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We consider variables, numbers, terms and values as follows:

x ∈ Var

n ∈ N

t ∈ Ter = x | t t | λx . t | n | S

v ∈ Val = λx . t | n | S

A term is pure if it doesn’t contain numbers or the successor operator S. The reduction

relation → ⊆ Ter2 is defined as follows:

Beta
(λx . t)v → t[x := v]

S
n′ = n+ 1

Sn→ n′

DAL
t1 → t′1

t1t2 → t′1t2
DAR

t → t′

vt → vt′

A procedure is a closed term of the form λx . t. Boolean values, pairs and the natural

numbers can be represented as pure values as follows:

true
def
= λxy . x

false
def
= λxy . y

(t1, t2)
def
= (λxyf . fxy)t1 t2

c0
def
= λfs . s

cn
def
= λfs . cn−1f(fs) (n ≥ 1)

Exercise 1.1: Numbers We say that a term t represents a number n if t is pure and

the term tS0 evalutes to n. Find a pure procedure

(a) add that given values representing m and n yields a value representing m+n.

(b) mul that given values representing m and n yields a value representing m ·n.

(c) exp that given values representing m and n yields a value representing mn.
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Abstract

We present modal logic on the basis of the simply typed lambda calculus
with a system of equational deduction. Combining first-order quantification
and higher-order syntax, we can maintain modal reasoning on the basis of
classical logic by remarkably simple means. Such an approach has been
broadly uninvestigated, even though it has notable advantages, especially in
the case of Hybrid Logic.

Hybrid logics extend modal languages with the ability to name and iden-
tify states in a model, features that have received much attention in many
branches of modal logic over the past years. We give natural characteriza-
tions of HL(@, ↓) and its decidable subset HL(@).

We develop a tableau-like decision procedure for our equivalent ofHL(@).
Our algorithm guarantees termination by local criteria in contrast to previ-
ous decision procedures. With regards to deduction, we simplify in partic-
ular the treatment of identities. Traditionally, modal tableau calculi either
rely on external labeling mechanisms or have to represent access information
by equivalent formulas. In our system labeling and access information are
both internal and explicit.
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Chapter 1

Introduction

Overview

Modal logic emerged early as a philosophical discipline to reason about con-
cepts such as possibility, necessity and temporal phenomena. It appeared in
symbolic logic with the 1918 work of Lewis where subsequent research in the
1930’s was driven by syntactic analysis. Formal semantics were established
by Kripke and others in the mid 1960’s [37, 38], allowing modal operators to
be interpreted over arbitrary relational structures. From the 1970’s on, this
opened the doors for computer science to discover the strength of modal
logic in a wide range of applications such as the temporal verification of
transition systems as proposed by Pnueli [41, 42]. As of today, modal logic
is actively employed in the field of software verification, databases, compu-
tational linguistics and information retrieval.

When explaining the features of a modal logic, modal logicians stress the
point that these languages support an internal view on a given relational
structure, while on the contrary classical logic employs external mechanisms
such as quantification and variable-binding.1 Consequently, modal logics
deserve special-purpose syntax and semantics which capture this essential
idea. Nevertheless, the connections between modal and classical logic are
quite intimate. In fact, “first-order correspondence” theory has been an
integral part of research in modal logics leading to some of its best known
results such as the discovery of the “guarded fragment” [2].

Moreover, in the past years, modern formulations of Hybrid Logic arose
in modal, temporal and description logic. Hybrid languages extend modal
logics with the ability to name and identify states in a model. The hybrid
formula ↓x.3x, for example, introduces a name x for the current point of
evaluation and demands x to be reachable from itself. Apparently, this for-
mula involves a variable and a variable binder, concepts habitual in classical
logic.

1See for example p.xii f. in [16].
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We develop a formulation of modal logic based on the simply typed
lambda calculus [20] with a system of equational deduction [47]. In its un-
typed formulation, the lambda calculus was introduced by Church in 1936.
For our purposes, the lambda calculus provides coherent syntax and stan-
dard semantics on top of which we challenge the question:

How do modal logics concur with classical logic?

It turns out, combining first-order quantification and higher-order syn-
tax, Kripke semantics can be fully internalized in our system, resulting in a
powerful treatment of modal logics in terms of classical logic. With a few
key definitions, syntax, semantics and deduction is set up for modal log-
ics. While we make a commitment to classical logic, we maintain the “local
perspective” of modal logic in our native syntax. Even more so, traditional
modal syntax is preserved on a notational level. This way, standard trans-
lations which recursively eliminate modal syntax in favor of less suggestive
quantified formulas are obsolete.

Along the line, our approach remedies the problems with β-conversion
as they appear in the work of Fitting [26, 25] who gives examples of β/η-
equal modal terms denoting differently – clearly in conflict with the lambda
calculus. In order to avoid phenomena like these, we make names for points
of evaluation explicit, even in the case of our minimal modal logic MF .
In fact, the lack of names is widely regarded as a major drawback of K,
the traditional minimal modal logic [4]. On that account, Hybrid Logic
is considered the inevitable remedy. In a standard version, often referred
to as HL or HL(@, ↓), Hybrid Logic enriches K with naming, binding and
referencing constructions, as well as an implicit identity judgement. [6, 16,
5, 9]. We offer an equivalent characterization of HL in our system called
MFI which solely introduces the identity predicate to MF .

As HL is undecidable [49], we are interested in its decidable fragment
HL(@) [7]. Characterizing HL(@) as the monadic fragment of MFI, we
develop a tableau-like decision procedure for this logic. Tzakova [50] was
the first to state a tableau-based decision procedure. Recently, Bolander and
Bräuner [17] extended Tzakova’s system by a treatment of universal modal-
ities and a strengthened proof of termination by means of loop-checking
techniques. Not a decision procedure, but a tableau calculus is given by
Blackburn [15] who discusses the broad advantages of internalizing labeled
deduction in HL. By carefully analyzing the role of identities in monadic
MFI, we obtain simple local termination criteria for our algorithm. Also
deduction is simple, especially with respect to the identity judgement. More-
over, deduction is fully internal, while we still profit from an explicit access
relation available on the object level.
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Contributions

This thesis makes the following contributions:

1. In Chapter 3, we give an extensive discussion of modal logic based on
the simply typed lambda calculus.

(a) Higher-order logic allows to internalize Kripke semantics provid-
ing syntax, semantics and deduction for modal logics by means
of a few key definitions.

(b) Recursive standard translations are obsolete. Terms of modal
logic are terms of classical logic in our system.

(c) We solve the previous problems with β-conversion as in [26]. As
such, our work proposes a foundation for formulations of modal
logics based on the lambda calculus, e.g., a “Higher-order Modal
Logic” as in [25].

(d) Operators of HL are redundant in our system. We give a native
characterization of HL called MFI and prove these fragments
equivalent.

(e) We characterize HL(@) as the monadic fragment of MFI and
prove equivalence.

(f) An interesting weaker characterization, we call quasi-monadicity
and give proof that we can compute an equivalent monadic for-
mula for each quasi-monadic one.

2. In Chapter 4, we investigate the computational aspects of monadic
MFI.

(a) We develop a tableau-like decision procedure for the satisfiability
problem of monadic MFI.

(b) We can simplify especially the treatment of identities as compared
to the preceding calculi in [50, 15, 17].

(c) Our calculus does not depend on any kind of external labeling
mechanisms which accompany most modal tableaux. In this re-
gard, we carry forward the arguments of [15]. However, we sim-
plify [15] with regards to how the access relation is represented
and maintained.

(d) Termination is proven by strictly local arguments in contrast to
[17] who maintains loop-checking techniques in order to strengthen
the termination arguments of [50].



14



Chapter 2

The Logical Base

2.1 Simply Typed Lambda Calculus

Throughout the course of our investigations, we consider a simply typed
lambda calculus where every term has a unique type. Interpretation for
terms and types is provided by standard semantics. Informally, “standard
models” are structures denoting base types by non-empty sets and functional
types by the full function space over the respective types. Constants are
mapped to members of the appropriate type.

In our system, logical constants are axiomatized by equations and de-
duction itself is purely equational. For a full discussion of this topic see
[47].

2.2 First-order Predicate Logic

Figure 2.1 fixes the signature for a system of first-order predicate logic which
includes derived modal operators. ML will serve as the logical foundation
for our inquiries into modal logic (see Chapter 3) and the subsequent design
of a decision procedure in Chapter 4.

For a discussion of the axioms and their interpretation, we refer the
reader to [47, 36].

Note Functional types TT′ may be written more suggestively as T→ T′.

Definition (Variable, Closed Term) For each type there is a countably
infinite set of variables Var where we omit type subscripts if possible.

◦ For a term t, FV t denotes the set of free variables of type V occurring
in t. FV defined on sets of terms is understood.

◦ A term t is called closed, if FV t = ∅.

15



16 2.2. FIRST-ORDER PREDICATE LOGIC

Figure 2.1: First-order Predicate Logic with Modal Operators

Theory ML

Base Types B,V

Constants 0, 1 : B
→ : BBB
∀ : (VB)B
=̇ : VVB
R : VVB

Axioms 0→ p = 1
1→ p = p
p ∨ q = q ∨ p Commutativity
f0→ f1→ fq = 1 Boolean Case Analysis
∀(λx.1) = 1
∀f → fx = 1 Instantiation
x=̇x = 1 Reflexivity
x=̇y → fx→ fy = 1 Replacement

Derived ¬x = x→ 0
Constants x ∨ y = (x→ y)→ y

x ∧ y = ¬(¬x ∨ ¬y)
∃f = ¬(∀(λx.¬(fx)))
2xf = ∀y.Rxy → fy
3xf = ∃y.Rxy ∧ fy

Notation ∀x.t = ∀(λx.t)
∃x.t = ∃(λx.t)

Definition (Parameter) We assume a countably infinite set Par of con-
stants of type V. A member a ∈ Par is called a parameter. We denote the
set of parameters occurring in a term t by Par t. Again, Par is also defined
on sets of terms.

Note As a convention,

◦ we will use the letters p, q for boolean variables.

◦ we use x, y to refer to variables of type V. Parameters are written as
a, b. If left open which is referred to, we use u, v.

◦ Variables of type VB are written as f, g.
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Definition 2.1 (Substitution) We denote by t[u := v] the term obtained
from t by replacing all occurrences of u by v. This is defined as usual by
recursion on t. Note that u may also be a parameter.

Definition 2.2 (Term Size) The size of a term t, denoted by |t| is defined
recursively as usual:

|c| = 1 (constant)
|x| = 1 (variable)
|tt′| = 1 + |t|+ |t′| (application)
|λx.t| = 1 + |t| (abstraction)

Definition 2.3 (Formula, Formula Convention) A formula is a term
of type B. An equation t = 1 may be written as t for convenience.
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Chapter 3

Modal Logic Revisited

In this chapter, we will assume familiarity with the basics of modal logics and
their semantical interpretation over relational structures. For a thorough
introduction, we refer the reader to [16, 35]. Although focused on the base
cases, our discussion applies in a straightforward manner to modal logics in
general.

3.1 A Minimal Modal Logic MF
Roughly speaking, a basic modal language consists of three components:

◦ Propositional letters

◦ Boolean connectives

◦ A modal operator

Such a language is interpreted relative to a non-empty set of entities,
usually called “worlds”, “states” or “vertices” and a binary relation on these
vertices, e.g., (N,≤). In the context of relational semantics, this structure
is often referred to as a “frame”. In our system, it is available by means of
two constants.

◦ Type constant V

◦ Relational constant R : V→ V→ B

Interestingly, these are the only two components which are free for in-
terpretation in ML. The interpretation of the remaining (logical) constants
is determined by the axioms. So, effectively, ML is a system to talk about
basic relational structure.

Propositional letters, we model as higher-order variables of type V→ B
which we will call propositional variables.

19



20 3.1. A MINIMAL MODAL LOGIC MF

◦ Propositional variables f, g : V→ B

Precisely as in modal logic, propositional variables will be assigned to prop-
erties of vertices. In this way, they carry contingent information which are
not part of the underlying model itself.

For the modal operators, we derive higher-order constants.

◦ Modal operators 3,2 : V→ (V→ B)→ B.

By a first look at the type of these constants, we see that they enable judge-
ment about a vertex and a property of vertices. Thus, it is straightforward
to pin down their original meaning in Kripke semantics with the help of two
axioms.

2xf = ∀y.Rxy → fy

3xf = ∃y.Rxy ∧ fy

Written in a more suggestive way, these terms enjoy the intuitive reading:

2u(λx.t) “At u, all direct successors x satisfy t.”

3u(λx.t) “At u, some direct successor x satisfies t.”

Surprisingly, a “traditional” modal syntax is still available on a nota-
tional level. For this purpose, we reserve a single fixed variable π : V and
think of π as the current point of evaluation in our model. This is the
standard technique to mimic the external positional argument in Kripke se-
mantics. In a next step, we situate propositions and modal operators at π
hiding the free variable by some notation of choice.

Definition 3.1 (Modal Notation, K)

f̊
def= fπ 2̊t def= 2π(λπ.t)

t, t′ ∈ K def= f̊ | ¬t | t ∧ t′ | 2̊t

Note Until stated otherwise, we use the symbols 3,∨,→, 0, 1 as the usual
abbreviations to shorten our discussion.

Example Using equational deduction and well-known quantifier laws, we
can deduce validities in K.

2̊(f̊ ∧ g̊) = 2π(λπ.fπ ∧ gπ)
= ∀x.Rπx→ (fx ∧ gx) (β)
= ∀x.(Rπx→ fx) ∧ (Rπx→ gx)
= (∀x.Rπx→ fx) ∧ (∀x.Rπx→ gx)
= 2π(λπ.fπ) ∧2π(λπ.gπ) (β)

= 2̊f̊ ∧ 2̊g̊
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The role of a single special-purpose variable π is a central concept to
understand modal syntax. However, commitment to a single name seems
artificial. We have already in the previous example worked with a second
variable. So, to the components of a basic modal language, we add a further
attribute:

◦ Vertices u, v : V

In doing so, we arrive at what is the minimal modal fragment of our
choice.

Definition 3.2 (MF)

t, t′ ∈MF = fu | ¬t | t ∧ t′ | 2u(λx.t)

MF directly captures modal notation. On the other hand, there are certain
formulas which lack a single-variable equivalent, fu∧¬fv is such an example.

Proposition K ⊂MF .

The point is thatMF already delivers certain naming and binding capa-
bilities which are absent in K. This leads us very quickly to the consideration
of a modal logic which was designed to provide these mechanisms.

3.2 Hybrid Logic, Identity and MFI

The essential advantage of HL over K is that it allows to identify vertices.
Fur this purpose, HL introduces three new constructions all of which are in
our system available in terms of the identity predicate =̇ : V→ V→ B.

Definition 3.3 (Hybrid Notation, HL)

ů
def= π=̇u @u.t def= (λπ.t)u ↓x.t def= (λx.t)π

t, t′ ∈ HL def= f̊ | ů | ¬t | t ∧ t′ | 2̊t | @u.t |↓x.t

◦ A term ů is standardly called a nominal.

◦ @ is called the satisfaction-operator, ↓has the name down-operator.

◦ HL is often referred to as HL(@, ↓) to distinguish the fragment HL(@)
which excludes the down-operator. In this case, u ∈ Par, by conven-
tion. For convenience, we also assume terms in HL(@) to be closed.
This can be achieved by prefixing a formula, e.g., t corresponds to @a.t
where a does not occur in t.
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Let us see how the newly introduced constructions work. Nominals are
self-explaining. The @-operator captures all occurrences of π and replaces
them by some other vertex. This way, a formula @u.t deserves the reading:
“At u, evaluate t.” The ↓-operator simply introduces a name for the current
point of evaluation.

Example (Valid Inferences in HL)

@u.̊v ∧@v.f̊ = u=̇v ∧ fv (β)
` fu (Replacement, Weakening)

= @u.f̊ (β)

Via β-reduction, HL fluently maps into the following extension ofMF .

Definition 3.4 (MFI)

t, t′ ∈MFI def= fu | u=̇v | ¬t | t ∧ t′ | 2u(λx.t)

Interestingly, this time an inverse mapping exists, too. While K andMF
did not match up, we find essentially for every term inMFI an equivalent
one in modal notation.

Proposition 3.1 (MFI −→ HL) Consider the following mapping ϕ
defined by recursion on t ∈MFI.

ϕ(fu) = @u.f̊
ϕ(u=̇v) = @u.̊v
ϕ(¬t) = ¬(ϕt)

ϕ(t ∧ t′) = (ϕt) ∧ (ϕt′)
ϕ(2u(λx.t)) = @u.2̊(↓x.ϕt)

Then,

1. ϕ ∈MFI → HL

2. ∀t ∈MFI : ML ` t = ϕt given that π does not occur free in t.

Proof. 1. Follows immediately by case analysis.

2. Proof is by induction on t. The base cases work analogously as follows:

ϕ(fu) = @u.f̊ = (λπ.fπ)u = fu
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We demonstrate the non-trivial induction step.

ϕ(2u(λx.t)) = @u.2̊(↓x.ϕt)
= @u.2̊(↓x.t) (Induction Hypothesis)
= (λπ.2̊(↓x.t))u
= (λπ.2π(λπ. ↓x.t))u
= 2u(λπ. ↓x.t) (β)
= 2u(λπ.(λx.t)π)
= 2u(λx.t) (η, π 6∈ FVt)

a

As we see, MFI and HL coincide in a very natural way.

Example (Until) We can express an Until-statement (“g until f”) inMFI.

t = 3a(λx.fx ∧2a(λy.3y(λy.y=̇x)→ gy))

The intended reading is: “From u, we reach a point where f holds and
at all intermediate points, g holds.” Utilizing ϕ and a few steps of simplifi-
cation, we find:

ML ` t = @a.3̊(↓x.f̊ ∧@a.2̊((3̊x̊)→ g̊))

The last term is the often demonstrated equivalent formula in HL.

Figure 3.1: Summary of Hybrid Notation

Reserved variable π : V

f̊ = fπ 2̊t = 2π(λπ.t)

ů = π=̇u @u.t = (λπ.t)u ↓x.t = (λx.t)π

t, t′ ∈ HL = f̊ | ů | ¬t | t ∧ t′ | 2̊t | @u.t |↓x.t

Characterizing the Decidable Fragment

While Figure 3.1 summarizes the modal notation we have introduced, there
is still an important question unanswered. It is well known that HL(@, ↓) is
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undecidable. Of this fact, there is a very comprehensive proof in [49] based
on the observation that HL is a “conservative reduction class” with respect
to first-order predicate logic.

On the other hand,HL(@) is decidable. In fact, the satisfiability problem
for HL(@) is PSPACE-complete as shown in [7]. Conclusively, there must
be an important fragment of MFI corresponding to this computationally
mild logic. But, which is it?

The operators @ and ↓ were defined analogously in terms of λ. They
are eliminated by β-reduction. Even more interesting is that we could have
already extended K with @ and ↓. The corresponding fragment would still be
MF . On that account, we must find a different characterization of HL(@).

This leads us to the concept of monadicity.

3.3 The Monadic Fragment MFI1

The language HL(@) maintains an obvious pattern known from K. Terms
can be represented with only a single bound variable. Furthermore, nominals
always contain a parameter. This gives rise to the following definition.

Definition 3.5 (Monadic Formula) A formula t ∈MFI is called monadic,
if every subterm of the form u=̇v contains a parameter and every subterm
of the form λx.t′ is closed.

Occurrences of the identity predicate are effectively unary predicates
denoting singleton sets.

Definition 3.6 (MFI1)

MFI1
def= {t ∈MFI | t monadic and closed}

We can think of MFI1 as the one-variable fragment ofMFI.

Example The formula 2a(λx.3x(λy.a=̇x)) is not monadic. The problem-
atic variable is x. Still, in this case, we can find an equivalent monadic
formula 2a(λx.a=̇x ∧3x(λy.1)).

As expected, MFI1 and HL(@) coincide. The mapping from HL(@)
to MFI1 is simply beta-reduction as before. For the opposite direction,
we have to distinguish cases with regards to the single variable possibly
appearing.
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Proposition 3.2 (MFI1 −→ HL(@)) Consider the following mapping
defined recursively on t ∈MFI1.

ϕ(fπ) = f̊

ϕ(fa) = @a.f̊

ϕ(a=̇b) = @a.̊b
ϕ(a=̇π) = å

ϕ(π=̇a) = å

ϕ(¬t) = ¬(ϕt)
ϕ(t ∧ t′) = (ϕt) ∧ (ϕt′)

ϕ(2a(λπ.t)) = @a.2̊(ϕt)
ϕ(2π(λπ.t)) = 2̊(ϕt)

It holds,

1. ϕ ∈MFI1 → HL(@)

2. ∀t ∈MFI1 : ML ` t = ϕt

Proof. 1. We can represent the single bound variable occurring in a for-
mula t ∈ MFI1 by π. Thus, ϕ is defined on all formulas in MFI1.
Since t is closed, so is ϕt and by a straightforward case analysis,
ϕt ∈ HL(@).

2. Structural induction on t as in 3.1. a

Figure 3.2: Relationship betweenMFI and HL

K ⊂ MF

⊂ ⊂

HL(@)
ϕ β←→ MFI1

⊂ ⊂

HL(@, ↓) ϕ β←→ MFI

3.3.1 Quasi-Monadicity

The definition of monadicity is quite restrictive. In fact, there are closed
terms already in MF which are not monadic:

2a(λx.2x(λy.fy ∨ fx))
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However, MF generally admits monadic terms. The previous formula,
for example, is equivalent to:

2a(λx.2x(λy.fy) ∨ fx)

We cannot hope for the same result in the case ofMFI.

Example Consider, t = 3a(λx.3x(λy.y=̇x)). Intuitively, the problem is
the two-place predicate =̇ which can fix variables below a foreign binder.

The formula t demands a reflexive successor at a. Also, see [48] for a
discussion why t is not expressible in HL(@).

Definition 3.7 (Quasi-Monadicity) We call a formula t ∈ MFI quasi-
monadic, if every subterm of the form u=̇v contains a parameter.

As it turns out, we can transform every quasi-monadic formula into an
equivalent monadic one. In the remainder of this section, we develop a proof
of this fact. The idea of this proof is to recursively narrow down the scope
of a modal operator until within this scope, there are only bound terms
containing no other variable.

In the case of predicate logic, a similar technique is sometimes called
“anti-prenexing” – quantifiers are moved “downwards”.

Note From here on, we will consider ∨ a constant.

Definition (Literal) A literal is a formula of the form fu, ¬(fu), u=̇v,
¬(u=̇v), 2ut or ¬(2ut).

Definition (Conjunctive Normal Form) We say a formula t is in con-
junctive normal form, if t is a conjunction of a disjunction of literals.

Proposition 3.3 Given a monadic term, we can compute an equivalent
monadic term in conjunctive normal form.

Proof. Let t be monadic term. We can employ the standard equivalence
transformations. That is, we first move all negations towards the literals by
repeatedly using the laws of de Morgan and double negation.

¬(¬p) = p

¬(p ∧ q) = ¬p ∨ ¬q
¬(p ∨ q) = ¬p ∧ ¬q

In a next step, we use distributivity to move disjunctions below conjunctions.

p ∨ (q ∧ q′) = (p ∨ q) ∧ (p ∨ q′)
(q ∧ q′) ∨ p = (q ∨ p) ∧ (q′ ∨ p)

We do not repeat this process for subterms of literals. It is easy to see that
each of these laws preserves monadicity. a
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By means of the following equations, we can narrow the scope of a modal
operator over a formula in conjunctive normal form.

Proposition 3.4 The following equations are deducible in ML.

2x(λy.fy ∧ gy) = 2xf ∧2xg (2∧)
2x(λy.fy ∨ q) = 2xf ∨ q (2∨)

Proof. These equations follow from well-known quantifier and boolean laws
which are discussed in [47]. We demonstrate the proof of (2∨).

2x(λy.fy ∨ q) = ∀y.Rxy → (fy ∨ q)
= ∀y.(Rxy → fy) ∨ q
= (∀y.Rxy → fy) ∨ q
= 2xf ∨ q a

Proposition 3.5 (Separating Literals) Given a formula

2u(λx.l1 ∨ · · · ∨ lk)

where each li is a monadic literal, we can compute an equivalent monadic
formula.

Proof. Let t = 2u(λx.l1 ∨ · · · ∨ lk) and I = {i | (λx.li) is closed}. Now,
consider the following formula:

t′ = 2u(λx.
∨
i∈I

li) ∨
∨
i6∈I

li

Since each literal is monadic and thus contains at most one variable,
we can repeatedly apply (2∨) to obtain ML ` t = t′. Moreover, the term
(λx.

∨
i∈I li) is closed. As a consequence, t′ is monadic. Note that an empty

disjunction equals 0 by convention. a

Proposition 3.6 (Monadification) For every quasi-monadic formula, we
can compute an equivalent monadic formula.

Proof. Let t be a monadic formula. We prove by induction on the term
structure of t that we can compute a monadic term t′ such that ML ` t = t′.

In the base cases and the boolean cases, there is nothing to do. So,
consider the induction step for t = 2u(λx.s). By induction hypothesis, we
can compute a monadic term s′ such that ML ` s = s′. Now, we proceed as
follows.

1. We compute a monadic conjunctive normal form of s′ (Proposition
3.3). This way, ML ` s′ = t1 ∧ . . .∧ tk where each ti is a disjunction of
monadic literals.
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2. By repeated application of (2∧),

ML ` t = 2u(λx.t1) ∧ . . . ∧2u(λx.tk)

3. Finally, for each 2u(λx.ti), we separate literals (Proposition 3.5) to
obtain equivalent monadic terms s′i.

Now, s′1 ∧ . . . ∧ s′k is a monadic term and it holds,

ML ` t = s′1 ∧ . . . ∧ s′k a

As a result, the quasi-monadic fragment is no more expressive than the
monadic fragment of MFI. This fact yields a concise characterization of
MFI1. Interestingly, the concept of quasi-monadicity is unknown in modal
logics. Traditional modal terms as in K or HL(@) are always monadic.

3.4 Alternative Approaches

Ultimately, a strong justification for our previous treatment of modal logics
is an analysis of the alternatives.

3.4.1 The Case of Modal Base Syntax

We can try to be more conservative about modal syntax. That is, by looking
at a traditional syntax as in K, the modal operator indeed appears as a
constant of type B→ B. Propositional letters have the character of constants
(or variables) at type B. So, instead of deriving higher-order constants as
we did, we now think of 2̊ : B → B as a primitive constant. Additionally,
we install propositional constants f̊ , g̊ : B. In terms of modal logic this
reconstruction seems fairly plausible and resembles closest the traditional
treatment of modal syntax. In this manner, it remained to characterize
the newly introduced constants by the appropriate axioms or to extend the
standard semantics of the lambda calculus with modal frame semantics. In
fact, Fitting proceeds this way in [25].

In a rather principal fashion, this approach neglects the repertoire of
classical logic available in our system. But more importantly, it rapidly
collides with the lambda calculus.

Example (The β/η-Anomalies) Consider the following two terms where
q is a variable of type B.

t1 = 2̊f̊ t2 = (λq.2̊q)f̊

With respect to modal semantics, these terms must denote differently, if
f̊ is a “non-rigid” constant. So, we should certainly be able to distinguish
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these formulas. However, λq.2̊q η-reduces in one step to 2̊. Even if we
restricted or disallowed η-reduction, we would still face the problem that
t2 simply β-equals t1. So, with respect to the underlying lambda calculus,
there is absolutely no justification to discriminate t1 and t2. In fact, even the
most rudimentary models of the calculus should not be able to distinguish
these terms. Restricting β-conversion somehow, literally disconnects modal
syntax from standard semantics.

It seems quite difficult to solve this problem on the basis of a modal base
syntax. Switching back to our notation as in Definition 3.1, it is pleasant to
see the complications resolve.

Example (Problems with β/η resolved)

t1 = 2̊f̊ t2 = (λq.2̊q)f̊

The term t2 now is a short hand for:

(λq.2π(λπ.q))(fπ)

But as substitution does not capture, this term β-reduces to

t′1 = 2π(λπ′.fπ)

in contrast to
t1 = 2π(λπ.fπ)

as one might have expected at first glance. We can go further and analyze
t′1 deductively in ML.

2π(λπ′.fπ) = 2π(λπ′.0 ∨ fπ)
= 2π(λπ′.0) ∨ fπ (2∨)
= 2π(λπ.0) ∨ fπ
= 2̊0 ∨ f̊

The remarkable fact is that classical reasoning – as immediately available
in our system – clarifies a problem related to modal syntax. But also names
played an important role, here.

There are other examples of modal phenomena now enjoying a syntactic
explanation. The reader may try to comprehend why in modal logic the
“deduction theorem” does not hold, i.e. from f̊ ` 2̊f̊ we cannot infer
|= f̊ → 2̊f̊ . We cannot go into detail at this point.
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3.4.2 Standard Translations

The traditional “first-order” approach is to internalize Kripke semantics to
some degree by means of a “standard translation”. Terms of modal logic
are recursively mapped to first-order formulas involving quantifiers. The
quantifiers can express modal operators in the obvious way taking care of
their semantical interpretation.

Figure 3.3 depicts such a standard translation on an informal basis.
Here, for the purpose of demonstration, it translates terms of K to corre-
sponding first-order terms.

Figure 3.3: A First-order Standard Translation

STπf̊ = Fπ

STπ(¬t) = ¬STπt

STπ(t ∧ t′) = STπt ∧ STπt
′

STπ(2̊t) = ∀π′.Rππ′ → STπ′t

This standard translation involves for each propositional letter f̊ a
constant F : V → B and variables π, π′ of type V where
π′ is understood not to have occurred previously in translation.

The first problem of this well-known standard translation are propo-
sitional letters. Since higher-order variables are apparently not available
in traditional first-order predicate logic, the propositional letters must be
translated to unary predicates, i.e., constants. This causes complications
with regards to which “frames” these translated formulas define.

The second problem is not of a technical kind, but nonetheless signifi-
cant. The standard translation eliminates modal syntax and thus the way
of reasoning established not only in the applications of modal logic. Still,
modal logicians have always relied on the standard translation to seek insight
on the basis of classical logic.

In our approach, a standard translation is obsolete. Syntax, semantics
and deduction for modal logics on a classical basis are immediately available.
But then, as we have seen, reasoning takes place equally on the level of
quantifiers, the modal operators and the modal notation.



Chapter 4

Decidability of MFI1

In this chapter, we devise an algorithm to decide the satisfaction problem of
monadicMFI. The central concept of our algorithm is a binary relation→
on sets of formulas called clauses.

This relation is defined by a set of rules, divided into “don’t care” and
“don’t know” rules. Each application of a rule extends the clause with mean-
ingful information in order to reveal possible contradictions. We call this
process saturation. While the order in which we apply “don’t care” rules is
uncritical, the application of a “don’t know” rule yields two distinct alter-
natives. In such a case, we simply do not know which of the two alternatives
to proceed with and must try out both.

Essentially, three key properties of this relation will be established.

Soundness If C → D don’t care, then C is satisfiable if and only if D is
satisfiable.

If C → D1, D2 don’t know, then C is satisfiable if and only if D1 is
satisfiable or D2 is satisfiable.

Completeness If C cannot be extended by a saturation rule, then C is
satisfiable if and only if C does not contain obvious contradictions.

Termination The relation → terminates.

Although we employ some terminology which is not standard, our tech-
niques are known from tableau calculi and tableau-based decision proce-
dures. For introductory material, we refer the reader to [23, 27]. Tableau
methods are established in various branches of logics. In particular, they
are widely used in modal and temporal logics. In this context, see also
[23, 31, 27].

31
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4.1 Preliminaries

In a way that will be convenient for the later analysis, we restate slightly
modified versions ofMFI and its syntactic characterizations.

Definition 4.1 (MFI)

t, t′ ∈MFI def= fu | u=̇v | Ruv | ¬t | t ∧ t′ | t ∨ t′ | 3u(λx.t) | 2u(λx.t)

In the following a formula is always assumed to be a member of MFI in
negation normal form. That is, all negations occur in front of formulas of
the form fu, u=̇v, Ruv.

Just as before, a monadic formula can be represented with a single vari-
able and contains a parameter in each identity.

Definition 4.2 (Proper, Monadic Term) A formula t is called

◦ proper, if it does not contain any subterm of the form Ruv.

◦ quasi-monadic, if it is proper and every sub-term of the form u=̇v
contains a parameter.

◦ monadic, if it is quasi-monadic, |FVt| ≤ 1 and every subterm of the
form λx.t′ is closed.

Definition 4.3 (MFI1) We repeat the definition ofMFI1 as in 3.6.

MFI1
def= {t ∈MFI | t monadic and closed}

Definition 4.4 (Clause) A clause is a finite set of formulas.

Definition 4.5 ((Purely) Monadic Clause) A clause C is called

◦ purely monadic, if C ⊆MFI1.

◦ monadic, if all members are either monadic or of the form Ruv.

It is helpful to regard terms of the form Ruv as “edges”. In this way,
we may think of a monadic clause as the disjoint union of a set of monadic
terms and a “graph” component. Later, this graph will turn out to be an
indispensable data structure. Now, a purely monadic clause is a monadic
clause which comes with closed terms and an empty graph component.

Definition 4.6 (Satisfiability) A formula t (a clause C) is satisfiable, if
there exists a model D and an assignment σ such that D |= ML and D, σ |= t
(for every t ∈ C).
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Definition 4.7 (Trivial Clause) A clause C is trivial, if one of the fol-
lowing holds:

◦ t,¬t ∈ C for some term t

◦ ¬(t=̇t) ∈ C for some term t

Proposition 4.1 Trivial clauses are not satisfiable.

Definition 4.8 (Degree) The degree of a clause C is defined to be the
maximum term size in C.

degC def=
{

0 if C = ∅
maxt∈C |t| o.w.

Definition 4.9 We will make use of the following notation.

(λx.t)↓u def= t[x := u]

4.2 Saturatedness and Model Existence

The design space for our later saturation algorithm will be given in this
section in terms of saturatedness conditions. The idea is that if a monadic
clause respects these closure conditions and we cannot observe an obvious
contradiction, then, in fact, this clause must be satisfiable. We formulate
this result as a model existence theorem. In doing so, we are using standard
techniques to connect syntax and semantics of a logical system. For a full
discussion see for example [24, 3].

Definition 4.10 (Saturated Clause) A clause is saturated, if it satisfies
all of the conditions in Figure 4.1.

Saturatedness is weak with respect to identity. (S=̇) enforces replace-
ment only where parameters are involved. Thus, it is simple to think of a
clause which is saturated, but not satisfiable.

Example Consider the clause {x=̇y, fx,¬fy}. We easily verify that this
clause is saturated, but not satisfiable. On the other hand, it is also not
monadic.

In the remainder of this section, we develop the machinery to finally
prove that saturated monadic clauses are satisfiable. Most of this work is
concerned with identities.
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Figure 4.1: Saturation Conditions

(Sc) C is not trivial

(S∧) s ∧ t ∈ C =⇒ {s, t} ⊆ C

(S∨) s ∨ t ∈ C =⇒ s ∈ C or t ∈ C

(S3) 3ut ∈ C =⇒ {Rux, t↓x} ⊆ C for some x

(S2) 2ut ∈ C,Ruv ∈ C =⇒ t↓v ∈ C

(Ss
=̇) u=̇v ∈ C =⇒ v=̇u ∈ C

(S=̇) u=̇a ∈ C, t ∈ C =⇒ t[u := a] ∈ C

Definition 4.11 (Identity Closure) Let C be a clause.

0∼C
def= {(u, u) | u ∈ FVC ∪ ParC}

1∼C
def= {(u, v) | u=̇v ∈ C or v=̇u ∈ C}

i+1∼ C
def= i∼C ◦

1∼C

∼C
def=

⋃
i≥0

i∼C

We may write ∼C without subscripts, if C is determined by the context.

Proposition 4.2 For a clause C, ∼C is an equivalence relation on FVC ∪
ParC.

Definition 4.12 ((Trivial) Equivalence Class) For a clause C and u ∈
FVC ∪ ParC, we write

[u]C
def= {v | u ∼C v}

to denote the equivalence class of u with respect to ∼C . An equivalence
class [u]C is called trivial, if [u]C = {u}.

Again, we may write [u]C without subscripts, if not ambiguous.

Proposition 4.3 (Parameter Existence) Let C be a monadic clause. Ev-
ery nontrivial equivalence class [u]C contains a parameter.

Proof. Straightforward induction on the definition of ∼C using monadicity.a

The previous proposition justifies the weak replacement condition (S=̇)
in the case of monadicity. If a monadic clause is also saturated, we can
prove that the identities in this clause agree with their closure whenever
parameters are involved.
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Proposition 4.4 (Agreement) Let C be a saturated monadic clause. Given
u 6= a, it holds:

u ∼C a ⇐⇒ u=̇a ∈ C

Proof. From right to left, this holds directly by definition of ∼. So, assume
u ∼ a, then u

i∼ a for some i. We prove by induction on i that in this case
u=̇a ∈ C.

The case i = 0 is excluded by assumption. Suppose, u i+1∼ a. Then, there
is a v such that u i∼ v and v 1∼ a. Since C is saturated, we have v=̇a ∈ C by
(Ss

=̇). Now, if u = v, we are done. Otherwise, if one of u, v is a parameter,
we can apply the induction hypothesis and obtain u=̇v ∈ C. Therefore,
u=̇a ∈ C by using (S=̇).

The problematic case is where u 6= v and both are not parameters. Here,
we have a v′ such that u i−1∼ v′ and v′

1∼ v. Again, v′=̇v ∈ C and thus by
monadicity of C, v′ ∈ Par. Now, we can apply the induction hypothesis to
obtain u=̇v′ ∈ C. Given these identities, we infer:

{u=̇v′, v′=̇v, v=̇a} ⊆ C =⇒ {u=̇v′, v′=̇a} ⊆ C (S=̇)
=⇒ u=̇a ∈ C (S=̇) a

Theorem 1 (Model Existence) Every saturated monadic clause is satis-
fiable in a finite model.

Proof. Let C be a saturated monadic clause. The only objects of type V
subject to the identity judgement are variables and parameters V def= FVC ∪
ParC which are partitioned by ∼C into equivalence classes.

V ∼ def= {[u]C | u ∈ V }

By Parameter Existence (Proposition 4.3), we can assume a function
ρ ∈ V ∼ → V such that:

1. ρ{u} = u

2. ρν ∈ (ν ∩ Par) if ν is a nontrivial equivalence class.

Now, we determine a model D and an assignment σ by the following
equations:

DV = V ∼

DR = λν ∈ DV.λν ′ ∈ DV.R(ρν)(ρν ′) ∈ C
Da = [a]
σx = [x]
σf = λν ∈ DV.f(ρν) ∈ C
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D is chosen to give standard interpretation to the logical constants, i.e.
D |= ML. The value of σ on variables not occurring in C is arbitrary.

While it is easy to prove that D is a standard model, it remains to show
D, σ |= C. This is shown by structural induction over the terms in C.

◦ The base cases follow from Proposition 4.5 with straightforward argu-
ments.

◦ The induction step is clear in the boolean cases. We demonstrate the
case 3ut ∈ C. Since C is saturated, we have {Rux, t ↓ x} ⊆ C for
some x. By induction hypothesis D, σ |= Rux, t↓x from which we infer
D, σ |= ∃x.Rux ∧ t↓x. Since, t↓x β-equals tx, we have D, σ |= 3ut. a

Proposition 4.5 (Base Cases) Let C be a saturated monadic clause. Then,
it holds:

1. u=̇a ∈ C or a=̇u ∈ C =⇒ [u] = [a]

2. ¬(u=̇a) ∈ C or ¬(a=̇u) ∈ C =⇒ [u] 6= [a]

3. fu ∈ C, u ∼ a =⇒ fa ∈ C

4. ¬(fu) ∈ C, u ∼ a =⇒ fa 6∈ C

5. Ruv ∈ C, u ∼ a, v ∼ b =⇒ Rab ∈ C

Proof. Straightforward use of the saturation conditions and Agreement. In
particular, nontriviality of C is needed in the cases 2. and 4. We demonstrate
the following.

2. Assume ¬(a=̇u) ∈ C. Since C is nontrivial, we have u 6= a and also
a=̇u 6∈ C. By (Ss

=̇) contrapositively, u=̇a 6∈ C. Thus, by Agreement
u 6∼ a. The case of ¬(u=̇a) ∈ C is simpler.

3. Assume fu ∈ C and u ∼ a. If u = a, we are done. Otherwise, by
Agreement, we have u=̇a ∈ C. With (S=̇), fa ∈ C.

4. Assume ¬(fu) ∈ C. Again, either directly or by Agreement and (S=̇),
we have ¬(fa) ∈ C. Since C is nontrivial, fa 6∈ C. a

The models obtained in Theorem 1 are usually neither “tree” nor “acyclic
models”. This result cannot be sharpened.

Example Consider the following clause:

{¬(a=̇b),3a(λx.x=̇b),3b(λx.x=̇a)}

Without proof, we claim that this formula cannot be satisfied by a model
where R is interpreted by an acyclic graph.
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4.3 Saturation

Previously, we have established the notion of a saturated monadic clause
along with proof that these clauses are satisfiable. The computational coun-
terpart is now an algorithm which performs saturation steps. We approach
this goal by defining a binary relation on clauses by means of a few easily
computable rules.

Figure 4.2: Saturation Rules

If and add

(C∧) s ∧ t ∈ C – s and t

(C∨) s ∨ t ∈ C s 6∈ C and t 6∈ C s or t

(C3) 3ut ∈ C 3ut not expanded in C Ru(γC) and t↓(γC)

(C2) 2ut ∈ C Ruv ∈ C t↓v

(Cs
=̇) u=̇v ∈ C – v=̇u

(C=̇) u=̇a ∈ C t ∈ C t[u := a]

Definition 4.13 (Expansion) We say 3ut is expanded in C if and only if
{Rux, t↓x} ⊆ C for some x.

Definition 4.14 (Saturation) We choose γ to be a fixed mapping from
clauses to variables such that γC 6∈ FVC. The saturation relation over
clauses is defined as follows:

◦ C → D
def⇐⇒ C ⊂ D and D can be obtained from C by applying one

of the rules in Figure 4.2.

◦ The reflexive, transitive closure of → is denoted by →∗.

◦ We say C → D don’t care, if C → D by one of the rules in Figure 4.2
excluding (C∨).

◦ We say C → D1, D2 don’t know, if D1 and D2 are the two distinct
alternative results of applying (C∨) to some s ∨ t ∈ C.

The property we call “soundness” ensures that satisfiability propagates
back and forth over the application of a saturation rule.

Proposition 4.6 (Soundness) 1. If C → D don’t care, then C is sat-
isfiable if and only if D is satisfiable.
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2. If C → D1, D2 don’t know, then C is satisfiable if and only if D1 is
satisfiable or D2 is satisfiable.

Proof. 1. Assume C → D don’t care and D is satisfiable. Since C ⊆ D, C is
satisfiable. On the other hand, given that C is satisfiable, we can prove by
case analysis over the saturation rules that D is satisfiable. We demonstrate
the modal cases.

(C3) Assume C is satisfiable and 3ut ∈ C. There exist D, σ such that
D |= ML and D, σ |= t for every t ∈ C. In particular, D, σ |= 3ut.
Since 3ut = ∃x.Rux ∧ tx, there exists a ν ∈ DV such that D, σ′ |=
Ru(γC), t ↓ (γC) where σ′ = σ[γC := ν]. Since γC 6∈ FVC, we have
Dσt = Dσ′t for all t ∈ C. Consequently, D, σ′ |= t for every t ∈ D.
Thus, D is satisfiable.

(C2) This is an equivalence transformation, proven in ML as follows:

2ut ∧Ruv = (∀x.Rux→ tx) ∧Ruv
= (∀x.Rux→ tx) ∧ (Ruv → tv) ∧Ruv (Instantiation)
= (∀x.Rux→ tx) ∧Ruv ∧ tv (Modus Ponens)
= 2ut ∧Ruv ∧ t↓v (β)

2. The right-to-left implication is proven as before. For the other direc-
tion, let C be a satisfiable clause and assume some s ∨ t ∈ C. Then, either
C ∪ {s} is satisfiable or C ∪ {t} is satisfiable. a

Definition 4.15 (Terminal Clause) We call a clause C terminal, if there
does not exist a clause D such that C → D.

Note, by the side condition in (C∨), we ensure that if (C∨) applies to a
clause, we can perform a don’t know step. In other words, if a clause cannot
be extended by the application of a don’t care or don’t know rule, then it is
terminal.

Proposition 4.7 (Completeness) A monadic terminal clause is satisfi-
able if and only if it is nontrivial.

Proof. Let C be a monadic terminal clause. If C is trivial, it is not satisfiable
(Proposition 4.1).

Assume C is not trivial. Since C is monadic and we have established a
model existence theorem for saturated monadic clauses, it remains to show
that C is saturated. This is proven by case analysis over the definition of
saturatedness.

(Sc) By Assumption.
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(S3) Assume 3ut ∈ C. Since C is terminal, 3ut is expanded, i.e.,
{Rux, t↓x} ⊆ C for some x.

The remaining conditions follow directly from the fact that the respective
saturation rule cannot extend C. a

Theorem 2 (Termination) The saturation relation→ terminates on purely
monadic clauses.

Proof. See Section 4.4. a

Saturation terminates after finitely many steps on input of a purely
monadic clause. But, to make use of our completeness result in this case,
the terminal clauses we arrive at must be monadic.

Proposition 4.8 If C → D and C is monadic, then D is monadic.

Proof. Let C be a monadic clause and assume C → D. We prove by case
analysis over the saturation rules that D is monadic.

(C3) Given 3ut ∈ C, observe that every sub-term of t ↓ (γC) of the form
λx.t′ is also a sub-term of t and thus closed by assumption. From the
fact that t is closed, it also follows that |FV(t ↓ (γC))| ≤ 1. Since γC
replaces a variable in t, all sub-terms of the form u=̇v still contain a
parameter.

(C2) Analogous.

(C=̇) Application of this rule never introduces a variable.

There is nothing to do in the remaining cases. a

Corollary 4.9 (Decidability of MFI1) Given a purely monadic clause,
we can decide whether this clause is satisfiable or not.

Proof. A simple procedure A works as follows:

AC = false if C is trivial

AC = AD if C → D don’t care

AC = (AD1) or (AD2) if C → D1, D2 don’t know

AC = true if C is a nontrivial terminal clause

Given a purely monadic clause C, we know that A terminates on input
C by Theorem 2. If AC = true, then by Proposition 4.8 and Completeness
C is satisfiable. If AC = false, then from Soundness it follows that C is not
satisfiable. a



40 4.4. TERMINATION

The algorithm we have presented is often supported by a data structure
called a tableau. A tableau for a clause C is a binary tree where each node
is a clause. The root of this tree is C itself. Whenever a node C in this
tableau has two successors D1, D2, we have C → D1, D2 don’t know. If a
node C has exactly one successor D, then C → D don’t care. From the
saturation relation, we can easily extract tableaux. In the terminology of
tableau calculi, saturation is usually called branch extension.

A tableau is called closed, if all leafs in the tree are trivial clauses. Oth-
erwise, it is open. Tableau calculi are also widely used as proof systems. A
closed tableau for a clause {t} gives proof of the fact that ¬t is valid. On
the other hand, if we cannot find a closed tableau for t, a model exists in
which t is true, proving that ¬t is not valid. As intended, this notion of a
proof works fine for semi-decidable logics.

In the case of a decision procedure we are mainly interested in the sat-
uration relation and its computational behavior.

4.4 Termination

Proof Idea

Remember that we will be given a purely monadic clause C. The degree of
this clause does not change when saturation steps are performed and as we
have already seen, monadicity is preserved.

monadic C → D monadic
degC = degD

Monadicity is important because it helps to address terms with respect
to the single free variable which possibly occurs. This way, we can partition
the proper terms of C into sets Ca, Cx, and so on where Ca is the set of
closed proper terms occurring in C.

Now, to proof termination we have to carefully bound the number of
variables introduced. As soon as (C3) introduces a fresh variable, we receive
a witnessing edge Rux. Interestingly, we can maintain the invariant that
in this case, degCu > degCx. Since degCu is bounded by degC which we
mentioned to be invariant, paths in the graph {(u, x) | Rux ∈ C} are short.

u degCu

R ←
−

<

x degCx

In a next step, we enforce an injective mapping ϕ from free variables
to “appropriate” terms of the form 3ut. This way, every clause Cu can
sponsor at most |Cu| free variables. We think of ϕ as a justification for the
free variables.
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3ut 6= 3ut′

ϕ −→ ϕ −→

x 6= x′

By tracing ϕ from a given free variable to a parameter, we can establish
the notion of a level. Each variable is located in some level and from top to
bottom, levels make it easy to bound the number of variable recursively.

y
ϕ−→ 3xt, x

ϕ−→ . . .
ϕ−→ 3at′

Proof of Theorem 2

Note We will denote the set of propositional variables occurring in a clause
C by PropC.

Definition Let β ∈ N3 → N be a function s.t. |C| ≤ β(p, v, n) whenever C
is a clause for which it holds:

1. |ParC|+ |PropC| ≤ p

2. |FVC| ≤ v

3. degC ≤ n

Definition Let C be a monadic clause.

◦ Ca
def= {t ∈ C | t proper and closed}

◦ Cx
def= {t ∈ C | t proper and FVt = {x}}

Definition 4.16 (Admissibility) Let C be a clause, n ∈ N and ϕ ∈
FVC → C. C is called (n, ϕ)-admissible, if

1. degC ≤ n and C monadic

2. Rux ∈ C =⇒ degCu > degCx

3. ϕ injective and ∀x ∈ FVC : ∃u, t : ϕx = 3ut ∧ {Rux, t↓x} ⊆ C

A clause C is called

◦ n-admissible, if there exists a ϕ ∈ FV C → C such that C is (n, ϕ)-
admissible.

◦ admissible, if there exists an n ∈ N such that C is n-admissible.
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Definition (Levels) Let C be an (n, ϕ)-admissible clause. We define re-
cursively:

Lϕ,0
def= ParC

Lϕ,m+1
def=

⋃
u∈Lϕ,m

Sϕ,u

Sϕ,u
def= {x ∈ FVC | ∃t : ϕx = 3ut}

Proposition 4.10 (Levels Are Bounded) Let C be an (n, ϕ)-admissible
clause with at most p parameters and propositions. Then,

1. |Cu| ≤ β(p, 1, n)

2. |Sϕ,u| ≤ |Cu|

3. |Lϕ,n| ≤ p · β(p, 1, n)n

4. |Lϕ,n+1| = 0

Proof. 1. By definition, Cu is a clause with |FVCu| ≤ 1. Since Cu ⊆ C,
the remaining follows.

2. If x ∈ Sϕ,u, then ϕx = 3ut for some t. By monadicity, t is closed.
Thus, ϕx ∈ Cu. Now, the claim follows from the injectivity of ϕ.

3.

|Lϕ,0| = |ParC| ≤ p

|Lϕ,m+1| ≤
∑

u∈Lϕ,m

|Sϕ,u|

≤
∑

u∈Lϕ,m

|Cu| (2)

≤
∑

u∈Lϕ,m

β(p, 1, n) (1)

= |Lϕ,m| · β(p, 1, n)

By solving this recurrence, we have |Lϕ,m| ≤ p · β(p, 1, n)m.

4. If x ∈ Lϕ,m, then there exists a path in the graph {(u, x) | Rux ∈ C}
of length m from a parameter a to x. This is shown by induction on
m. Now it follows from item (1) and (2) of Admissibility that such a
path has length at most n. a

Essentially, from the totality of ϕ, it follows that all free variables are
located in some level.
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Proposition 4.11 Let C be an (n, ϕ)-admissible clause. Then,

FVC ⊆
⋃

m≥1

Lϕ,m

Proof. We define recursively:

l a = 0
l x = 1 + l u if ∃t : ϕx = 3ut

If ϕx = 3ut, then Rux ∈ C and therefore degCu > degCx. Since
degC ≤ n, the definition is admissible. Moreover, it is defined on all free
variables in C. Now, proof is by induction on m that l x = m implies
x ∈ Lϕ,m. a

Corollary 4.12 Let C be an n-admissible clause with at most p parameters
and propositions. Then,

1. |FVC| ≤ n · p · β(p, 1, n)n

2. |C| ≤ β(p, n · p · β(p, 1, n)n, n)

Lemma 4.13 (Invariance) Let C be an n-admissible clause. If C → D,
then D is n-admissible.

Proof. Let C be an n-admissible clause and ϕ be such that C is (n, ϕ)-
admissible. Assume C → D. We prove that D is n-admissible according to
the three cases of Admissibility by inspection of the saturation rules.

1. We easily see that degD = degC ≤ n. Monadicity follows from Propo-
sition 4.8.

2. (C∧), (C∨) and (Cs
=̇) are clear. We consider the remaining cases:

(C3) In this case, there is 3ut ∈ C such thatD\C = {Ru(γC), t↓(γC)}.
The only terms in D which contain γC are Ru(γC) and t↓(γC), but
both are smaller than 3ut. Thus, degDu > degDγC .

(C2) In this case, 2ut ∈ C,Rux ∈ C and D\C = {t ↓ x}. However,
|t↓x| < |2ut|. Therefore, degDu > degDx.

(C=̇) Assume t ∈ C and D\C = {t[u := a]} was added by (C=̇). The
term t[u := a] cannot increase the degree of some Cx, since a is a
parameter.

However, (C=̇) may have also added an edge of the form Rax. But in
this case, a ∈ Lϕ,0 and x ∈ Lϕ,m where m ≥ 1. Thus, degCa > degCx

by admissibility of C. Moreover, degDa = degCa and degDx = degCx.
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3. We must check the case where (C3) introduces a new variable. So,
assume 3ut ∈ C and D\C = {Ru(γC), t ↓ (γC)}. We extend ϕ as
follows:

ψx
def=

{
3ut if x = γC
ϕx otherwise

Now, ψ ∈ FVD → D and we claim that ψ satisfies condition (3) of
Admissibility.

Since 3ut is not expanded in C, there cannot be a y ∈ FVC with
ψy = 3ut = ψx. Therefore, ψ is injective, given the injectivity of ϕ.
The remainder follows immediately.

We have shown, D is (n, ψ)-admissible, thus n-admissible. a

Proposition The saturation relation → terminates on admissible clauses.

Proof. Let C be n-admissible. Define B = β(p, n · p · β(p, 1, n)n, n) where
p = |ParC|+ |PropC|. This is the bound from Corollary 4.12. Note that B
is a constant which solely depends on C.

Now, assume C →∗ D. By Invariance D is n-admissible. Since satura-
tion neither introduces parameters nor propositions, it follows with Corollary
4.12 that |D| ≤ B. Thus, paths in→ emanating from C have length at most
B as saturation increases clause sizes in each step. a

Proposition Purely monadic clauses are admissible.

Proof. Let C be a purely monadic clause. It is easy to see that C is (degC, ∅)-
admissible. While (1) of Admissibility follows immediately, (2) and (3) are
vacuously true. a

4.5 Remarks About Saturation

4.5.1 Related Tableau Calculi

The saturation rules in Definition 4.14 directly translate into a tableau cal-
culus. As monadic MFI is equivalent to HL(@), our saturation algorithm
also decides the satisfiability problem for the latter. Tzakova was the first to
introduce a tableau calculus for HL(@) in [50]. Besides the standard modal
and boolean rules, her system comprises four rules concerned with @ and
the nominals (identity). In order to achieve termination, Tzakova states an
involved special-purpose branch extension procedure.

Shortly after her, Blackburn [15] discusses the broad advantages of in-
ternalizing labeled deduction for Hybrid Logic. He stresses the point that
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nominals should be considered formulas in order to establish labeling dis-
cipline at the object level. To handle identities, Blackburn introduces four
rules: Reflexivity, Symmetry, Replacement and a rule called “Bridge”.

Finally, Bolander and Bräuner [17] extend the calculi of Tzakova and
Blackburn by a treatment of the universal modalities and give a simplified
discussion. In the case of Tzakova’s system, they recognize that two of
her rules are subsumed by a strong replacement rule as used by Blackburn.
However, such a strong replacement rule demands loop-checking as we will
analyze later.

Our calculus certainly carries forward the arguments of Blackburn, as
state labels are integral parts of formulas. Blackburn avoids the use of meta-
level information and thus has to represent the successor relation Ruv by
an equivalent formula like 3u(λx.x=̇v) or @u.3̊v̊, respectively. Moreover,
to maintain this representation scheme, he must install the additional rule
“Bridge”.

@ů.3̊v̊ @v̊.̊a
@u.3̊å

In our system, the access relation itself is a formula. But then, “Bridge”
happens to be a special case of (C=̇):

{Ruv, v=̇a} → {. . . , Rua}

As opposed to Blackburn’s system, many modal tableaux as those of
Fitting [23] and Gabbay [27] maintain external state labels and access in-
formation. It turns out that both of these we can naturally represent on the
object level.

Loop-Checking And The Role of (C=̇)

A weak saturation rule with respect to =̇ causes more work in the pre-
lude of our model existence theorem. Computationally, however, a stronger
saturation rule leads to divergence very quickly. Consider, for example, a
replacement rule (C=̇) where we omit the requirement a ∈ Par:

(C=̇) If u=̇v ∈ C and t ∈ C add t[u := v]

Now, a simple formula causes information to be passed along a growing
chain of successors.

{3u(λx.x=̇u)} → {. . . , Rux1, x1=̇u} (C3)
→ {. . . ,3x1(λx.x=̇u)} (C=̇)
→ {. . . , Rx1x2, x2=̇u} (C3)
→ . . .
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Interestingly, this example (written as 3̊ů∧ ů) causes the same behavior
in the calculus of Bolander and Bräuner [17] where divergence is blocked
out by “loop-checking” techniques. While we can avoid loop-checking in the
case of identity, our termination criteria cannot handle “universal modali-
ties” without changes. To be precise, item (2) of Admissibility cannot be
maintained.

4.5.2 Limitative Observations

Recall that a quasi-monadic term (Definition 4.2) may nest bound variables,
but guarantees to have a parameter in each identity. Interestingly, even in
the case without identity, this leads to divergence.

Proposition 4.14 (Divergence) Saturation diverges on quasi-monadic (=̇-
free) clauses.

Proof. Consider the following quasi-monadic formulas.

t1 = 3a(λx.1)
t2 = 2a(λx.3b(λy.fx))
t3 = 2b(λx.3a(λy.fx))

We claim that completion diverges on C = {t1, t2, t3}.
Intuitively, t1 demands a successor at a. For any successor of a, t2

demands a successor at b and vice versa by t3. Now, the critical variable is
x. It places whenever (C2) is applied the fresh variable previously introduced
by (C3) inside the inner 3-term such that this formula appears unexpanded
in C. The sketch is as follows:

C → {. . . , Rax1} (C3)
→ {. . . ,3b(λy.fx1)} (C2)
→ {. . . , Rbx2} (C3)
→ {. . . ,3a(λy.fx2)} (C2)
→ {. . . , Rax3} (C3)
→ . . . a

We can circumvent this problem by preprocessing, but we are also inter-
ested in a native solution.

Open Problem 1 How can the saturation rules be strengthened so that
they handle quasi-monadic clauses natively?
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A Note On Computational Complexity

Although the bound on the number of variables in Corollary 4.12 roughly
reads as 2n2

, we cannot hope for anything much better without modification
of the saturation algorithm.

Proposition 4.15 For any number n, there exists a monadic formula t of
size polynomial in n such that saturation of {t} introduces more than nn

disjoint variables.

Proof. For a given n, we recursively define the formula tn of size c ·n2 where
c is some small constant.

t1 = 3x1(λy.f1y) ∧ . . . ∧3x1(λy.fny)
tn = 3xn(λy.f1y) ∧ . . . ∧3xn(λy.fny) ∧2xn(λxn−1.tn−1)

Let t = tn[xn := a]. Then, {t} is a purely monadic clause. When
saturating {t}, n disjoint variables y1, . . . yn are created in order to expand
the terms 3a(λy.f1y), . . . ,3a(λy.fny). But then, (C2) will add tn−1 ↓yi for
each 1 ≤ i ≤ n and so on. a

As a result, with respect to space consumption the saturation algorithm
is not optimal. Monadic MFI inherits the PSPACE result from HL(@),
while we observe an exponential space consumption at this point.

Nevertheless, the formula stated above is essentially a K formula and
as such it causes the same computational behavior in the calculi we have
previously discussed. In fact, since K does not have the polysize model
property [16], any tableau based procedure deciding K is affected by such
examples if it manages resources naively.

For K, however, it is simple to use space in an efficient way by explor-
ing the clause a “diamond at a time”. This is not possible in an equally
straightforward way when identity is involved.

Open Problem 2 How do we obtain a PSPACE result forMFI1 based on
the saturation algorithm?
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Chapter 5

Summary and Conclusion

Chapter 3 In this chapter, we presented modal logic on the basis of the
simply typed lambda calculus. Our focus was to give modal logic a uniform
and natural treatment in terms of classical logic. On the one hand, first-
order quantification was strong enough to express the semantics of the modal
operators, on the other hand, first-order predicate logic as such was syntac-
tically too weak for our purposes. This is why higher-order syntax came to
play such an important role. We employed higher-order variables, derived
higher-order constants and finally expressed operators of Hybrid Logic by
means of the λ-operator.

We eventually arrived at a concept of three different levels of reasoning:

Notational Level On a notational level, we preserved the traditional syn-
tax of modal logics as in K and HL.

Native Modal Syntax It turned out that modal notation was naturally
subsumed by our native syntax and the fragments MF and MFI
which we defined in terms of this syntax. However, in the case of HL
we obtained a tight equivalence of notation and syntax.

Quantifiers At the bottom, quantifiers were employed to give modal oper-
ators their precise meaning.

We demonstrated these levels to interact freely on the basis of equational
deduction. Syntax clarified notation. Quantifiers were used several times to
derive validities in modal logic.

From our point of view, traditional studies in correspondence between
modal and first-order predicate logic suffered from their syntactical weak-
ness.

Chapter 4 Based on our modal syntax, we devised a tableau-like decision
procedure for MFI1, the monadic fragment of MFI. It became evident
that the design and the analysis of such an algorithm notably seized upon
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the rich structure accessible from the object level in our system. Explicit
names, identities and an explicit access relation turned out to simplify the
style of deduction, considerably.

In a next step, we wanted to know whether termination could be achieved
by simple local criteria in our rules and whether the proof of termination
itself could be established by local arguments. In the literature, e.g., [17],
the argumentation is often that as soon as identities are involved, one faces
the same problems as in K over transitive frames where formulas are passed
along a chain of successors. We demonstrated that, in deed, this happens
too, if one uses an untamed replacement rule. However, in the case ofMFI1

such a rule can be avoided.

Further Work

There are numerous starting points for further work.

Modal logics in our system Our discussion applies straightforwardly to
modal logics in general. One line of research where this seems especially suit-
able is the exploration of rich modal logics, such as an unrestricted “Higher-
order Modal Logic”. In spite of the intensional tradition [29, 30] and a recent
approach by Fitting [25], such a logic is still widely uninvestigated on the
basis of classical higher-order logic, but see [19]. Having established basic
modal languages such as MF and MFI, one can extend these easily by
higher-order quantification.

Decision procedures We stated two open problems about our decision
procedure. One relates to how we can manage quasi-monadic clauses. Al-
though quasi-monadic formulas are not more expressive than monadic for-
mulas, they enjoy a remarkably simple characterization. We wish to find
out how to handle quasi-monadicity, appropriately.

There has not yet been a saturation based decision procedure (such as
a tableau calculus) for MFI1, i.e., HL(@) which uses space efficiently. As
opposed to the situation with K, this is difficult to achieve due to the identity
involved. Quite recently, Horrocks et al. [34] demonstrate a goal-directed
tableau based decision procedure for the related description logic SHOIQ.
We are highly interested to see an optimal PSPACE solution forMFI1 based
on the saturation approach.

We have developed local termination criteria for our algorithm. However,
there is a strong indication that one must rely on “loop-checking” as soon as
universal modalities are involved. We are interested in further discussion of
this topic. It turns out, in order to deal with universal modalities we do not
need new constants in our system. Instead, we can generalize the type of
3,2 to (VVB)V(VB), i.e., we install an additional relational argument. Our
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old constants are available as 3R,2R. Now, ML allows us to build complex
relations such as

λx.λy.3Rx(λz.3Rz(λz.z=̇y))

which reads as “R composed R”. Universal modalities can be derived with
λx.λy.1 and λx.λy.0, respectively. As such they are only a special case of
large class of modalities, e.g.,

2(λx.λy.t)xf

where t is a monadic term. Generalizations like these give rise to an extended
and challenging discussion of termination criteria and decidability results.
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Tableau Methods. Kluwer Academic Publishers, 1999.

[22] Brian A. Davey and H.A. Priestley. Introduction to Lattices and Order.
Cambridge University Press, 2002.

[23] Melvin Fitting. Proof Methods for Modal and Intuitionistic Logics. D.
Reidel Publishing Co., Dordrecht, 1983.

[24] Melvin Fitting. First-order logic and automated theorem proving (2nd
ed.). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 1996.



BIBLIOGRAPHY 55

[25] Melvin Fitting. Higher-order modal logic – a sketch, 2001.

[26] Melvin Fitting and Richard L. Mendelsohn. First-Order Modal Logic.
Kluwer Academic Publishers, 1998.

[27] Dov Gabbay. Labelled Deductive Systems. Oxford University Press,
1996.

[28] Dov M. Gabbay, Ian Hodkinson, and Mark Reynolds. Temporal Logic.
Oxford, 1994.

[29] Daniel Gallin. Intensional and Higher-Order Modal Logic, volume 19
of North-Holland Mathematics Studies. North-Holland, Amsterdam,
1975.

[30] L. T. F. [pseud.] Gamut. Logic, Language, and Meaning, volume 2.
University of Chicago Press, Chicago, Illinois, 1991.
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