our Decision Procedure
- 4. Conclusion

- 4 同 ト 4 日 ト

Why Modal Logic?

- Many applications in computer science
 - Temporal Logic: Software Verification (A. Pnueli)
 - o Description Logic: Artificial Intelligence, Information Retrieval
- Logical interest
 - Model theory, frame definability etc.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回

Some Modal Formulas

Propositional Dynamic Logic

$$\langle (x:=8 \mid x:=10) ; (x:=x \mod 2) \rangle (x=0)$$

Linear-Time Temporal Logic

$$\bigcirc$$
($\square(x > 9)$ \land \diamondsuit ($x = 13$))

Hybrid Logic

$$\downarrow x. @u. \Box \Box \Box \Box x$$

Ad-hoc syntax

- Nice for applications
- Kripke semantics [Kri63]
 - Meta-level names and quantification

Ad-hoc syntax

- Nice for applications
- Frequently eliminated by standard translations
- Kripke semantics [Kri63]
 - Meta-level names and quantification
 - Partly internalized by standard translations

Ad-hoc syntax

- Nice for applications
- Frequently eliminated by standard translations
- Kripke semantics [Kri63]
 - Meta-level names and quantification
 - Partly internalized by standard translations

comfort of modal reasoning ++++ coherence of classical logic

Ad-hoc syntax

- Nice for applications
- Frequently eliminated by standard translations
- Kripke semantics [Kri63]
 - Meta-level names and quantification
 - Partly internalized by standard translations

comfort of modal reasoning ++++ coherence of classical logic

Trade-off necessary?

Our Logical Base

- Simply-typed lambda calculus
 - Higher-order abstract syntax
 - Standard semantics
- First-order predicate logic
- Equational deduction

-큰

Specification	ML
Base Types	B,V
Constants	0,1 : B
	$\neg:B\to B$
	$\wedge,\vee:B\to B\to B$
	$\forall,\exists:(V\toB)\toB$
	$\doteq: V \to V \to B$
	$R:V\toV\toB$
Axioms	See [Smo06]

Propositional variables $f, g : V \rightarrow B$ Names u, v (either variables x, y : V or parameters a, b : V)

- 白 ト - 4 同 ト - 4 回 ト

Modal Operators

Specification includes derived modal operators:

$$\Box xf = \forall y. \neg (Rxy) \lor fy$$

$$\Diamond xf = \exists y.Rxy \wedge fy$$

Modal Operators

Specification includes derived modal operators:

$$\Box xf = \forall y. \neg (Rxy) \lor fy$$

 $\Box u(\lambda x.t)$ "At u, all direct successors x satisfy t."

$$\Diamond xf = \exists y.Rxy \wedge fy$$

 $\diamond u(\lambda x.t)$ "At u, some direct successor x satisfies t."

Conclusion

Traditional Modal Syntax Becomes Notation

Fix single variable as point of evaluation

 $\pi:\mathsf{V}$

Specialize variables and operators

 $\mathring{f} \stackrel{\text{\tiny def}}{=} f\pi$ $\mathring{\Box}t \stackrel{\text{\tiny def}}{=} \Box \pi (\lambda \pi . t)$

< □ > < 同

æ

We can define traditional modal logics:

$$t, t' \in \mathcal{K} \stackrel{\text{\tiny def}}{=} \mathring{f} \mid \neg t \mid t \land t' \mid \mathring{\Box} t$$

Our minimal modal fragment:

$$t, t' \in \mathcal{MF} \stackrel{\text{\tiny def}}{=} fu \mid \neg t \mid t \land t' \mid \Box u(\lambda x.t)$$

-큰

${\mathscr O}$ Certain formulas in ${\mathcal {MF}}$ do ${\boldsymbol{not}}$ have an equivalent in ${\mathcal {K}}$

 $fa \wedge \neg (fb)$

${\mathscr P}\ {\mathcal M}{\mathcal F}$ already provides naming and binding!

 \rightsquigarrow Hybrid Logic

Hybrid Logic

- Introduces naming, binding and identity to modal logic
- Early work by Arthur Prior in the 1960's
- Modern formulations active research topic in modal logic since the 1990's
 - Areces, Blackburn
 - Horrocks (Description Logic)

-20

Nominals

$$\mathring{u} \stackrel{\text{\tiny def}}{=} \pi \dot{=} u$$

Satisfaction-Operator

$$\mathbf{Q}u.t \stackrel{\text{\tiny def}}{=} (\lambda \pi.t)u$$

Down-Operator

$$\downarrow x.t \stackrel{\text{\tiny def}}{=} (\lambda x.t)\pi$$

$$t,t' \in \mathcal{HL}(\mathbf{0},\downarrow) \stackrel{\text{\tiny def}}{=} \mathring{f} \mid \mathring{u} \mid \neg t \mid t \land t' \mid \mathring{\Box}t \mid \mathbf{0}u.t \mid \downarrow x.t$$

-2

문에 세명에

< 17 ▶

Our equivalent:

$$t, t' \in \mathcal{MFI} \stackrel{\text{\tiny def}}{=} fu \mid u \doteq v \mid \neg t \mid t \land t' \mid \Box u(\lambda x.t)$$

${\mathscr O}$ Introduces only \doteq to ${\mathcal {MF}}$

- $\mathscr{P} \mathcal{HL}(\mathbb{Q},\downarrow)$ maps into \mathcal{MFI} via β -reduction
- Inverse mapping [H]

æ

★聞▶ ★臣▶ ★臣▶

$\mathscr{O} \ \mathcal{HL}(@,\downarrow)$ undecidable [tF05]

$$t, t' \in \mathcal{HL}(\mathbf{0}) \stackrel{\text{\tiny def}}{=} \mathring{f} \mid \mathring{a} \mid \neg t \mid t \wedge t' \mid \mathring{\Box}t \mid \mathbf{0}a.t$$

3

-

$\mathscr{O} \mathcal{HL}(0,\downarrow)$ undecidable [tF05]

$$t, t' \in \mathcal{HL}(\mathbf{0}) \stackrel{\text{\tiny def}}{=} \mathring{f} \mid \mathring{a} \mid \neg t \mid t \wedge t' \mid \mathring{\Box}t \mid \mathbf{0}a.t$$

No \downarrow -operator in MFI. How to restrict MFI?

æ

э.

< 17 ▶

- ∢ ≣ ▶

Quasi-Monadicity

Each subterm $u \doteq v$ contains a parameter

3

Quasi-Monadicity

Each subterm $u \doteq v$ contains a parameter

Monadicity

Quasi-M. + Modal operators do not have nested scope

.⊒ . ►

Quasi-Monadicity

Each subterm $u \doteq v$ contains a parameter

Monadicity

 ${\sf Quasi-M.} + {\sf Modal} \mbox{ operators do not have nested scope}$

Not quasi-monadic $\Diamond a(\lambda x. \Diamond x(\lambda y. y \doteq x))$ Not monadic $\Box a(\lambda x. \Diamond b(\lambda y. fx))$ Monadic $\Diamond a(\lambda x. fx \land \Diamond b(\lambda x. fx))$

Ø Quasi-Monadicity

Each subterm $u \doteq v$ contains a parameter

Monadicity Ø

Quasi-M. + Modal operators do not have nested scope

Not monadic Monadic

Not quasi-monadic $\Diamond a(\lambda x. \Diamond x(\lambda y. y \doteq x))$ $\Box a(\lambda x. \Diamond b(\lambda y. fx))$ $\Diamond a(\lambda x.fx \land \Diamond b(\lambda x.fx))$

Prop For each guasi-monadic formula, we can compute an equivalent monadic formula.

3

-

-

Monadic \mathcal{MFI}

$$\mathcal{MFI}_1 \stackrel{\text{\tiny def}}{=} \{t \in \mathcal{MFI} \mid t \text{ monadic}\}$$

$\mathscr{P} \mathcal{HL}(@)$ maps into \mathcal{MFI}_1 via β -reduction

✓ Inverse mapping [H]

Monadic \mathcal{MFI}

$$\mathcal{MFI}_1 \stackrel{\text{\tiny def}}{=} \{t \in \mathcal{MFI} \mid t \text{ monadic}\}$$

$\mathscr{P} \mathcal{HL}(@)$ maps into \mathcal{MFI}_1 via β -reduction

Inverse mapping [H]

Want decision procedure for \mathcal{MFI}_1

Data structure: **Clause** finite set of formulas in NNF, interpreted conjunctively

Data structure: **Clause** finite set of formulas in NNF, interpreted conjunctively Purely monadic clause closed monadic formulas Monadic clause monadic formulas plus "edges" *Ruv*

Data structure: **Clause** finite set of formulas in NNF, interpreted conjunctively Purely monadic clause closed monadic formulas Monadic clause monadic formulas plus "edges" *Ruv*

Is a purely monadic clause satisfiable?

Data structure: **Clause** finite set of formulas in NNF, interpreted conjunctively Purely monadic clause closed monadic formulas Monadic clause monadic formulas plus "edges" *Ruv*

Is a purely monadic clause satisfiable?

Find out by saturation: $C \to C \cup \{s\}$ Meaningful information s inferred from C

Conclusion

Design Space: Saturation Conditions

When is a clause C saturated?

 (\mathcal{S}_c) C is not trivial (no $t, \neg t$ or $\neg(t \doteq t)$ in C)

$$\begin{array}{l} (\mathcal{S}_c) \ C \text{ is not trivial (no } t, \neg t \text{ or } \neg(t \doteq t) \text{ in } C) \\ (\mathcal{S}_{\wedge}) \ \text{ If } s \wedge t \in C, \text{ then } \{s,t\} \subseteq C. \\ (\mathcal{S}_{\vee}) \ \text{ If } s \lor t \in C, \text{ then } s \in C \text{ or } t \in C. \end{array}$$

$$\begin{array}{l} (\mathcal{S}_c) \ C \text{ is not trivial (no } t, \neg t \text{ or } \neg(t \doteq t) \text{ in } C) \\ (\mathcal{S}_\wedge) \ \text{If } s \wedge t \in C, \text{ then } \{s,t\} \subseteq C. \\ (\mathcal{S}_\vee) \ \text{If } s \lor t \in C, \text{ then } s \in C \text{ or } t \in C. \\ (\mathcal{S}_\diamond) \ \text{If } \diamond ut \in C, \text{ then } \{Rux, t \downarrow x\} \subseteq C \text{ for some } x. \end{array}$$

$$\begin{array}{l} (\mathcal{S}_c) \ C \text{ is not trivial (no } t, \neg t \text{ or } \neg(t \doteq t) \text{ in } C) \\ (\mathcal{S}_{\wedge}) \ \text{If } s \wedge t \in C, \text{ then } \{s,t\} \subseteq C. \\ (\mathcal{S}_{\vee}) \ \text{If } s \lor t \in C, \text{ then } s \in C \text{ or } t \in C. \\ (\mathcal{S}_{\diamond}) \ \text{If } \diamond ut \in C, \text{ then } \{Rux, t \downarrow x\} \subseteq C \text{ for some } x. \\ (\mathcal{S}_{\Box}) \ \text{If } \Box ut \in C \text{ and } Ruv \in C, \text{ then } t \downarrow v \in C. \end{array}$$

$$\begin{array}{l} (\mathcal{S}_c) \ C \text{ is not trivial (no } t, \neg t \text{ or } \neg(t \doteq t) \text{ in } C) \\ (\mathcal{S}_{\wedge}) \ \text{If } s \wedge t \in C, \text{ then } \{s,t\} \subseteq C. \\ (\mathcal{S}_{\vee}) \ \text{If } s \lor t \in C, \text{ then } s \in C \text{ or } t \in C. \\ (\mathcal{S}_{\diamond}) \ \text{If } \diamond ut \in C, \text{ then } s \in C \text{ or } t \in C. \\ (\mathcal{S}_{\ominus}) \ \text{If } \bigcirc ut \in C, \text{ then } \{Rux, t \downarrow x\} \subseteq C \text{ for some } x. \\ (\mathcal{S}_{\Box}) \ \text{If } \square ut \in C \text{ and } Ruv \in C, \text{ then } t \downarrow v \in C. \\ (\mathcal{S}_{\pm}^s) \ \text{If } u \doteq v \in C, \text{ then } v \doteq u \in C. \\ (\mathcal{S}_{\pm}) \ \text{If } u \doteq a \in C \text{ and } t \in C, \text{ then } t[u := a] \in C. \end{array}$$

.⊒ . ►

æ

∃ >

Model Existence

Thm Saturated monadic clauses are satisfiable.

Model Existence

Thm Saturated monadic clauses are satisfiable.

Given saturated clause, construct a satisfying interpretation

Difficulty: Weak identity conditions!

$$(\mathcal{C}_{\wedge})$$
 If $s \wedge t \in C$, add s and t .
 (\mathcal{C}_{\vee}) If $s \vee t \in C$ and $s \notin C, t \notin C$, add s or t .

- (\mathcal{C}_{\wedge}) If $s \wedge t \in C$, add s and t.
- (\mathcal{C}_{\vee}) If $s \lor t \in C$ and $s \notin C, t \notin C$, add s or t.
- (\mathcal{C}_{\diamond}) If $\diamond ut \in C$ and $\diamond ut$ not expanded in C, add Ruxand $t \downarrow x$ for fresh x.

- (\mathcal{C}_{\wedge}) If $s \wedge t \in C$, add s and t.
- (\mathcal{C}_{\vee}) If $s \lor t \in C$ and $s \notin C, t \notin C$, add s or t.
- (\mathcal{C}_{\diamond}) If $\diamond ut \in C$ and $\diamond ut$ not expanded in C, add Ruxand $t \downarrow x$ for fresh x.
- (\mathcal{C}_{\Box}) If $\Box ut \in C$ and $Ruv \in C$, add $t \downarrow v$.

- (\mathcal{C}_{\wedge}) If $s \wedge t \in C$, add s and t.
- (\mathcal{C}_{\vee}) If $s \lor t \in C$ and $s \notin C, t \notin C$, add s or t.
- (\mathcal{C}_{\diamond}) If $\diamond ut \in C$ and $\diamond ut$ not expanded in C, add Ruxand $t \downarrow x$ for fresh x.
- (\mathcal{C}_{\Box}) If $\Box ut \in C$ and $Ruv \in C$, add $t \downarrow v$.
- (\mathcal{C}^s_{\doteq}) If $u \doteq v \in C$, add $v \doteq u$.
- (\mathcal{C}_{\doteq}) If $u \doteq a \in C$ and $t \in C$, add t[u := a].

- (\mathcal{C}_{\wedge}) If $s \wedge t \in C$, add s and t.
- (\mathcal{C}_{\vee}) If $s \lor t \in C$ and $s \notin C, t \notin C$, add s or t.
- (\mathcal{C}_{\diamond}) If $\diamond ut \in C$ and $\diamond ut$ not expanded in C, add Ruxand $t \downarrow x$ for fresh x.
- (\mathcal{C}_{\Box}) If $\Box ut \in C$ and $Ruv \in C$, add $t \downarrow v$.
- (\mathcal{C}^{s}_{\pm}) If $u \doteq v \in C$, add $v \doteq u$.

 (\mathcal{C}_{\doteq}) If $u \doteq a \in C$ and $t \in C$, add t[u := a].

 $C \to D \quad \text{iff} \ C \subset D \ \text{and} \ D \ \text{is obtained from} \ C$ by applying one saturation rule

- (\mathcal{C}_{\wedge}) If $s \wedge t \in C$, add s and t.
- (\mathcal{C}_{\vee}) If $s \lor t \in C$ and $s \notin C, t \notin C$, add s or t.
- (\mathcal{C}_{\diamond}) If $\diamond ut \in C$ and $\diamond ut$ not expanded in C, add Ruxand $t \downarrow x$ for fresh x.
- (\mathcal{C}_{\Box}) If $\Box ut \in C$ and $Ruv \in C$, add $t \downarrow v$.
- (\mathcal{C}^{s}_{\pm}) If $u \doteq v \in C$, add $v \doteq u$.

 (\mathcal{C}_{\doteq}) If $u \doteq a \in C$ and $t \in C$, add t[u := a].

 $C \to D$ iff $C \subset D$ and D is obtained from Cby applying one saturation rule $C \to D_1, D_2$ don't know if applied (C_{\vee}) , $C \to D$ don't care otherwise

Wanted: Key Properties

Soundness If $C \to D$ don't care, then C is satisfiable if and only if D is satisfiable. If $C \to D_1, D_2$ don't know, then C is satisfiable if and only if D_1 is satisfiable or D_2 is satisfiable.

Wanted: Key Properties

Soundness If $C \to D$ don't care, then C is satisfiable if and only if D is satisfiable. If $C \to D_1, D_2$ don't know, then C is satisfiable if and only if D_1 is satisfiable or D_2 is satisfiable.

Completeness If C cannot be extended by a saturation rule, then C is satisfiable *iff* it is not trivial.

Wanted: Key Properties

Soundness If $C \to D$ don't care, then C is satisfiable if and only if D is satisfiable. If $C \to D_1, D_2$ don't know, then C is satisfiable if and only if D_1 is satisfiable or D_2 is satisfiable.

Completeness If C cannot be extended by a saturation rule, then C is satisfiable *iff* it is not trivial.

Termination No infinite path $C_0 \rightarrow C_1 \rightarrow C_2 \rightarrow \ldots$

Decision Procedure

Conclusion

Checking Key Properties

Soundness Simple.

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule! If trivial, then not satisfiable If not trivial, then saturated, thus satisfiable by Model Existence

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule! If trivial, then not satisfiable If not trivial, then saturated, thus satisfiable by Model Existence

Termination ?

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule! If trivial, then not satisfiable If not trivial, then saturated, thus satisfiable by Model Existence

Termination ?

Saturation increases clause size, how to obtain a bound?

Soundness Simple.

Completeness Suppose clause cannot be extended by a rule! If trivial, then not satisfiable If not trivial, then saturated, thus satisfiable by Model Existence

Termination ?

Saturation increases clause size, how to obtain a bound?

 \mathscr{O} Bound the number of variables introduced by (\mathcal{C}_{\diamond})

Partition clause C (excluding edges) into $C_a = \{t \in C \mid t \text{ closed}\}$ $C_x = \{t \in C \mid \mathsf{FV}t = \{x\}\}$ for each $x \in \mathsf{FV}C$

Partition clause C (excluding edges) into $C_a = \{t \in C \mid t \text{ closed}\}$ $C_x = \{t \in C \mid \mathsf{FV}t = \{x\}\}$ for each $x \in \mathsf{FV}C$

 \mathscr{O} Degree deg $C = \max_{t \in C} |t|$ does not increase

Partition clause C (excluding edges) into $C_a = \{t \in C \mid t \text{ closed}\}$ $C_x = \{t \in C \mid \mathsf{FV}t = \{x\}\}$ for each $x \in \mathsf{FV}C$

- \mathscr{O} Degree deg $C = \max_{t \in C} |t|$ does not increase
- \mathscr{O} When applying $(\mathcal{C}_{\diamondsuit})$, resulting in a new variable x
 - $\circ~$ We have a **unique** term $\diamondsuit ut$ that "justifies" x
 - We receive witness $\{Rux, t \downarrow x\}$

Partition clause C (excluding edges) into $C_a = \{t \in C \mid t \text{ closed}\}$ $C_x = \{t \in C \mid \mathsf{FV}t = \{x\}\}$ for each $x \in \mathsf{FV}C$

- \mathscr{O} Degree deg $C = \max_{t \in C} |t|$ does not increase
- \mathscr{O} When applying $(\mathcal{C}_{\diamondsuit})$, resulting in a new variable x
 - $\circ~$ We have a **unique** term $\diamondsuit ut$ that "justifies" x
 - We receive witness $\{Rux, t \downarrow x\}$
 - If $t \in C_x$, then there is $s \in C_u$ with |t| < |s|

Central Invariants: Admissibility

\boldsymbol{C} is n-admissible if

1. C is monadic and deg $C \leq n$.

Central Invariants: Admissibility

\boldsymbol{C} is n-admissible if

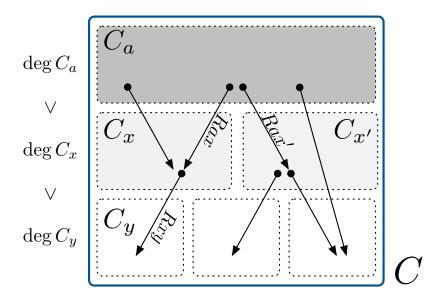
- 1. C is monadic and $\deg C \leq n$.
- 2. If $Rux \in C$, then $\deg C_u > \deg C_x$.

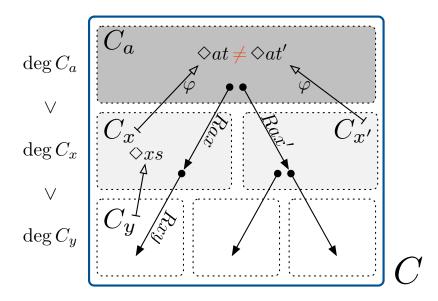
Central Invariants: Admissibility

- C is n-admissible if there is $\varphi\in\mathsf{FV}C\to C$ such that
 - 1. C is monadic and $\deg C \leq n$.
 - 2. If $Rux \in C$, then $\deg C_u > \deg C_x$.
 - 3. φ is injective and $\forall x \in \mathsf{FV}C : \exists u, t : \varphi x = \Diamond ut \land \{Rux, t \downarrow x\} \subseteq C$

(4回) (4回) (4回)

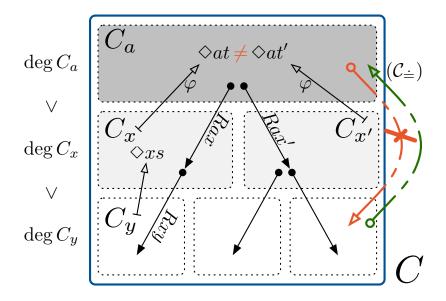
æ





(本語)と 本語(と) 本語(と)

æ



- Obtain exponential bound on the size of *n*-admissible clauses
- $\ensuremath{\mathscr{P}}$ Purely monadic clause C is degC-admissible

Thm By means of saturation we can decide whether or not a purely monadic clause is satisfiable.

Conclusion: Modal Logic

- Traditional modal syntax & semantics we still consider harmful
- First-order predicate logic as such syntactically too weak to cope with modal logic

Conclusion: Modal Logic

- Traditional modal syntax & semantics we still consider harmful
- First-order predicate logic as such syntactically too weak to cope with modal logic

Higher-order syntax + First-order predicate logic

Conclusion: Decision Procedure

- Local termination arguments & no external data structures as opposed to [Tza99, BB05].
- Fully internal deduction as in [Bla00], but still explicit access relation
- Fewer and simpler rules for identities

Conclusion: Decision Procedure

- Local termination arguments & no external data structures as opposed to [Tza99, BB05].
- Fully internal deduction as in [Bla00], but still explicit access relation
- Fewer and simpler rules for identities

Our approach: Appropriate for decision procedures!

Further Work

Generalizing modal logics in our system, e.g., complex relational argument (subsumes universal modalities):

 $\Diamond (\lambda x \lambda y.1) a f$

- ${\mathscr O}$ Space optimal saturation algorithm for ${\mathcal {MFI}}_1$
 - Previous results not saturation-based
 - Our PSPACE saturation algorithm submitted to HyLo 2006
- More about decision procedures

Thank you for your attention!

C. Areces, P. Blackburn, and M. Marx. A road-map on complexity for hybrid logics. In J. Flum and M. Rodriguez-Artalejo, editors, *Computer Science Logic*, number 1683 in LNCS, pages 307–321. Springer, 1999.

Thomas Bolander and Torben Bräuner.

Two Tableau-Based Decision Procedures for Hybrid Logic, volume 194 of Informatik-Berichte. 4th Workshop: Methods for Modalities, Proceedings, 2005.

Patrick Blackburn.

Internalizing labelled deduction. Journal of Logic and Computation, 10(1):137 – 168, 2000.

Moritz Hardt.

Bachelor's Thesis: Hybrid Logic Revisited. Saarland University,

http://www.ps.uni-sb.de/~hardt/hlrev.html, 2006.

S

Saul A. Kripke.

Semantical analysis of modal logic I: Normal modal propositional calculi.

Zeitschrift für Mathematische Logik und Grundlagen der Mathematik, 9:67–96, 1963.

Gert Smolka.

Lecture Notes: Introduction to Computational Logic.

Saarland University, http://www.ps.unisb.de/courses/cl-ss06/script/index.html, 2006.

Balder ten Cate and Massimo Franceschet.

On the complexity of hybrid logics with binders, 2005.

M. Tzakova.

Tableau calculi for hybrid logics.

In N. V. Murray, editor, *Analytic Tableaux* and *Related Methods*, *TABLEAUX'99*, volume 1617 of *LNAI*. Springer, 1999.