
Saarland University
Faculty of Natural Sciences and Technology I

Department of Computer Science
Master’s Program in Computer Science

Master’s Thesis

Completeness Results for

Higher-Order Equational Logic

submitted by

Mark Kaminski

on 15.12.2006

Supervisor

Prof. Dr. Gert Smolka

Reviewers

Prof. Dr. Gert Smolka
Prof. Bernd Finkbeiner, Ph.D.



Statement

Hereby I confirm that this thesis is my own work and that I have documented all sources
used.

Saarbrücken, 14.12.2006

Mark Kaminski

Declaration of Consent

Herewith I agree that my thesis will be made available through the library of the Com-
puter Science Department.

Saarbrücken, 14.12.2006

Mark Kaminski



Abstract

We present several results concerning deductive completeness of the simply typed λ-
calculus with constants and equational axioms.

First, we prove deductive completeness of the calculus with respect to standard se-
mantics for axioms containing neither free nor bound occurrences of higher-order vari-
ables. Using this result, we analyze some fundamental deductive and semantic properties
of axiomatic systems without higher-order variables and compare them to those of es-
tablished logical frameworks like first-order logic and Church’s higher-order logic.

Second, we present a finite higher-order equational formulation of Henkin’s Proposi-
tional Type Theory (PTT) and prove its deductive completeness. We introduce a simple
criterion which allows to reduce deductive completeness of systems with axiomatically
defined constants to completeness of simpler axiomatic systems, and present an applica-
tion of this criterion to our formulation of PTT.

Third, we prove the simply typed λ-calculus both with and without η-conversion
complete with respect to general semantics. The result holds for systems with arbitrary
axioms and constants.
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1 Introduction

1.1 Higher-Order Equational Logic

The simply typed λ-calculus, introduced by Church [13], is nowadays considered one of
the most important formal frameworks in mathematical logic and computer science, both
in its own right and as a basis for more expressive calculi. Fundamental properties of the
pure simply typed λ-calculus, the simplest version of the calculus without constants or
axioms, include decidability of deductive equality, essentially proven by Turing [17], and
deductive completeness with respect to general and standard set-theoretic semantics,
first shown by Friedman [16].

The equational proof system of the simply typed λ-calculus with constants can be
used to investigate the logical consequences of arbitrary sets of equational axioms in the
same way as first-order equational reasoning is used to study algebraic theories (see [33]).
Therefore, in the same sense as first-order equational reasoning from algebraic axioms
is called first-order equational logic, equational reasoning in the simply typed λ-calculus
from higher-order axioms may be called higher-order equational logic.

The theory of βη-conversion in the pure simply typed λ-calculus, i.e. the set of all
constant-free equations derivable by a finite number of βη-conversion steps, can then be
seen as a particular theory of higher-order equational logic (λ-theory), namely the one
generated by the empty set of axioms. Of course, higher-order equational logic allows
us to specify many more interesting theories, like equational formulations of Church’s
higher-order logic (HOL) [13] or fragments thereof, Gödel’s T [21] or Scott’s PCF [41]
(see also [40, 38, 42, 30, 45]).

Our interests for the thesis lie, on the one hand, in strengthening the existing com-
pleteness results for higher-order equational theories. Besides the standard complete-
ness of βη-conversion, it is known that, in the absence of empty types, higher-order
equational deduction from any set A of axioms is complete with respect to extensional
general semantics as introduced by Henkin [23, 24, 33]. We are able to strengthen both
of these results. As for standard completeness, we introduce a specific class of syntacti-
cally restricted equations, called plain equations, and show that Plotkin’s version of the
completeness proof [39] for the λ-theory of ∅ can be extended to axiomatic systems con-
sisting of plain equations. The completeness result for general semantics is extended to
non-extensional theories generated by the simply typed λ-calculus without η-conversion.

On the other hand, we are interested in higher-order equational logic as a tool for
studying the algebraic theory of classical logic. We present and analyze several equational
formulations of Henkin’s Propositional Type Theory (PTT) [25]. In particular we show
that PTT can be finitely axiomatized preserving its deductive completeness.
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1.2 Overview

We begin our discussion by introducing our main formal framework for the thesis, namely
the simply typed λ-calculus with equational deduction. We use the name S to refer to
our formulation of the calculus. In Chapter 2 we present the syntax, deduction and
standard semantics of S. Along the lines, we introduce the necessary terminology and
notational conventions. We also state several fundamental theorems about the syntax
and semantics of S. Some of the theorems will be presented together with a short proof
or a proof sketch. As for the rest of the theorems, we rely on the reader’s ability to
verify their validity on his own. The necessary methodology and analogous proofs can
be found in [33] and [48].

Chapter 3 presents a completeness result with respect to general semantics for the
simply typed λ-calculus with arbitrary equational axioms. In contrast to known re-
sults [33], our considerations are not restricted to functionally extensional semantics,
which allows us to establish, in addition to a completeness result for S, deductive com-
pleteness of a functionally non-extensional version of the calculus obtained from S by
dropping the rule η. The overall structure of our proof is strongly inspired by the cor-
responding constructions by Friedman [16] and Mitchell [33].

Chapters 4 and 5 focus on completeness with respect to the standard semantics of S
as introduced in Chapter 2, and are largely independent of the notions and constructions
introduced in Chapter 3. Considerations involving general semantics are presented at
the end of the two chapters, separately from the main results. A reader who is interested
only in the standard semantics of S may skip them, together with Chapter 3.

In Chapter 4 we analyze the relation between semantic and deductive entailment from
syntactically restricted sets of axioms. The axioms under consideration are called plain,
and are restricted to contain neither free nor bound occurrences of higher-order vari-
ables. We prove that for every set A of plain axioms, equational deduction is complete
with respect to the standard semantics of S by constructing a standard model of A that
satisfies precisely the equations derivable from A. The model construction can be seen
as an extension of Plotkin’s construction for the pure simply typed λ-calculus [39]. Since
plain terms are a proper superset of traditional first-order formulas, plain equations seem
well-suited to give an intuitive (as compared to [31] or [34]) equational axiomatization
of first-order logic. We analyze basic deductive and semantic properties of plain axiom-
atizations and conclude that they are indeed sufficient to encode traditional first-order
logic with adequate precision.

In Chapter 5 we present an equational formulation of Henkin’s Propositional Type
Theory [25]. We give an axiomatization of PTT in S, called MT. In contrast to Henkin’s
set of axioms for PTT, MT is finite. We prove completeness of MT with respect to both
Henkin’s original semantics and the semantics of S. The completeness proof follows the
basic ideas of Henkin’s original proof. We show further that completeness of deduction
for a given set of axioms is invariant under axiomatic introduction of new constants,
provided that the corresponding values are expressible in the initial theory. Using this
insight we prove completeness of two alternative formulations of PTT by reduction to
completeness of MT.
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1.3 Contributions

The contributions of this thesis are as follows:
1. We prove deductive completeness of the simply typed λ-calculus with respect to

standard semantics for axioms that contain neither free nor bound occurrences of
higher-order variables (in which case they are called plain).
Using the above result, plain equational specifications are shown to have the first-
order Löwenheim-Skolem property and the strong compactness property.
We conclude that, with respect to both deduction and semantics, λ-theories induced
by plain axioms are more expressive than traditional formulations of FOL and strictly
less expressive than Church’s HOL.

2. We present, for the first time, a finite axiomatization of Henkin’s Propositional Type
Theory, called MT. We show deductive completeness of MT by introducing and
proving a necessary and sufficient deductive criterion.
Additionally using results by Henkin [24] and Andrews [5], we show that our formu-
lation of PTT requires all its Henkin models to be standard at the relevant types.
From this we derive that Henkin semantics of PTT is uniquely determined by the
standard higher-order extension of the two-element Boolean algebra (see [12, 14]).
Finally, we prove strong compactness of MT.
We prove that completeness of deduction in S is invariant under axiomatic introduc-
tion of new constants, provided that the corresponding values are expressible in the
initial axiomatic system without the new constants.
We apply the above result to prove deductive completeness of two additional formula-
tions of PTT which, unlike MT, have primitive equality by reduction to completeness
of MT.

3. We present a proof of deductive completeness with respect to general semantics for
arbitrary equational axiomatic systems in the simply typed λ-calculus with or without
η-conversion.
Using the above result we prove the higher-order Löwenheim-Skolem theorem and
the weak compactness theorem for non-extensional λ-theories.
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2 Basics

The main goal of this chapter is to introduce S, our formulation of the simply typed
λ-calculus with equational deduction. We briefly discuss the syntax, deduction and
standard semantics of S. For a more detailed presentation see [45].

After introducing the basic concepts and notation, we demonstrate the semantic
expressiveness of S by giving an equational axiomatization of number theory which
satisfies the requirements of Gödel’s first incompleteness theorem [20].

2.1 Syntax and Semantics

2.1.1 Terms

Let Par and Var be disjoint, countably infinite sets, and let Nam denote the set
Par ∪Var . Elements of Par and Var are called parameters and variables, respec-
tively. Elements of Nam, that is both parameters and variables, are also called names.
We refer to elements of each of these sets by the following meta variables:

a, b, c ∈ Par x, y, z, f, g ∈ Var u ∈ Nam

The set Ter of terms is defined as usual (we write s, t ∈ Ter), and consists of names,
applications, written st, and abstractions, written λx.t. The definition is assumed to
satisfy the equation λx.x = λy.y.

Terms that contain no abstractions are called combinatory.
The variables occurring in a term are given by a function V ∈ Ter → P(Var),

characterized by the following recursive equations:

Vx = {x}
Vc = ∅

V(st) = Vs ∪ Vt

V(λx.t) = Vt− {x}

A term t is called closed if Vt = ∅.
The parameters occurring in a term are given by a function P ∈ Ter → P(Par),

characterized by the following recursive equations:

Px = ∅
Pc = {c}

P(st) = Ps ∪ Pt

P(λx.t) = Pt

12



The names occurring in a term are given by a function N ∈ Ter → P(Nam) such
that, for all terms t, N t = Vt ∪ Pt.

Along with terms we introduce the notion of their size. The size of a term is given
by a function | | ∈ Ter → N, satisfying the following equations:

|u| = 1
|st| = |s|+ |t|
|λx.t| = |t|+ 1

The subterms of a term are given by a function S ∈ Ter → P(Ter) which is char-
acterized as follows:

Su = {u}
S(st) = {st} ∪ S s ∪ S t

S(λx.t) = {λx.t} ∪ S t

Note that according to our characterization, abstractions typically have infinitely many
subterms. For instance, S(λx.x) ⊇ Var . Subterms of a term t which are not identical to
t are called proper. Since they have no proper subterms, variables and parameters are
called atomic.

The substitution of a term s for a name u in a term t is denoted by t[u := s]. Sub-
stitution is assumed capture free. When used as a function Nam → Ter or Ter → Ter ,
it will be referred to by the meta variable θ. Since the behaviour of a substitution on
terms is uniquely determined by its behaviour on names, we will usually define substitu-
tions as functions Nam → Ter , but apply them as functions Ter → Ter . The domain
of a substitution θ, written dom θ, is the set {u ∈ Nam | θu 6= u}. Unless explicitly
mentioned otherwise, in the following we will always consider substitutions θ such that
|dom θ ∩Var | < ℵ0.

Given a substitution θ, we write θ[u := t] to denote the substitution (uniquely de-
termined by) λu′ ∈ Nam.if u′ = u then t else θu′. If u, u′ are two distinct names, we
write θ[uu′ := st] for (θ[u′ := t])[u := s]. Note that θ[uu′ := st] = θ[u′u := ts]. For con-
venience, we also allow the notation θ[uu := tt], which is assumed equivalent to θ[u := t].
The notation is extended analogously to arbitrarily long finite sequences of names.

A substitution θ with dom θ ⊆ Par is called stable for a term t if:
∀c ∈ Pt ∀x ∈ V(θc) : x 6∈ Vt.

2.1.2 Types and Signatures

Let Sor be a countably infinite set disjoint to Nam. Elements of Sor are called sorts.
We refer to sorts by the meta variables B and C.

The set Ty of types consists of sorts, also called base types, and functional types.
We use the meta variable T to refer to types. The notation T1T2 denotes the functional
type from T1 to T2. It is assumed right associative.

A function τ ∈ Ter ⇀ Ty is called a typing if
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1. τu ∈ Ty ,
2. τ (st) = T if and only if for some T ′: τs = T ′T and τ t = T ′,
3. τ (λx.t) = (τx)(τ t),
4. for every T ∈ Ty there exist infinitely many variables x such that τx = T ,
5. for every T ∈ Ty there exist infinitely many parameters a such that τa = T .
We say that a term t has type T with respect to a typing τ if τ t = T . A term is called
well typed with respect to a typing τ if it has a type with respect to τ .

In the following we fix a typing τ and consider only terms which are well typed with
respect to τ . We write t : T to indicate that the term t is supposed to have the type T ,
i.e. τt = T . Moreover, we require substitution to be well-typed, i.e. we consider only
those substitutions θ which satisfy τx = τ (θx) for all variables x.

Terms which have a base type are called basic.
It is sometimes useful to be able to refer to the set of terms, names, parameters or

variables of a given type T . For this purpose we will use the notation TerT , NamT ,
ParT , and VarT , respectively.

An equation e of type T is a pair of terms (s, t) such that τs = τ t = T . When
there is no danger of confusion, an equation (s, t) will be written as s = t.

A signature is a set Σ ⊆ Sor ∪Par such that for every c ∈ Σ, all sorts occurring in
τ c are contained in Σ.

A type T is said to be licensed by a signature Σ if all the sorts occurring in T are
contained in Σ. A term t is type-licensed by a signature Σ if the type of every subterm
of t is licensed by Σ. A term t is licensed by Σ if
1. t is type-licensed by Σ,
2. Pt ⊆ Σ.
We write Ty(Σ) and Ter(Σ) to denote the set of types and the set of terms licensed by
Σ, respectively.

A basic combinatory term is called algebraic if it contains only basic variables and
only algebraic parameters. A parameter is called algebraic if its type is of the form
C0C1 . . . Cn, for some n ∈ N. In other words, our notion of an algebraic term describes
precisely the same class of syntactic objects as the notion of a term in first-order predicate
logic [5, 15].

Often we want to extend properties which we have defined on terms to equations
or sets of equations. In such a case we always assume that a property which is defined
on terms holds for an equation if it holds for both sides of the equation. Similarly, a
property holds for a set of equations if it holds for every element of the set. For instance,
an equation s = t is licensed by a signature Σ if s and t are licensed by Σ.

2.1.3 Deduction

Deduction in S is based on the equational proof system of the simply typed λ-calculus,
as presented in Figure 2.1. Similar deduction formalisms are treated in more detail
in [33] and [48]. This formalism allows us to specify the desired logical properties of

14



Ref
t = t

Sym
s = t
t = s

Trans
s = s′ s′ = t

s = t

Cong
s = s′ t = t′

st = s′t′
ξ

s = t
λx.s = λx.t

β
(λx.t)y = t[x := y]

η
λx.fx = f

Figure 2.1: S: Rules of Inference

mathematical objects we want to consider as equational axioms and then to derive
further properties of these objects, again in the form of equations.

The notions of a formal derivation and derivability are defined as usual. We use the
notation A ` e to express that an equation e is formally derivable from a set of premises
A. In this case we also say that e is a theorem of A, or that A deductively entails e.
The set of all theorems derivable from a set A is called the theory (λ-theory) of A.
Usually we fix some set A and study its theory. In this case elements of A are also called
axioms of the theory.

It is convenient to extend the notion of deductive entailment to sets of equations.
We write A ` A′ if ∀e ∈ A′ : A ` e. Two sets of equations A,A′ are called deductively
equivalent (notation A àA′) if A ` A′ and A′ ` A. When there is no danger of confu-
sion, we will often write e , e,e′, A,e and A,A′ for the sets {e}, {e} ∪ {e′}, A ∪ {e}
and A ∪A′, respectively.

We say two terms s, t are convertible or deductively equivalent with respect to a
set A of axioms if A ` s = t. We introduce a special notation for equivalence classes
induced by the convertibility relation:

[t]A
def= {s | A ` s = t}

When the set A is fixed we may abbreviate [t]A to [t].
When working with convertibility classes, or, more generally, with sets of terms, we

sometimes need to refer to their elements. For this purpose we assume that, for every
type T ∈ Ty , we have a choice function ρT ∈ P(TerT )→ TerT such that

∀M ∈ P(TerT ) : M 6= ∅ =⇒ ρT M ∈M

We want to conclude the discussion of our deductive framework by introducing two
important derived rules of deduction, the rule of substitution and the rule of replacement.
In Chapter 3 we also consider a non-extensional variant of our calculus, called SN , which

15



t : T =⇒ θt : T preservation of types under substitution
s : T and A ` s = t =⇒ t : T preservation of types under deduction
A ` e and θ stable for A =⇒ θA ` θe stability of deduction under substitution

Figure 2.2: Selected Deductive Properties of S

is obtained by dropping the rule η. Replacement and substitution stay derivable in
the absence of η. The two rules play a particularly important role in the context of
equational reasoning by term rewriting or conversion. After introducing the rules, we
will briefly discuss conversion proofs and their relation to formal derivations as presented
in Figure 2.1.

Substitution Rule

The rule of substitution allows us to construct substitution instances of equational the-
orems. It can be formalized as follows:

Sub
s = s′

s[x := t] = s′[x := t]

It is not hard to see that Sub is derivable in S.

Proposition 2.1.1 The rule Sub is derivable.

Proof

Trans

Sym

β
(λx.s)t = s[x:=t]
s[x:=t] = (λx.s)t

Trans

Cong

ξ
s = s′

λx.s = λx.s′
Ref

t = t

(λx.s)t = (λx.s′)t
β

(λx.s′)t = s′[x:=t]
(λx.s)t = s′[x:=t]

s[x:=t] = s′[x:=t]

�

Replacement Rule

The rule of replacement formalizes the intuition that terms which are provably equal can
be used interchangeably in the context of larger terms, preserving deductive equivalence.
To formulate the rule, we first need to formalize the notion of a “context”.

Contexts can be seen as partially specified terms. The atomic context is called a
hole (notation •). Non-atomic contexts are built from names and the atomic context
in the same way as terms. In the following we restrict our attention to contexts which
contain exactly one hole. Contexts are referred to by the meta variable k. The size of a
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context k (notation |k|) is also defined in the same way as that of a term, however with
| • | = 0. Substitution also can be easily extended to contexts. Given a context k and a
substitution θ, we apply θ to k in the same way as if • was a parameter not in dom θ.
Since we also assume that • does not occur in θu for any other name u in k, substitution
does not change the number of holes in k.

A context k can be transformed into a term by replacing • with some term s. The
resulting term is called an instance of k and is referred to by the notation k[s]. Variables
occurring in s may be captured by k. More formally:

•[s] = s

(k t)[s] = k[s] t
(t k)[s] = t k[s]

(λx.k)[s] = λx.k[s]

A context k is called well typed if there exists a term t such that k[t] is again well
typed. In the following we consider only well-typed contexts and instances.

Now we are ready to give a precise formulation of the replacement rule:

Rep
s = s′

k[s] = k[s′]

Proposition 2.1.2 The rule Rep is derivable.

Proof By induction on |k|.

Case k = •. The claim follows trivially, because •[s] def= s = s′
def= •[s′].

Case k = k′ t. By definition of context instantiation it suffices to derive k′[s] t = k′[s′] t.

Cong

IH
s = s′

k′[s] = k′[s′]
Ref

t = t

k′[s] t = k′[s′] t

Case k = t k′ proceeds analogously to the preceding case.

Case k = λx.k′. Here it suffices to derive λx.k′[s] = λx.k′[s′].

IH
s = s′

ξ
k′[s] = k′[s′]

λx.k′[s] = λx.k′[s′]

�
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Conversion Proofs

The following discussion is closely related to the field of term rewriting. For a detailed
introduction into term rewriting, see [6] or [48].

A conversion proof of an equation s = t from a set A of axioms is a sequence
t0 = . . . = tn, for some n ∈ N, such that:
1. t0 = s and tn = t.
2. For every i such that 0 < i ≤ n, there exists a context k, a substitution θ where

dom θ ⊆ Var , and terms s′, t′ such that ti−1 = k[θs′], ti = k[θt′] and
a) (s′ = t′) ∈ A or (t′ = s′) ∈ A, or
b) θ is the identity substitution and s′ = t′ or t′ = s′ an instance of β or η (no

η-conversion in SN ).
The number n is called the size of the proof. We write s↔n

A t to say that s = t has
a conversion proof of size n, and s↔∗

A t to say that s = t is provable by conversion in
finitely many steps.

The derived rules of substitution and replacement are particularly useful when es-
tablishing a connection between formal derivations and conversion proofs:

Proposition 2.1.3 A ` s = t ⇐⇒ s↔∗
A t

Proof
• “⇐”: First we show s↔1

A t =⇒ A ` s = t by Sym, Sub and Rep. Then we show
the actual subclaim by induction on the size of the conversion proof, using Ref and
Trans.

• “⇒”: By induction on the size of the derivation for A ` s = t, exploiting the fact
that ↔∗

A is an equivalence relation. �

By the above proposition, every statement of the form A ` e can be proven by con-
version. Since conversion proofs are often much more compact than the corresponding
derivation trees, in the following conversion often will be used to show formal derivability
of equations.

2.1.4 Semantics

Since general semantics of S is mainly relevant for Chapter 3, it will be introduced there.
Here we present the standard semantics of S.

An interpretation is a function I such that:
1. dom I = Ty ∪ Par ∪Var
2. I(T1T2) = IT1 → IT2

3. Iu ∈ I(τu)
Elements of ran(I|Ty) are called domains. Elements of domains a called values and
will be denoted by the meta variables v and w.
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Given an interpretation I, a name u and a value v ∈ I(τu), we write Iu
v to denote

the modified interpretation satisfying the following equations:

Iu
v T = IT
Iu

v u′ = if u′ = u then v else Iu

An evaluation Î extends an interpretation I to non-atomic terms such that:
1. Î(st) = Îs(Ît)
2. Î(λx.t) = λv ∈ I(τx).Îx

v t

Note that Î is uniquely determined by I, and vice versa.
Given an interpretation I and a substitution θ, we write Iθ to denote the interpre-

tation satisfying:

IθT = IT
Iθu = Î(θu)

A structure is a function A such that domA is a signature and there exists an
interpretation I such that A ⊆ I. If domA = Σ, we say that A is a structure over
Σ. Given a structure A, we write ΣA to denote domA, the signature of A. In the
following, structures will be also synonymously called models.

Given a structure A, a parameter c is called a constant of A if c ∈ domA. Once a
structure A is fixed, constants of A are simply referred to as constants.

An interpretation I is said to satisfy an equation s = t (notation I � s = t) if
Îs = Ît. A structure A satisfies an equation e (notation A � e) if for all interpreta-
tions I ⊇ A: Î � e. In this case we also say that e is valid in A or that A is a model
of e. Both notions of satisfaction can be pointwise extended to sets A of equations. So,
for instance, A � A if ∀e ∈ A : A � e. A set A semantically entails an equation e
(notation A � e) if ∀A : A � A =⇒ A � e. In this case the equation e is also called a
semantic consequence of A. A model A of a set A is called minimal if, for all equa-
tions e, A � e =⇒ A ` e. A is called minimal because, if we consider, for every model
B of A, the set of equations valid in B, the corresponding set for A will be minimal with
respect to inclusion.

It is not hard to check that the notion of validity as defined above is preserved by
deduction. Thus, the presented deduction formalism is sound.

Proposition 2.1.4 (Soundness) A ` e =⇒ A � e

Proof By induction on the size of a formal derivation of e from A. See textbook by
Mitchell [33] for a stronger result obtained for a similar formulation of the calculus. �

Further semantic properties of S which are relevant for our considerations are sum-
marized in Figure 2.3.

The reverse implication to soundness, A � e =⇒ A ` e, is usually called (deductive)
completeness. It will be our main subject of study throughout the thesis.

Given a set A of axioms, we call the theory of A complete if it contains all the semantic
consequences of A. Obviously, this is the case if and only if higher-order equational
deduction is complete for A. A itself is called complete if its theory is complete.
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IT 6= ∅ no empty types

Ît ∈ I(τ t) type soundness

Î(θt) = Îθt substitution lemma

I|N t = I ′|N t =⇒ Ît = Î ′t denotational coherence
A ` e =⇒ A � e deductive soundness

Figure 2.3: Selected Semantic Properties of S

2.2 Number Theory

As an example of the semantic expressiveness of S, in Figure 2.4 we give an equational
axiomatization of number theory, which we call NT.

It is not hard to see that in every model of NT that does not interpret B by a
singleton set, every constant has the expected semantics. The axioms I0 and I1 define
the semantics of 0, 1 and (→). BCA forces every non-singleton interpretation of B to be
isomorphic to a two-element set {T,F}. ∀1 and ∀I define universal quantification. Noo,
Nos, Nso, Nss and NInd encode the usual properties of identity on the natural numbers
and the naturals themselves using an adaptation of Peano’s postulates [35]. Finally, we
axiomatically define the operations of addition and multiplication on the naturals.

The essential semantic consequences of the propositional axioms I0, I1 and BCA are
discussed more extensively in Chapter 5. For further details see [45, 5, 30].

Note that models of NT are capable of expressing every arithmetic proposition in
the sense of [20]. Hence, by Gödel’s first incompleteness theorem we conclude:

Proposition 2.2.1 (Incompleteness of S) There exist sets A of axioms such that
A � e 6⇒ A ` e.

2.3 Vector Notation

In the following we will often employ vector notation to abbreviate sequences of terms.
This notation will be interpreted differently depending on the context. To avoid confu-
sion, let us give a short summary of the possible cases.
1. When used on the meta-level, vectors abbreviate enumerations. For instance, ~x

stands for x1, . . . , xn.
2. When used in a term, vectors usually stand for sequences of applications. For in-

stance, s~tt stands for st1 . . . tnt.
3. Vectors can be used in the head of a lambda-binder, with the intuitive meaning: λ~x.t

stands for λx1 . . . λxn.t.
4. Applications of meta-level functions to vectors are expanded pointwise. Assume,

for instance, that ρ represents some meta-level function which yields a formula when
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Name NT

Base Types B,N truth values and natural numbers

Constants 0, 1 : B truth and falsehood
(→) : BBB implication (right associative)
∀ : (NB)B universal quantifier
( .=) : NNB equality
o : N zero
s : NN successor
(+), (·) : NNN addition and multiplication

Variables x, y : B
m,n : N
f : NB

Notation ∀n.t
def= ∀(λn.t) quantification

Axioms 0→ x = 1 I0
1→ x = x I1

f0→ f1→ fx = 1 BCA
∀n.1 = 1 ∀1

∀f → fn = 1 ∀I
o

.= o = 1 Noo
o

.= sn = 0 Nos
sn

.= o = 0 Nso
sm

.= sn = m
.= n Nss

fo→ (∀n.fn→ f(sn))→ fn = 1 NInd
n + o = n Ao

n + sm = sn + m As
n · o = o Mo

n · sm = n + (n ·m) Ms

Figure 2.4: Axiomatization of Number Theory
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applied to a value. Consider an application like ρ~v. There are basically two ways of in-
terpreting this construction, namely either as the meta-level enumeration ρv1, . . . , ρvn

or as the object-level term (ρv1) . . . (ρvn). In either case it will be clear from the con-
text which interpretation is the correct one.

5. Meta-level relations between vectors are again expanded pointwise: ~a ∈ ~A stands for
a1 ∈ A1, . . . , an ∈ An. In particular, this usage implies that ~a and ~A are required to
have the same length.

6. In formal context, basic terms involving vectors abbreviate conjunctions: ~s
.= ~t stands

for
∧n

i=1 si
.= ti.

7. When used in a type specification, vectors abbreviate functional types: ~TC stands
for the type T1 . . . TnC. This case can easily be distinguished from Case 1 by checking
whether the context requires a single type specification or a list of types.

If the context contains no indication of what the length of the abbreviated sequence, i.e.
the value of n, should be, the statement is assumed to hold for all n ∈ N. In most cases
though, the length will be fixed by a preceding cardinality or typing assumption.
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3 Completeness in General Models

General semantics was first introduced by Henkin [23, 24] as a weakening of the stan-
dard semantic construction. With respect to this weaker notion of semantics Church’s
traditional formulation of higher-order logic [13] could be shown complete. In contrast
to standard semantics, general semantics does not require functional types to be mapped
to full function spaces. Instead, it imposes a different, weaker requirement on functional
domains: They must contain enough values to provide denotations for all possible terms
of the corresponding types (see [4] for details).

Completeness of the pure simply typed λ-calculus with respect to general semantics
was first shown by Friedman [16] as an intermediate step in proving its completeness with
respect to standard semantics. Friedman considered a functionally extensional version
of the calculus without any parameters.

Mitchell [33] notes that Friedman’s proof can be easily extended to systems with
arbitrary equational axioms with parameters. However, he, just like Friedman, restricts
his attention to the extensional λ-calculus containing the rule η.

The following soundness and completeness proof for equational λ-theories with re-
spect to general semantics largely follows Friedman’s original approach, extending it in
the way sketched by Mitchell. However, our proof does not depend on the extensionality
of the underlying models. As a consequence, the result holds for formulations of the
λ-calculus with or without η.

3.1 General Semantics

In standard semantics, the domain of a functional type T1T2 is always required to be
the full set of functions from the domain of T1 to the domain of T2. This requirement
is given up by general semantics. Functional domains are no longer needed to consist of
functions, nor to be isomorphic to sets of functions. Therefore, to be applicable within
the less restrictive framework, the notions of an interpretation, an evaluation or a model
need to be generalized.

A pair (D,@) is called an applicative structure if
1. D is a function mapping types to non-empty sets,
2. @ is a family of functions 〈@T1T2 |T1, T2 ∈ Ty〉 such that, for all types T1, T2:

@T1T2 ∈ D(T1T2)→ DT1 → DT2.
When applied on a type, the function D returns the corresponding domain. @ de-

fines a notion of application on elements of the domains given by D.
Given (D,@), a general interpretation I over D is a function Nam →

⋃
T∈Ty DT

such that for all types T ∈ Ty : u : T implies Iu ∈ DT .
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In other words, a general interpretation is a typed function from names to values.
Since the notion of a value is fixed by the first component D of an applicative structure,
interpretations have to be defined relatively to applicative structures. They do not
depend on the second component, so two applicative structures of the form (D,@) and
(D,@′) have associated with them the same set of general interpretations.

The modification of a general interpretation I on a name u with a value v ∈ I(τu),
written Iu

v , is defined in the same way as for standard interpretations.
Now we want to uniquely determine how to evaluate non-atomic terms. Since in prac-

tice we usually assume the interpretation of certain parameters to be fixed (constant),
we also need a means to capture this sort of assumptions. Both issues are addressed by
the notion of a general structure:

Given (D,@), a general structure H = (I, )̂ is a pair of functions such that:
1. dom I ⊆ Par and there exists a general interpretation I over D such that I ⊆ I,
2. for every pair of general interpretations I, I ′ over D extending I, Î ⊇ I and Î ′ ⊇ I ′

are partial functions defined on terms such that:
a) Î(st) = Îs@Ît,
b) Î(λx.t)@v = Îx

v t,
c) if, for all v ∈ D(τx), Îx

v t = Î ′x
v t, then Î(λx.t) = Î ′(λx.t).

Given (D,@), H = (I, )̂ and a general interpretation I over D, we call Î the general
evaluation induced by H and I.

Depending on the underlying applicative structure, it is not always possible to obtain
general evaluations that are total on Ter . This motivates the definition of general models
as a subset of general structures which ensures totality of the associated evaluations:

Given a signature Σ, a general structure H = (I, )̂ is called a general model
over Σ if
1. dom I = Σ ∩ Par and
2. for every term t : T and every general interpretation I over D extending I: Ît ∈ DT .

Given an applicative structure (D,@), a general model H = (I, )̂ is said to satisfy
an equation e of the form s = t (notation H � e) if for all general interpretations I over
D extending I: Îs = Ît. The concepts of semantic entailment and minimal models are
defined correspondingly.

General models share many properties with standard models. Among these common
properties are the validity of the substitution lemma, the absence of empty types, type
and deductive soundness. Denotational coherence for interpretations which agree on the
variables occurring in a term can be formulated as follows:

Proposition 3.1.1 Let H = (I, )̂ be a model over a signature Σ. Then, for every term t
licensed by Σ and all I, I ′ extending I: I|Vt = I ′|Vt =⇒ Ît = Î ′t.

Proof By induction on |t|. �
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3.2 Model Construction

Given a set A of axioms, the applicative term structure (T,@) is an applicative
structure such that:
1. TT = {[t]A | t : T},
2. v@w = [(ρv)(ρw)]A.
Is is easy to check that (T,@) is indeed an applicative structure.

For every general interpretation I over T we define a corresponding substitu-
tion θI :

θI
def= λu ∈ Nam.ρ(Iu)

Note that this definition implies that, for some I, dom θI ∩Var is infinite. This means,
we have to be particularly careful in cases where θI is applied to abstractions λx.t since,
in general, we can no longer assume x 6∈ dom θI for any variable x.

The substitution θI is constructed to satisfy the following property:

Proposition 3.2.1 [θIu]A = Iu

The next property of θI (Proposition 3.2.3) is crucial for the soundness of the fol-
lowing model construction. Its validity can be established by proving a more general
claim:

Lemma 3.2.2 If u does not occur in ~u, then: θIu
v
[~u := ~u]t = θI [u~u := (ρv)~u]t.

Proof Let u and ~u be names such that u does not occur in ~u. We proceed by induction
on |t|. Where necessary, we apply Proposition 3.2.1.

Case t = u. Then: θIu
v
[~u := ~u]u = θIu

v
u = ρ(Iu

v u) = ρv = θI [u~u := (ρv)~u]u

Case t = u′ 6= u, u′ 6∈ ~u.

θIu
v
[~u := ~u]u′ = θIu

v
u′ = ρ(Iu

v u′) = ρ(Iu′) = θIu
′ = θI [u~u := (ρv)~u]u′

Case t = ui in ~u. Then: θIu
v
[~u := ~u]ui = ui = θI [u~u := (ρv)~u]ui

Case t = t1t2.

θIu
v
[~u := ~u](t1t2) = (θIu

v
[~u := ~u]t1)(θIu

v
[~u := ~u]t2)

= (θI [u~u := (ρv)~u]t1)(θI [u~u := (ρv)~u]t2) IH
= θI [u~u := (ρv)~u](t1t2)

Case t = λx.s where x 6∈ {u} ∪ V(ρv) ∪
⋃

u′∈N t V(θIu
v
u′).

θIu
v
[~u := ~u](λx.s) = λx.θIu

v
[x~u := x~u]s

= λx.θI [ux~u := (ρv)x~u]s IH
= θI [u~u := (ρv)~u](λx.s) �
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Proposition 3.2.3 θIu
v
t = θI [u := ρv]t

Proof Special case of Lemma 3.2.2. �

Corollary 3.2.4 θIu
v

= θI [u := ρv]

Given a signature Σ and a set A of axioms, the term model T is the unique pair
(I, )̂ such that:
1. dom I = Σ ∩ Par ,
2. if c ∈ Σ, then Ic = [c]A,
3. for every I over T, Ît = [θIt]A,

For the rest of the chapter, we fix a signature Σ and a set A of equations licensed
by Σ. Our first objective is to show that T is a general model over Σ.

First we show that substitution is coherent modulo conversion. Compare Proposi-
tion 3.2.6 with Proposition 3.1.1 to see that this property is a necessary criterion for T
to be a general model.

Lemma 3.2.5 If, for all names u that occur in t, [θ[~u := ~u]u] = [φ[~u := ~u]u], then
[θ[~u := ~u]t] = [φ[~u := ~u]t].

Proof Let t be a term and, for all u ∈ Vt, [θ[~u := ~u]u] = [φ[~u := ~u]u]. We proceed by
induction on |t|.

Case t = u′. The claim immediately follows by assumption.

Case t = t1t2. Let θ′ = θ[~u := ~u], φ′ = φ[~u := ~u]. Then:

[θ′(t1t2)] = [(θ′t1)(θ′t2)]
= [(ρ[θ′t1])(ρ[θ′t2])]
= [(ρ[φ′t1])(ρ[φ′t2])] IH
= [(φ′t1)(φ′t2)]
= [φ′(t1t2)]

Case t = λx.s such that x 6∈
⋃

u′∈N (λx.s) V(θ[~u := ~u]u′). Then:

[θ[~u := ~u](λx.s)] = [λx.θ[x~u := x~u]s]
= [λx.ρ[θ[x~u := x~u]s]]
= [λx.ρ[φ[x~u := x~u]s]] IH
= [λx.φ[x~u := x~u]s]
= [φ[~u := ~u](λx.s)] �

Proposition 3.2.6 If, for all u ∈ N t, [θu] = [φu], then [θt] = [φt].

Proof Special case of Lemma 3.2.5. �
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Proposition 3.2.7 T is a general structure.

Proof First of all, observe that dom I ⊆ Par and, for every constant c : T we have
T c = [c] ∈ TT , i.e. I can be extended to a general interpretation. It remains to check
that, for all interpretations I extending I, Î is the general evaluation induced by T
and I. So, let I, I ′ be two arbitrary but fixed assignments over T (we don’t actually
need them to extend I in order to prove the required properties). We have to show four
subclaims:
1. Îu = Iu. By Proposition 3.2.1: Îu = [θIu] = Iu.
2. Î(st) = Îs@Ît.

Î(st) = [θI(st)]
= [(θIs)(θIt)]
= [(ρ[θIs])(ρ[θIt])]
= [θIs]@[θIt]
= Îs@Ît

3. Î(λx.t)@v = Îx
v t. Remember that substitution is generally assumed to be capture

free. Moreover, w.l.o.g., x 6∈
⋃

y∈V(λx.t) V(θIy). Then:

Î(λx.t)@v = [(ρ(Î(λx.t)))(ρv)]
= [(ρ[θI(λx.t)])(ρv)]
= [(θI(λx.t))(ρv)]
= [(λx.θI [x := x]t)(ρv)]
= [θI [x := ρv]t] β
= [θIx

v
t] Prop. 3.2.3

= Îx
v t

4. If, for all values v ∈ T(τx), Îx
v t = Î ′x

v t, then Î(λx.t) = Î ′(λx.t). Let, w.l.o.g.,
x 6∈

⋃
y∈V(λx.t) V(θIy) ∪ V(θI′y), and assume, for all v ∈ T(τx): Îx

v t = Î ′x
v t, i.e.

[θIx
v
t] = [θI′x

v
t].

Î(λx.t) = [θI(λx.t)]
= [λx.θI [x := x]t]
= [λx.ρ[θI [x := x]t]]
= [λx.ρ[θI [x := ρ[x]]t]] Prop. 3.2.6
= [λx.ρ[θIx

[x]
t]] Prop. 3.2.3

= [λx.ρ[θI′x
[x]

t]] assumption
= [λx.ρ[θ′I [x := ρ[x]]t]] Prop. 3.2.3
= [λx.ρ[θ′I [x := x]t]] Prop. 3.2.6
= [λx.θ′I [x := x]t]
= [θ′I(λx.t)]
= Î ′(λx.t) �
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Proposition 3.2.8 T is a general model.

Proof By definition, T satisfies dom I = Σ ∩ Par . By Proposition 3.2.7 it suffices to
show that for every interpretation I over T and every t : T : Ît ∈ TT . Since Ît = [θIt], all
that remains to show is θT t : T . This is the case because θI is assumed to be well-typed
and hence type preserving. �

Knowing that T is indeed a general model, we now want to check that T satisfies A.

Theorem 1 (Soundness) A ` e =⇒ T � e

Proof Let A ` e where e = (s = t), i.e. [s] = [t]. Then, for every assignment I ⊇ I:

Îs = [θIs] = [θIt] = Ît

The fact that [s] = [t] implies [θIs] = [θIt] requires some explanation. Let φ be a sub-
stitution such that dom φ = Pe− Σ and, for every a, b ∈ dom φ:
1. φa ∈ Var − Ve,
2. a 6= b =⇒ φa 6= φb. �

Clearly, φ is stable for e, and, since A is licensed by Σ, φA = A. Hence, by stability of
deduction under substitution, A ` φe. Note that φe is licensed by Σ.

Let θ = λu ∈ Nam.if u ∈ φ(Pe) then θI(φ|−1
Peu) else θIu. Note that, since I ⊇ I, for

all parameters c ∈ Σ it holds: [θc] = [θI ] = [c]. Therefore, by repeated application of the
substitution rule (starting from φe) we can derive θ′(φe), for some substitution θ′ that
is equivalent to θ in the sense of Proposition 3.2.6. Hence A ` θ(φe), i.e. A ` (θ ◦ φ)e.
Since, again by Proposition 3.2.6, [θIs] = [(θ ◦ φ)s] and [θIt] = [(θ ◦ φ)t], the claim fol-
lows.

3.3 Minimal Models and Completeness

If H is a model of A, i.e., for all e, A � e =⇒ H � e, minimality of H immediately implies
deductive completeness of A. Since we already know T to be a model of A, it suffices to
show T minimal.

To do so, we consider a particular evaluation, the one induced by T and λu ∈ Nam.[u].
Note that (λu ∈ Nam.[u]) ⊇ I.

First we extend Proposition 3.2.3 to substitutions which a modified at more than one
point:

Lemma 3.3.1 If ~u contains no multiple occurrences of names, then
θI~u

~v
t = θI [~u := ρ~v]t.

Proof Let ~u be as required. We proceed by induction on |~u|.

Case |~u| = 0. The claim follows trivially.
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Case ~u = u ~u1. Then:

θIu ~u1
v ~v1

t = θIu
v
[ ~u1 := ρ~v1]t IH

= (θI [u := ρv])[ ~u1 := ρ~v1]t Cor. 3.2.4
= θI [ ~u1u := (ρ~v1)(ρv)]t
= θI [u ~u1 := (ρv)(ρ~v1)]t �

Next we show that the substitution corresponding to the “identity” interpretation
λu ∈ Nam.[u] is the identity substitution:

Proposition 3.3.2 [θλu∈Nam.[u]t] = [t]

Proof Let I be an arbitrary but fixed interpretation over T and let ~u contain, without
multiple occurrences, precisely the names in N t. Then:

[θλu∈Nam.[u]t] = [θI~u
[~u]

t] Prop. 3.2.6

= [θI [~u := ρ[~u]]t] Lemma 3.3.1
= [[~u := ~u]t] Prop. 3.2.6
= [t] �

With this, we are ready to prove minimality of T :

Theorem 2 (Minimality) T � e =⇒ A ` e

Proof Let e = (s = t), T � s = t, I = λu ∈ Nam.[u]. By Proposition 3.3.2, it holds

[s] = [θIs] = Îs = Ît = [θIt] = [t]

i.e. A ` s = t. �

Theorem 3 (Completeness) A � e =⇒ A ` e

Proof Immediately follows by Theorem 1 and 2. �

3.4 Consequences

Due to the crucial role of Proposition 3.2.6, the completeness proof certainly relies on
congruence of deduction, guaranteed by the rules Cong and ξ.

In contrast to ξ, η turns out to be inessential for the completeness proof. Nowhere in
our argument do we have to apply η. Neither do we ever assume that T is functionally
extensional, which is known to be the case if and only if η is admissible the presence of
ξ (see [9] and [11] for details).

Therefore, the above completeness result applies to both S, our main deductive frame-
work for the thesis, and SN , the non-extensional version of S without η.

The definition of general models in Section 3.1 can be further weakened such that a
general structure H = (I, )̂ is still considered a model over Σ if
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1. dom I ⊇ Σ ∩ Par and
2. for every term t : T type-licensed by Σ and every general interpretation I over D

extending I|Σ∩Par : Ît ∈ DT .
This definition allows a single general structure to be simultaneously considered a model
over several distinct signatures. Moreover, we allow a model to be partial on terms as
long as it can evaluate all terms that are type-licensed by Σ. This definition is slightly
more complicated than the one used for the completeness proof, but might be useful for
more practical model constructions. As for the completeness proof, both definitions are
equally acceptable. Since T satisfies the stronger one from Section 3.1, it also satisfies
the latter one.

For further discussion we will need some definitions:
An applicative structure (D,@) is called trivial at type T if |DT | = 1. A general

structure is called trivial at T if the corresponding applicative structure is trivial at T .
Analogously, a general structure is called countable at T if the domain of T is countable.

A set of equations is said to be satisfiable at type T with respect to general semantics
if it has a general model which is non-trivial at T .

An important property of applicative term structures is the fact that all of their
domains which are non-trivial have the same cardinality, namely ℵ0:

Proposition 3.4.1 An applicative term structure (T,@) is non-trivial at type T if and
only if |TT | = ℵ0.

Proof Let (T,@) be an applicative term structure and T a type. Non-triviality of
TT requires that there exist at least two terms of type T which are not deductively
equivalent. By the rule of substitution, this implies that no two distinct variables of
type T may be deductively equivalent, i.e. contained in the same convertibility class.
Therefore, there must exist at least as many convertibility classes in TT as there are
distinct variables of type T . So, the definitions of variables and typings give us ℵ0 as a
lower bound on the cardinality of TT . The upper bound is provided by the fact that we
have only countably many terms (see [29]). The converse is immediate. �

Corollary 3.4.2 (Löwenheim-Skolem) A set A of equations is satisfiable at type T
if and only if it has a general model which is countable at T .

Finally, let us prove compactness of S and SN with respect to general semantics:

Proposition 3.4.3 (Compactness) A set of equations A is satisfiable at a type T if
and only if every finite subset of A is satisfiable at T .

Proof Let A be a set of equations and T a type such that every finite subset of A is
satisfiable at T . Let x, y : T be two distinct variables. By soundness, the equation x = y
is not provable from any finite subset of A. Consequently, since all proofs from A are
finite, A 6` x = y, i.e. [x]A 6= [y]A. Hence |T T | > 1. Then A is satisfiable by Theorem 1.
The converse is immediate. �
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3.5 Further Work

Now that we have shown completeness of deduction in the absence of η, it is natural to
ask whether a similar result can be obtained in the absence of ξ, with or without η. Un-
fortunately, the λ-calculus without ξ is not compatible with equational reasoning in the
sense it was presented so far. Without ξ, the rule of replacement is obviously no longer
admissible, which in particular invalidates the fundamental Proposition 2.1.3. Therefore
the discussion of equational deduction in higher-order calculi without ξ requires a more
general approach than the one taken in this thesis. A detailed analysis of such calculi is
an interesting subject for further investigations.
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4 Completeness for Plain Axioms

As we pointed out in Section 2.2, equational systems generated by syntactically unre-
stricted axiom systems are, in general, incomplete with respect to standard semantics.
However, generic completeness results can be established for several classes of syntacti-
cally restricted axiom systems.

Algebraic equations are probably the conceptually simplest non-trivial class of axioms
for which S can be proven complete. S with algebraic axioms combines the expressiveness
of first-order equational logic with that of the pure simply typed λ-calculus.

The completeness proof for algebraic axioms [30] extends Plotkin’s model construc-
tion [39] for the simply typed lambda calculus to signatures with algebraic parameters,
which are treated as in Birkhoff’s classical construction for first-order equational lo-
gic [10].

In the following we prove deductive completeness of S for a richer class of axioms.
These axioms will be called plain.

4.1 Plain Axioms and First-Order Logic

A term is called plain if it contains no functional variables as subterms. Note that a
term is plain if and only if all its subterms are plain. As usual, an equation is called
plain if both sides are plain, and a set is called plain if all of its elements are plain.

In contrast to algebraic equations, plain equations allow parameters of arbitrary
type and abstractions over basic variables. To demonstrate the expressiveness of plain
specifications, let us give an intuitive plain axiomatization of first-order predicate logic
(Figure 4.1).

The first four axioms, I0, I1,BCA and Comm describe the propositional part of FOL,
while ∀1 and ∀I specify the deductive properties of quantifiers.

First, observe that the rule of modus ponens (MP) is easily derivable from FOL:

Proposition 4.1.1 (MP) For all terms s and t: FOL, s→ t = 1, s = 1 ` t = 1.

Proof Let FOL, s→ t = 1, s = 1 be derivable. Then t = 1→ t = s→ t = 1. �

In a similar way, the axiom ∀1 can be shown to entail deductively the rule of universal
generalization. And, together with MP, ∀I can be used to mimic universal instantiation.
For more details, see [45, 30, 5].

While the axioms I0, I1 and BCA are sufficient to describe the propositional part
of FOL semantically, Comm seems to be necessary to achieve the full deductive expres-
siveness of propositional logic (see Chapter 5 and [45] for details). We do not yet know
whether it is truly independent from the other three axioms.
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Name FOL

Base Types B, I truth values and individuals

Constants 0, 1 : B truth and falsehood
(→) : BBB implication (right associative)
∀ : (IB)B universal quantifier

Meta Variables x, y : B Boolean variables
z : I individual variables
A : B (Boolean) plain terms

Notation x ∨ y
def= (x→ y)→ y disjunction

∀z.t
def= ∀(λz.t) quantification

Axioms 0→ x = 1 I0
1→ x = x I1

(λx.A)0→ (λx.A)1→ A = 1 BCA
x ∨ y = y ∨ x Comm
∀z.1 = 1 ∀1

(∀z.A)→ A = 1 ∀I

Figure 4.1: Axiomatization of FOL
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By the above, it is not very hard to show that
1. our axiomatization is sound with respect the usual semantics of FOL,
2. deduction in traditional formulations of FOL can be simulated in S using the given

axioms.
For reference on syntax and semantics of FOL, see for instance introductory textbooks
by Andrews [5] or Fitting [15]. Further properties of plain equational specifications will
be discussed in Section 4.6.

4.2 Extensionality of External Equality

Given a model A, a family 〈∼T |T ∈ Ty〉 of equivalence relations such that ∼T⊆ (AT )2

is called (functionally) extensional if, for all types T = T1T2 and all values v, v′ ∈ AT :
(∀w ∈ AT1 : vw ∼T2 v′w) =⇒ v ∼T v′.

Obviously, the identity relation induced by the definition of equational validity, which
we also call external equality, is extensional. More interesting is the fact that exten-
sionality of external equality can be exploited deductively (see also [9, 11, 33] for a
semantic justification of this fact):

Proposition 4.2.1 Let s, t : T → T ′, x : T . If x 6∈ Vs ∪ Vt then

sx = tx ` s = t

Proof

sx = tx ` λx.sx = λx.tx ξ
` s = t η �

Corollary 4.2.2 Let s, t be terms. Let ~x 6∈ Vs ∪ Vt be pairwise distinct. Then

s~x = t~x ` s = t

The reverse direction, s = t ` s~x = t~x, obviously follows by reflexivity and
congruence of our deduction formalism, which allows us to strengthen the above corollary
to:

Corollary 4.2.3 Let s, t be terms. Let ~x 6∈ Vs ∪ Vt be pairwise distinct. Then

s~x = t~x à s = t

The latter corollary implies that every equation between higher-order terms can be
transformed into a deductively equivalent equation between basic terms, and vice versa.
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4.3 Model Construction

Given a set A of axioms, a term structure D is a structure satisfying

∀C ∈ Sor : DC = {[t]A | t : C}

For the rest of the chapter we fix some signature Σ and consider only structures D over Σ.
Moreover, we fix a set A of axioms which is licensed by Σ. Some results will require A
to be plain. In each such case the additional requirement will be mentioned explicitly.

Note that once A has been fixed, term structures agree on all types:

∀D,D′ ∀T∈Ty : DT = D′T

Hence, whenever we need to refer to the domain of a type T in a term structure, we will
usually simply write DT without first introducing any particular structure D; DT does
not depend on how we choose D.

For every type T , we define functions

δT ∈ TerT → DT
τT ∈ DT → P(TerT )

by mutual recursion on T :

δ~TCt
def= λ~v ∈ D~T .[t(ρ(τ~v))]

τ~TCv
def= {t ∈ Ter ~TC | ∀~x ∈ Var ~T : v(δ~x) = [t~x]}

These functions are used to establish a connection between terms and domains. Let
us explain the main intuition behind the definitions. We want δ to map terms to their
denotations according to a specific “identity” evaluation extending D. More precisely, a
term t : ~TC should be mapped to a function which takes values ~v according to the type
of t and returns the convertibility class of t applied to some terms ~t from the pre-image
of ~v under δ. The construction of this pre-image should be accomplished by the function
τ . In order to find a pre-image of some value v, τ applies v to the denotations of all
possible variables ~x of appropriate types until it evaluates to a convertibility class of the
form [t~x], and collects those terms which are deductively equivalent to t for every choice
of ~x.

Due to the uncountability of functional domains there will exist values v which are
not in the range of δ. For such values, τ may behave in two different ways. Either it
detects that v is not in the range of δ and returns ∅ or it returns a non-empty class
[t] of terms such that δt = w 6= v. Obviously, in this second case v and w must agree
on the denotations of all variables. This is possible because even basic domains contain
more than just denotations of variables. Therefore, a functional value certainly cannot
be uniquely determined by its behaviour on just these arguments. Fortunately, for our
means it suffices to consider only those values which are in the range of δ. These values
will turn out to be indeed uniquely determined by their behaviour on denotations of
variables, justifying our construction of τ .

Before looking at functional types, let us interpolate our intuition to base types and
observe that at least there δ and τ behave exactly as expected:
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Proposition 4.3.1
1. δCt = [t]
2. τCv = v

3. [ρCv] = v

Proof Obvious from the definitions of DC, δ, τ and ρ. �

Next we want to show that δ is invariant under deduction, i.e. that convertible terms
are mapped by δ to the same value. This implies that the following family of functions
δ∗ = 〈δT

∗ |T ∈ Ty〉 is well defined:

δT
∗ ∈ TerT /A → DT

δT
∗[t] = δT t

Although δ∗ is not needed for the formal parts of our proof, it is a construction which
closely corresponds to our intuitive goal, which is connecting convertibility classes with
domains.

Proposition 4.3.2 [s] = [t] =⇒ δs = δt

Proof Let [s] = [t]. Then

δs = λ~v ∈ D~T .[s(ρ(τ(~v)))]
= λ~v ∈ D~T .[t(ρ(τ(~v)))] [s] = [t]
= δt �

Now let us have a closer look at τ . The following proposition states that, given a
value v, τ always returns either the empty set or some convertibility class. So, τT can
also be seen as a function DT → TerT /A ∪ {∅}.

Proposition 4.3.3 t ∈ τv ⇐⇒ τv = [t]

Proof The direction “⇐” is obvious. In order to show “⇒”, assume t ∈ τ~TCv. We
prove ∀s ∈ Ter ~TC : s ∈ τv ⇐⇒ A ` s = t.
• “⇒”: Choose ~x ∈ Var ~T pairwise distinct and disjoint from Vs ∪ Vt. Since by

assumption s ∈ τv, we have

[s~x] = v(δ~x) s ∈ τv
= [t~x] t ∈ τv

⇐⇒ A ` s~x = t~x
=⇒ A ` s = t Corollary 4.2.2

• “⇐”: It suffices to show that for all ~x : ~T : A ` s = t =⇒ v(δ~x) = [s~x].

A ` s = t
=⇒ A ` s~x = t~x
⇐⇒ [s~x] = [t~x]

= v(δ~x) t ∈ τv �
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Of course, the above statement is rather weak. What we are going to show now is
a much more interesting fact, namely that τ is a left inverse of δ∗. This immediately
implies that:
1. δ∗ is injective,
2. τT |ran δT

is surjective on TerT /A,
3. ran δT

∼= TerT /A with τT |ran δT
and δ∗ being the corresponding set isomorphism and

its inverse, respectively.

Remark The latter two facts would be of major importance to us if we had based our
proof on Friedman’s approach [16]. There, we would have to show that τT |ran δT

can
be extended to a suitable partial homomorphism from ran δT onto TerT /A (see the
discussion in Section 4.8).

Proposition 4.3.4 τ(δt) = [t]

Proof We prove ∀T ∀t ∈ TerT : τ(δt) = [t] by induction on T . Let T = ~TC and
~x ∈ Var ~T . By Proposition 4.3.3 it suffices to show: δt(δ~x) = [t~x].

δt(δ~x) = [t(ρ(τ(δ~x)))]
= [t(ρ[~x])] IH
= [t~x] �

The second claim of the following proposition states that δ is a homomorphism from
terms to domains of D.

The first claim of the proposition states how functional application of values con-
structed by δ to arguments corresponds to syntactic application of the initial terms.
While being somewhat technical it turns out to be of some help not only for the proof of
the second claim, but also later for the important Lemma 4.5.6 (“Faithfulness Lemma”).

Proposition 4.3.5
1. δt~v = δ(t(ρ(τ~v)))
2. δs(δt) = δ(st)

Proof
1. Let t : ~T ~T ′, ~v ∈ D~T . Then

δ~T ~T ′t~v = λ~u~w ∈ D(~T ~T ′).[t(ρ(τ~u))(ρ(τ ~w))]~v
= λ~w ∈ D ~T ′.[t(ρ(τ~v))(ρ(τ ~w))]
= δ ~T ′(t(ρ(τ~v)))

2.

δs(δt) = δ(s(ρ(τ(δt)))) Part 1
= δ(s(ρ[t])) Prop. 4.3.4
= δ(st) Prop. 4.3.2 �
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For every interpretation I extending a structureD with |{u | Iu 6= δu}| <∞ we define
a corresponding substitution θI :

θI
def= λu ∈ Nam.if Iu = δu then u else ρ(τ(Ix))

The substitution corresponding to an interpretation I, θI , is used to reflect the
behaviour of I on term level. Given a name u, θIu returns a term from the image of Iu
under τ , provided the image is non-empty. The essential properties θI are summarized
by the following two propositions.

Proposition 4.3.6 For all I ⊇ D: [θIu] = [ρ(τ(Iu))].

Proof We distinguish two cases:

Case Iu 6= δu. The claim follows immediately by the definition of θI .

Case Iu = δu.
[θIu] = [u]

= [ρ[u]]
= [ρ(τ(δu))] Prop. 4.3.4
= [ρ(τ(Iu))] �

Proposition 4.3.7 For all I ⊇ D: [θIu
v
t] = [θI [u := ρ(τv)]t]

Proof It suffices to show: ∀u′ ∈ Nam : [θIu
v
u′] = [θI [u := ρ(τv)]u′]

Case u′ = u.
[θIu

v
u] = [ρ(τ(Iu

v u))] Prop. 4.3.6
= [ρ(τv)]
= [θI [u := ρ(τv)]u]

Case u′ 6= u.
[θIu

v
u′] = [ρ(τ(Iu

v u′))] Prop. 4.3.6
= [ρ(τ(Iu′))]
= [θIu′] Prop. 4.3.6
= [θI [u := ρ(τv)]u′] �

4.4 Soundness of the Construction

After discussing generic term structures, we will now focus our attention on a specific
member of this family.

Given some term structure D, we defineM as the unique structure over Σ such that:
• MC = DC,
• Mc = δc.
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In contrast to generic term structures,M is required to interpret parameters from Σ in
the same way as it is done by δ.

We claim thatM is a model of A, provided A is plain. As a technical device to prove
this claim, we introduce a restricted form of interpretations.

An interpretation I is called an assignment if the set {u | Iu 6= δu} is finite and
contains no parameters.

The notion of an assignment is defined in such a way that, independently of Σ,
there always exist assignments extending M. In particular, δ|Nam is an assignment
which extends Σ. Moreover, for every term t licensed by Σ and every interpretation I,
denotational coherence ensures the existence of an assignment I ′ such that It = I ′t.

Crucial for the following is the fact that every substitution corresponding to an
assignment has finite domain. This allows us to reduce evaluation of terms with respect
to arbitrary assignments to evaluation of their substitution instances by δ.

Lemma 4.4.1 If t is plain and I ⊇M is an assignment, then Ît = δ(θIt).

Proof Let I ⊇ M be plain. We show that, for all plain terms t: It = δ(θIt), by
induction on |t|.
Case t = x. Since t is plain, x is basic and hence:

Îx = Ix
= [ρ(τ(Ix))] Prop. 4.3.1
= [θIx] Prop. 4.3.6
= δ(θIx) Prop. 4.3.1

Case t = c. Then, since I is an assignment, Îc = Ic = δc = δ(θIc).

Case t = t1t2:
Î(t1t2) = Ît1(Ît2)

= δ(θIt1)(δ(θIt2)) IH
= δ((θIt1)(θIt2)) Prop. 4.3.5
= δ(θI(t1t2))

Case t = λx.s. Let x : T , s : T ′, w.l.o.g. Ix = δx, x 6∈
⋃

u∈N t V(θIu). Hence

δTT ′(θI(λx.s)) = δTT ′(λx.θIs)
= λv ∈ DT.δT ′((λx.θIs)(ρ(τv)))
= λv ∈ DT.δT ′((θIs)[x := ρ(τv)])
= λv ∈MT.δT ′((θIs)[x := ρ(τv)])

and Î(λx.s) = λv ∈MT.Îx
v s. Let v ∈MT . It remains to show:

Îx
v s = δ((θIs)[x := ρ(τv)])

This can be done as follows:

Îx
v s = δ(θIx

v
s) IH

= δ(θI [x := ρ(τv)]s) Prop. 4.3.7
= δ((θIs)[x := ρ(τv)]) θIx = x �
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Now we are ready to prove our claim.

Theorem 4 (Soundness) If A is plain, then M � A.

Proof Let A be plain, s = t ∈ A. Since A is licensed by Σ, it suffices to show that
Is = It for every assignment I ⊇M. So, let I ⊇M be an assignment.

Îs = δ(θIs) Lemma 4.4.1
= δ(θIt) Prop. 4.3.2
= Ît Lemma 4.4.1 �

4.5 Faithfulness and Completeness

Generally speaking, deduction is complete for a given set of axioms if for every pair
of distinct convertibility classes there exists an evaluation satisfying the axioms which
maps the two classes to distinct values. Similarly to our approach in Chapter 3, we are
going to prove a stronger statement, namely the existence of a single evaluation that
maps every pair of distinct convertibility classes to distinct values. This evaluation will
extend our previously constructed model M. So, our main goal now is to show that
such an extension is possible. In the case of term structures, the desired property will
be called “faithfulness”.

We say that a structure D is faithful if there exists an interpretation I ⊇ D such that
∀t : τ(Ît) = [t]. In such a case the interpretation I is said to witness the faithfulness
of D.

Let us first convince ourselves that faithfulness is indeed a sufficient criterion for
completeness:

Proposition 4.5.1 If A is plain and M is faithful, then M is a minimal model of A.

Proof Let A be plain. By Theorem 4 this implies M � A. Now assume M faithful, I
being the witness, andM � s = t. To show: A ` s = t.

M � s = t

=⇒ Îs = Ît
=⇒ τ(Îs) = τ(Ît)
⇐⇒ [s] = [t] I witnesses faithfulness ofM
⇐⇒ A ` s = t �

Corollary 4.5.2 If A is plain and M is faithful, then A � e =⇒ A ` e, for all equa-
tions e, i.e. A is deductively complete.

There are several ways to prove M faithful. In the following, we will present two
of the possible approaches. One of the approaches extends the corresponding proof by
Plotkin [39] from the pure λ-theory of ∅ to larger theories, in the same way as M
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extends his model construction. While being short and intuitive, Plotkin’s approach
relies on the existence of η-long, β-normal forms (also βη-normal forms; see [48] for
details). Termination of βη-normalization is, of course, a fairly non-trivial property in
its own right. It is known to be reducible to that of β-normalization (see [48, 30]), which
is provable using the methodology due to Tait [47] and Girard [18]. For this reason we
also give a different, independent proof. This approach is slightly longer but, in return,
does not rely on βη-normalization. Let us begin with the latter.

4.5.1 Faithfulness Lemma

For every type T , the set of denotable values DT is defined by recursion on T :

D~TC

def= {v ∈ D(~TC) | ∀~w ∈ D~T : δ(ρ(τv))~w = v ~w}

Proposition 4.5.3 δu is denotable, for every name u.

Proof To show: For every type T = ~TC and every u ∈ NamT it holds δu ∈ DT , i.e.
∀~v ∈ D~T : δ(ρ(τδu))~v = δu~v. We show a stronger claim:

δ(ρ(τ(δu))) = δ(ρ[u]) Prop. 4.3.4
= δu Prop. 4.3.2 �

The following two propositions state useful intuitions about denotable values but
are not needed to prove faithfulness of M. First, we observe that every basic value is
denotable. Second, every denotable value has a non-empty image under τ .

Proposition 4.5.4 DC = DC

Proof It suffices to show DC ⊆ DC . So let v ∈ DC. We show v ∈ DC , i.e. δ(ρ(τv)) = v:

δ(ρ(τv)) = [ρ(τv)] Prop. 4.3.1
= [ρv] Prop. 4.3.1
= v Prop. 4.3.1 �

Proposition 4.5.5 v ∈ DT =⇒ ρ(τv) ∈ τv

Proof Let v ∈ D~TC . Sufficient to show: ∀~x ∈ Var ~T : [ρ(τv)~x] = v(δ~x)

[ρ(τv)~x] = [ρ(τv)(ρ[~x])]
= [ρ(τv)(ρ(τ(δ~x)))] Prop. 4.3.4
= δ(ρ(τv))(δ~x)
= v(δ~x) v ∈ D~TC , Prop. 4.5.3 �

An interpretation I is called denotable if it maps every name to a denotable value
and {u | Iu 6= δu} is finite.
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Lemma 4.5.6 (Faithfulness) For every t : ~TC and for every denotable I ⊇M:
1. ~v ∈ D~T =⇒ Ît~v = δ(θIt)~v

2. τ(Ît) = [θIt]
3. Ît ∈ D~TC

Proof We proceed in three steps:
1. We show (1) =⇒ (2). Let (1). By Proposition 4.3.3 it suffices to show θIt ∈ τ(Ît),

i.e. ∀~x ∈ Var ~T : Ît(δ~x) = [(θIt)~x]. Let ~x ∈ Var ~T . By Proposition 4.5.3 and (1),
Proposition 4.3.5 and Proposition 4.3.1 we have

Ît(δ~x) = δ(θIt)(δ~x) = δ((θIt)~x) = [(θIt)~x]

2. We show (1) ∧ (2) =⇒ (3). Let (1), (2) and ~v ∈ D~T . It suffices to show that
δ(ρ(τ(Ît)))~v = Ît~v. We have:

δ(ρ(τ(Ît)))~v = δ(ρ[θIt])~v (2)
= δ(θIt)~v Prop. 4.3.2
= Ît~v (1)

3. We show (1) by induction on |t|. The previous two steps imply that the induc-
tive hypothesis can always be weakened to a corresponding instance of (2) or (3).
Let ~v ∈ D~T .

Case t = x.
Îx~v = Ix~v

= δ(ρ(τ(Ix)))~v Ix denotable
= δ(θIx)~v Prop. 4.3.6, 4.3.2

Case t = c. We show a stronger claim: Îc = δc = δ(θIc).
Case t = t1t2.

Î(t1t2)~v = Ît1(Ît2)~v
= δ(θIt1)(Ît2)~v IH(3), IH(1)
= δ((θIt1)(ρ(τ(Ît2))))~v Prop. 4.3.5
= δ((θIt1)(ρ[θIt2]))~v IH(2)
= δ((θIt1)(θIt2))~v Prop. 4.3.2
= δ(θI(t1t2))~v

Case t = λx.s where Ix = δx and x 6∈
⋃

u∈N t V(θIu). Let x : T1 and ~v = w~w. Since,
by assumption, ~v ∈ D~T , Ix

w is denotable.

Î(λx.s)~v = (λv ∈MT1.Îx
v s)~v

= Îx
ws~w

= δ(θIx
w
s)~w IH(1)

= δ(θI [x := ρ(τw)]s)~w Prop. 4.3.7
= δ((λx.θIs)(ρ(τw)))~w β
= δ(λx.θIs)~v Prop. 4.3.5
= δ(θI(λx.s))~v �
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To show faithfulness of M it remains to construct a witnessing interpretation. So,
let Iδ an interpretation extending M such that ∀u ∈ Nam : Iδu = δu. Clearly, the
substitution corresponding to Iδ, θIδ

, is an identity function. Therefore, faithfulness of
M is an immediate consequence of the second claim of Lemma 4.5.6:

Corollary 4.5.7 (Faithfulness) M is faithful, with Iδ being the witness.

4.5.2 Plotkin-style Faithfulness Proof

As it was already mentioned before, the following proof idea assumes that every term
can be βη-reduced to a βη-normal form.

Plotkin’s construction corresponding to τ has a noteworthy difference to our defini-
tion. While we say that a term t is in τ~TCv if v(δ~x) = [t~x] for all ~x ∈ Var ~T , according to
Plotkin’s definition it suffices if the equation holds for non-repeating ~x. If a vector ~x is
non-repeating, i.e. consists of pairwise distinct variables, it is possible to write an arbi-
trary application t~x of a βη-normal term t to ~x as (λ~x.s)~x, which can then be β-reduced
to s. While Plotkin’s original formulation of the proof depends on this property, in gen-
eral it turns out to be non-essential. The following proposition states a generalization of
the above β-reduction. This generalization will then enable us to use our initial, simpler
definition of τ .

Proposition 4.5.8 Let ~x be pairwise distinct and θ a substitution such that θx = x if x
does not occur in ~x. Then ` (λ~x.t)(θ~x) = θt

Proof By induction on |~x|.

Case ~x = 〈〉. Then θx = x holds for all x ∈ Var , so t = θt.

Case ~x = ~yx.
(λ~x.t)(θ~x)

= (λ~yx.t)(θ~y)(θx)
= (λ~yx.t)(θ[x := x]~y)(θx) x 6∈ ~y
= θ[x := x](λx.t)(θx) IH
= θ(λx.t)(θx) x 6∈ V(λx.t)
= θ((λx.t)x)
= θt β �

For the final step we would like to re-use the interpretation Iδ, which we have intro-
duced for Corollary 4.5.7 to witness faithfulness ofM. It is not surprising that Iδ does
the same job here.

Lemma 4.5.9 (Plotkin) If t is βη-normal, then τ(Îδt) = [t].

Proof By induction on |t|. Let t : ~TC be βη-normal. By Proposition 4.3.3 it suffices to
show that t ∈ τ(Îδt), i.e. ∀~x ∈ Var ~T : Îδt(δ~x) = [t~x].
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So let ~x ∈ Var ~T , t = λ~y.t0~t where t0 is atomic and, w.l.o.g., ~y pairwise distinct. Let
θ = [~y := ~x]. Then, by Proposition 4.5.8:

` t~x = t(θ~y) = θ(t0~t) = (θt0)(θ~t) (∗)

Hence
Îδt(δ~x) = Îδt(Îδ~x)

= Îδ(t~x)
= Îδ((θt0)(θ~t)) (∗)
= Îδ(θt0)(Îδ(θ~t))
= δ(θt0)(Îδ(θ~t)) t0 atomic
= δ((θt0)(ρ(τ(Îδ(θ~t))))) Prop. 4.3.5
= [(θt0)(ρ(τ(Îδ(θ~t))))] Prop. 4.3.1
= [(θt0)(ρ[θ~t])] IH
= [(θt0)(θ~t)]
= [t~x] (∗) �

Since M is standard and hence compatible with βη-conversion, we immediately ob-
tain the desired stronger claim:

Corollary 4.5.10 τ(Mδt) = [t]

4.6 Consequences

Plain axioms allow us to describe a wide class of interesting equational λ-theories. Since
the class of plain terms is a proper superset of both one-sorted and many-sorted first-
order formulas, it is not very surprising that, as far as deduction is concerned, first-order
logic can easily be simulated by an adequate plain axiomatization. In Figure 4.1 we
saw an example of such an axiomatization. It can be extended in an intuitive way to
describe arbitrary constructions formulated in many-sorted predicate logic. Obviously,
plain axioms can also be used to deductively simulate fragments of first-order logic, like
propositional logic or modal logics.

What about semantics? Traditionally formal semantics of both first-order and higher-
order logic always includes the definition of a distinguished domain, namely the domain
of truth values. It is assumed to consist of exactly two values which are commonly
referred to as “truth” and “falsehood”. Models which satisfy this requirement are said to
have Boolean extensionality. Truth values play a crucial role in traditional semantic
constructions in so far as they are used to define the notion of semantic validity of
formulas. Their syntactic counterparts, propositional constants and connectives, are
usually integrated into rules of inference, which makes them an essential part of the
overall logical formalism.

In equational logic on the other hand, semantic validity does not depend in the
least on any particular definition of truth values, just as equational deduction does not
depend on propositional constants. Indeed, equational logic is often used in a context
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where an explicit notion of truth is unnecessary, and hence, the domain of truth values
is not even defined. The prototypical example of such an application is formal group
theory. As a consequence of this practice, equational semantics typically does not make
any statements about the interpretation of Boolean constants or the structure of the
propositional domain. Instead, all the essential semantic properties of a formal system
are assumed to be specified by corresponding axioms. This is also the approach that we
pursue in the definition of S.

To simulate traditional first-order or higher-order logic in S, it therefore seems neces-
sary to provide a sufficiently precise equational specification of the propositional domain
and a reasonable selection of Boolean constants. We want to know in how far this task
can be accomplished by using only plain axioms.

Given a structure A and a type T licensed by ΣA, the domain AT is called trivial if
|AT | = 1. A structure A is called trivial if AT is trivial for all types T licensed by ΣA.

Note that triviality on base types implies triviality on certain functional types:

Proposition 4.6.1 A structure A is trivial on a sort C if and only if it is trivial on all
types of the form ~TC.

Proof One direction is immediate. The other one is proved by induction on |~T |. �

In analogy to satisfiability with respect to general semantics, we say that a set A
of equations is satisfiable at type T (with respect to standard semantics) if it has a
model A such that AT is non-trivial. A is called satisfiable if it has a non-trivial model.
Note that in every term structure D, a basic domain DC is non-trivial if and only if
|DC| = ℵ0, which follows by essentially the same chain of reasoning as the one used for
proving Proposition 3.4.1, now limited to base types:

Proposition 4.6.2 For every set A of plain equations there exists a model A � A such
that for every C ∈ Sor: |AC| = 1 or |AC| = ℵ0.

Proof Non-triviality of DC requires that there exist at least two terms of type C which
are not deductively equivalent. This implies that no two distinct variables of type C may
be deductively equivalent, i.e. contained in the same convertibility class. Therefore, there
must exist at least as many convertibility classes in DC as there are distinct variables of
type C. So, the definitions of variables and typings give us ℵ0 as a lower bound on the
cardinality of DC. The upper bound is provided by the fact that we have only countably
many terms. �

Corollary 4.6.3 (Löwenheim-Skolem) A set A of plain equations is satisfiable at a
base type C if and only if it has a model A such that |AC| = ℵ0.

Hence, every plain axiomatization of FOL in S will allow models which interpret the
Boolean type by an infinite set. Such models of S clearly cannot be considered models
of FOL or HOL in the traditional sense. On the other hand, a traditional model of FOL
or a traditional standard model of HOL satisfies all the requirements to a model of S.
In this sense, the notion of a model in S is weaker than the traditional notion.
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This weakness becomes deductively apparent when we try to use a plain axioma-
tization of FOL to derive higher-order theorems. Consider, for instance, the equation
yx = y(y(yx)), where x : B and y : BB. It is not hard to check that this equation
is valid in a model if and only if it interprets the Boolean type by a two-valued set
(see [45]). Therefore the equation is certainly valid in every traditional model of FOL
or HOL. Indeed, it turns out to be a theorem of traditional higher-order logic with
equality. In FOL, the equation, while expressing a valid statement when considered at
the meta-level, cannot be expressed at the object level because it involves Boolean and
higher-order variables. Although our deduction formalism does allow us to express the
above equation, because of Proposition 4.6.2 the equation does not follow semantically
and hence is not derivable from any set of plain axioms which is satisfiable at B.

On first-order terms however, validity with respect to equational semantics of S can
coincide with validity with respect to traditional semantics. To convince ourselves of this
fact, we observe that, while being able to deductively simulate traditional formulations
of FOL, our axiomatization of FOL is sound with respect to traditional semantics. The
claim follows by deductive completeness of FOL with respect to traditional semantics,
first shown by Gödel [19].

Since plain terms are a superset of first-order formulas, this implies that plain axioms
in S are semantically at least as expressive as traditional FOL. The converse does not
hold. Although plain axioms are semantically less expressive than unrestricted HOL,
they allow to specify certain properties of higher-order objects which cannot be de-
scribed by first-order terms. Consider, for instance, the equation ∀IBx.1 = 1. It partially
describes second-order universal quantification. More specifically, every model A sat-
isfying this equation has to interpret the parameter ∀IB by a function that, whenever
applied to λv ∈ A(IB).A1, returns A1. Since ∀IB is not a first-order constant, it may
not appear in a first-order formula. Hence, every satisfiable set of first-order formulas
will allow models A which interpret ∀IB by λv ∈ A((IB)B).A0, contradicting the above
equation whenever A0 6= A1.

We have already seen that semantic expressiveness of equational theories induced by
plain axioms is greater than that of traditional FOL. On the other hand, we know that
both traditional HOL and unrestricted, recursively generated λ-theories provide semantic
expressiveness which is sufficient to characterize the natural numbers or non-trivial finite
domains (see Section 2.2 and [5, 30]). So, independently of each other, Proposition 4.6.2
and the main completeness result for plain axioms imply that λ-theories induced by plain
axioms are semantically strictly less expressive than unrestricted higher-order calculi.

Let us conclude our discussion of plain axiom systems by proving their compactness:

Proposition 4.6.4 (Compactness) A set of plain equations A is satisfiable at a type
T if and only if every finite subset of A is satisfiable at T .

Proof Let A be a set of plain equations and T = ~TC a type such that every finite subset
of A is satisfiable at T . By Proposition 4.6.1, every subset of A is also satisfiable at C.
Let x, y : C be two distinct variables. By soundness, the equation x = y is not provable
from any of the finite subsets of A. Consequently, since all proofs from A are finite,
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A 6` x = y, i.e. [x]A 6= [y]A. Hence |MC| > 1. Then A is satisfiable by Theorem 4. The
converse is immediate. �

4.7 Excursion: Fixed Points and Incompleteness of S

In Section 2.2 we saw an axiomatic system of S that is not complete with respect to
standard semantics. We want to present another, conceptually much simpler example
of an axiomatic system with incomplete deduction.

Let us look at a typical definition of a fixed point combinator F : F f = f(F f). We
know that there exists no standard model satisfying the equation that is non-trivial
at τf , simply because non-trivial standard domains always contain functions which do
not have a fixed point. From the study of PCF [41], probably the most important
system containing fixed point combinators, we know that the above equation does not
suffice to make every two terms of type τf convertible (see also [33]). So, given two
sequences 〈F T |T ∈ Ty〉 and 〈fT |T ∈ Ty〉 such that, for every type T , F T ∈ Par (TT )T

and fT ∈ VarTT , the set {F T fT = fT (F T fT ) |T ∈ Ty} is an example of an axiomatic
system that is incomplete with respect to standard semantics.

4.8 Preceding and Further Work

Unlike general semantic constructions by Friedman [16], Mitchell [33] or our own con-
struction in Chapter 3, the functional domains in D do not consist of convertibility
classes, but have to contain actual functions. Since for all satisfiable axiom systems the
standard term model contains infinite domains, it necessarily has functional types with
uncountable domains. Therefore in general, there exists no bijection between terms or
classes of terms of a functional type and elements of the corresponding domain. This is
a major complication which arises when one tries to generalize Birkhoff’s completeness
proof [10] to higher-order calculi. The solution to this problem is to establish a homo-
morphic connection between functional convertibility classes and selected subsets of the
corresponding domains. This idea was first exploited by Friedman in his completeness
proof for the pure simply typed λ-calculus [16]. Using such a partial homomorphism
from standard domains to convertibility classes, he reduced the completeness proof for
standard models to a proof of completeness with respect to general semantics, similar
to the one in Chapter 3. Later Plotkin presented a modified version of the completeness
proof [39], which no longer relied on general semantics and made the connection between
standard domains and convertibility classes less explicit (see also [37, 46]). While our
proof relies on an extension of Plotkin’s model construction, we also make explicit the
connections between domains of D and convertibility classes modulo A. The detailed
analysis of these connections gives us the insights which are necessary to prove soundness
of our construction. It was first applied, in a simplified setting, in [30] to prove standard
completeness of the simply typed λ-calculus with algebraic axioms. Unfortunately, the
proof of faithfulness for the construction presented in [30] contained a flaw. This gap
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can now be closed by adapting the corresponding proof by Plotkin [39], analogously to
how it was done in Section 4.5.

As we saw in Section 2.2 and 4.7, in general, standard completeness cannot be
achieved in the presence of axioms with higher-order variables. Nevertheless, as we will
see in the following chapter, there also exist non-trivial deductively complete axiomatic
systems which contain higher-order variables. It remains a challenge to find a more
precise generic sufficient criterion for deductive completeness with respect to standard
semantics which would extend our result for plain axioms to systems with higher-order
variables.
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5 Propositional Type Theory

Propositional Type Theory was introduced in 1963 by Leon Henkin [25]. Its main differ-
ence from Church’s type theory [13] is the absence of any base types apart from the type
of truth values. Therefore, one can say PTT is a higher-order extension of propositional
logic in the same sense as Church’s formulation of HOL is a higher-order extension of the
first-order predicate calculus. Henkin’s formulation of PTT, while based on Church’s
formulation of type theory, pioneers a different way of introducing logical constants. For
every type T , the formulation contains a single primitive constant QT : TTB which de-
notes the identity relation over the domain of T . Boolean connectives, quantifiers and
the description operator are then defined in terms of these primitive constants. Later,
this approach was carried over to full HOL by Andrews [2, 4] (see also [26, 5]).

In contrast to the formerly introduced notion of external equality, we call an equiv-
alence relation internal if it is the denotation of an object-level constant, like the one
introduced by Henkin.

The semantics of PTT is based on the interpretation of the type B of truth values by a
two-element set. Functional domains are standard. Henkin shows that logical constants
defined in terms of the primitive equality constants QT are interpreted in the traditional
way. One of the key features of PTT shown by Henkin is the possibility to express
every value of an arbitrary domain by a closed term. By exploiting this property Henkin
proves deductive completeness of PTT with respect to the above standard semantics.

In the following, we want to give an equational formulation of PTT in S and show its
completeness and decidability with respect to the original semantics. We will see that
a formulation of PTT in S can be made significantly simpler than Henkin’s original ap-
proach and moreover, allows us to considerably simplify the corresponding completeness
proof. Let us first discuss why this is the case.

Henkin’s approach to defining propositional constants in terms of equality has sev-
eral important implications on the structure of his axioms. His original axiomatization
consists of infinitely many axioms corresponding to seven axiom schemes, three of which
were immediately shown by Andrews [1] to be derivable from the remaining four. These
still contain infinitely many axioms and state, among other things, that, for every type T ,
the equality relation denoted by QT is a congruence which is extensional and compatible
with β-conversion.

As an equational formalism, S has a built-in notion of equality, given by the external
equality relation. Because of the rules Cong and β we know that this relation is a
congruence compatible with β-conversion. As it was shown in Section 4.2, external
equality in S is also known to be extensional. As we can see, the essential properties of
internal equality which have to be axiomatized in Henkin’s formulation of PTT come for
free with external equality in S. Therefore, it should be possible for us to achieve the
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Name MT

Base Type B truth values

Constants 0, 1 : B truth and falsehood
(→) : BBB implication (right associative)

Variables x, y : B
f : BB

Notation x ∨ y
def= (x→ y)→ y disjunction

Axioms 0→ x = 1 I0
1→ x = x I1

f0→ f1→ fx = 1 BCA
x ∨ y = y ∨ x Comm

Figure 5.1: MT: Axiomatization of PTT

same level of deductive expressiveness by relying entirely on external equality, without
having to provide an infinite axiomatization of an object-level constant with the same
semantics.

5.1 Semantics and Axiomatization of PTT

For the following discussion it is useful to have a notion of isomorphism on structures. So,
let A and B be two structures over the same signature Σ. An isomorphism h : A → B
is a family of functions indexed by types 〈hT |T ∈ Ty〉 such that, for every two types
T, T ′ licensed by Σ:
1. hT ∈ AT → BT is bijective,
2. for every c : T in Σ: hT (Ac) = Bc,
3. hTT ′ = λv ∈ A(TT ′)λw ∈ BT.hT ′(v(h−1

T w)).
A and B are called isomorphic (notation A ∼= B) if there exists an isomorphism A → B.

Note that by the third property of its definition, the behaviour of a structure isomor-
phism on functional domains is uniquely determined by its behaviour on basic domains,
i.e. for every family of bijections {hC : AC → BC |C ∈ Σ ∩ Sor} there exists a unique
minimal extension h satisfying the first and the third property of the definition. To show
that h is a structure isomorphism it then suffices to prove the second property.

Given two isomorphic models A and B, one can show that for every set A of equations
licensed by Σ: A � A ⇐⇒ B � A.
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Now the semantics of PTT can be completely represented as properties of a single
structure:

Let T2 be a structure over the signature consisting of a single sort B and the param-
eters 0 : B (falsehood), 1 : B (truth) and (→) : BB (implication), such that:
1. T20 = F and T21 = T where T 6= F,
2. T2B = {F,T},
3. T2(→) has the usual truth table semantics of implication.
We assume T2 to be the unique non-trivial model of PTT up to isomorphism.

To simplify matters, for the rest of the chapter we consider only types, terms and
equations which are licensed by ΣT2 , unless stated otherwise.

In the following, we consider several equational axiomatizations of PTT. The first
and conceptually simplest one, MT, is presented in Figure 5.1. The initial formulation
of MT as well as some discussion of its deductive and semantic properties can be found
in [45]. It is fairly easy to check soundness of MT:

Proposition 5.1.1 T2 � MT

MT is interesting because it satisfies an important prerequisite for deductive com-
pleteness. It entails semantically precisely the valid equations of T2:

Proposition 5.1.2 T2 � e ⇐⇒ MT � e

Proof
• “⇐”: Follows by Proposition 5.1.1.
• “⇒”: It suffices to show that every non-trivial model of MT (over ΣT2) is isomorphic

to T2. So, let A be a non-trivial structure over ΣT2 that satisfies MT. First we have
to show that AB ∼= T2B. This can be done in two steps:
1. We show: A0 6= A1. Assume, for contradiction, A0 = A1. Consequently, we

have: A � 1→ x = 0→ x. By I1 and I0 we obtain A � x = 1, contradicting non-
triviality of A.

2. We show: AB = {A0,A1}. Assume, for contradiction, there exists an element
v ∈ AB which is distinct from A0 and A1. Let I ⊇ A be an interpretation
such that Ix = v and If = λw ∈ AB.if w ∈ {A0,A1} then A1 else w. But then
Î(f0→ f1→ fx) = w 6= A1, contradicting A � BCA.

Now we can construct an isomorphism h : A → T2. Let, for c ∈ {0, 1}, hB(Ac) = T2c.
Thus we have specified the behaviour of h on all domains. It remains to show that
hBB(A(→)) = T2(→). For this purpose it suffices to prove that, for all v, w ∈ AB:
hB(A(→)vw) = T2(→)(hBv)(hBw). Since AB = {A0,A1}, this fact can be verified
by a simple case analysis, using the axioms I0 and I1. �

Next we look at the deductive power of MT. The first thing we observe is that MT
is deductively complete for closed basic equations:

Proposition 5.1.3 Let t be closed and basic. Then either T2 ` t = 0 or T2 ` t = 1.
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Proof By induction on the size of the βη-normal form of t. �

Proposition 5.1.4 If e is closed and basic, then T2 � e =⇒ MT ` e.

Proof Follows by Proposition 5.1.3 and 5.1.1. �

The next question to ask is whether MT is deductively complete in general, i.e.
whether for every equation e:

T2 � e =⇒ MT ` e

Surprisingly enough, this is the case. The four simple axioms of MT already suffice to
completely specify the properties of T2.

Before we proceed to prove this claim, let us note two useful deductive properties
of MT. First, the rule of modus ponens (MP) is derivable from MT:

Proposition 5.1.5 (MP) For all terms s and t, not necessarily licensed by ΣT2:
MT, s→ t = 1, s = 1 ` t = 1.

Proof Proceeds analogously to the corresponding proof for FOL, see Section 4.1. �

Second, MT satisfies the following deduction theorem:

Proposition 5.1.6 (Deductivity) For all sets A ⊇ MT, terms t and closed terms s,
not necessarily licensed by ΣT2: A, s = 1 ` t = 1 =⇒ A ` s→ t = 1.

Proof Let s be closed, A ⊇ MT and A, s = 1 ` t = 1. By Proposition 2.1.3, the deriva-
tion of t = 1 from A ∪ {s = 1} can be written as a conversion proof t0 = . . . = tn, where
n ∈ N, t0 = t, tn = 1. By Rep, this proof can be transformed into s→ t = . . . = s→ 1.

Since s is closed and therefore has no substitution instances, in order to show that
the new proof no longer depends on s = 1, it suffices to prove that for all contexts k:
A ` s→ k[s] = s→ k[1]. Again since s is closed, the target equation can be β-converted
to s→ (λx.k[x])s = s→ (λx.k[x])1, for some x, which is a substitution instance of
x→ fx = x→ f1. The subclaim follows by appropriate application of I0, reflexivity
and BCA.

By the above, we obtain: A ` s→ t = s→ 1. It remains to show that A ` s→ 1 = 1,
which is easily doable by I0, I1 and BCA. �

5.2 Completeness of MT

5.2.1 Boolean Axioms and Algebraic Completeness

Before we proceed to the higher-order case, let us have a brief look at the behaviour of MT
on algebraic terms. Since T2 is a higher-order extension of a two-element Boolean algebra,
we know that all of its algebraic properties can also be specified by means of Boolean
axioms. A reference axiomatization BA is given in Figure 5.2. Such a specification by
Boolean axioms is known to be deductively complete for algebraic equations:
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Name BA

Variables x, y, z : B

Notation ¬x
def= x→ 0 negation

x ∨ y
def= (x→ y)→ y disjunction

x ∧ y
def= ¬(¬x ∨ ¬y) conjunction

x ≡ y
def= (x→ y) ∧ (y → x) equivalence

Axioms
x ∧ y = y ∧ x x ∨ y = y ∨ x

x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z) x ∨ (y ∧ z) = (x ∨ y) ∧ (x ∨ z)
x ∧ ¬x = 0 x ∨ ¬x = 1

x ∧ 1 = x x ∨ 0 = x

Figure 5.2: BA: Boolean Axioms (for ΣT2)

Proposition 5.2.1 If e is algebraic, then T2 � e =⇒ BA ` e.

By proving all of the Boolean axioms derivable from MT we can show that:

Proposition 5.2.2 BA ` e =⇒ MT ` e

Hence, just like BA, MT is deductively complete for algebraic equations:

Corollary 5.2.3 If e is algebraic, then T2 � e =⇒ MT ` e.

Boolean axioms have the advantage of being a well-understood system with a lot of
useful theorems which facilitate the task of finding formal proofs. Therefore, we want
to use BA to establish the following two propositions:

Proposition 5.2.4 For all terms s and t, not necessarily licensed by ΣT2:
BA, s ≡ t = 1 à BA, s = t

Proof
• “a”: It suffices to show that BA ` t ≡ t = 1, which is easy.
• “`”: Let BA and s ≡ t = 1 be derivable. Then:

s = s ∧ s ≡ t = s ∧ (s→ t) ∧ (t→ s) = s ∧ t

Analogously, we derive t = s ∧ t. The claim follows. �
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↑~TBv = λ~x.
∨

~w∈T2
~T

v ~w=T21

~x
.=~T (↑~T ~w) Rei~TB

∀T = λf.
∧

v∈T2T

f(↑T v) ∀EnumT

( .=B) = (≡) BExtB
( .=T1T2) = λfg.∀T1x.fx

.=T2 gx BExtT1T2

Figure 5.3: MT: Derived Notation

Proposition 5.2.5 Let X, Y be finite sets of variables. Then

BA `
∧

x∈X

∨
y∈Y

fxy =
∨

g∈X→Y

∧
x∈X

fx(gx)

Proof By induction on |X|.

Case X = ∅. The claim holds since
∧
x∈∅

fx = 1 and
∨

g∈∅→Y

fg = f∅.

Case X = {x1} ∪X ′ where x1 6∈ X ′. Starting from the right-hand side we have:∨
g∈X→Y

∧
x∈X

fx(gx) =
∨

g∈X→Y

(
∧

x∈X′

fx(gx)) ∧ fx1(gx1)

=
∨

g∈X′→Y

∨
y∈Y

(
∧

x∈X′

fx(gx)) ∧ fx1y

= (
∨

g∈X′→Y

∧
x∈X′

fx(gx)) ∧
∨
y∈Y

fx1y

= (
∧

x∈X′

∨
y∈Y

fxy) ∧
∨
y∈Y

fx1y IH

=
∧

x∈X

∨
y∈Y

fxy

�

By Proposition 5.2.2, both of the above propositions remain valid if we replace BA
by MT. Hence, we can freely use them in our completeness proof.

5.2.2 Derived Notation

For convenience, we introduce some notational abbreviations, shown in Figure 5.3.
For every type T and every value v ∈ T2T we define ↑T v to be the term denoting v,

also called reification of v. Moreover, for every type T we define a term ∀T , denoting
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universal quantification over T2T , and .=T , the identity test for elements of T2T . ↑T v, ∀T

and .=T are defined by mutual recursion on T .
To convince ourselves that the notational extension is well-defined we observe that

every instance of the mutually recursive definitions can always be expanded in such a
way that at the end the right-hand side contains no derived notation, i.e. the recursive
formulation of the defining equations is just a convenient abbreviation for an equivalent
non-recursive definition.

It is not hard to check that the abbreviations indeed have the intended semantics:

Proposition 5.2.6 For all interpretations I ⊇ T2:
1. Î(↑T v) = v,
2. Î∀T v = (if v = (λv ∈ T2T.T21) then T21 else T20),
3. Î( .=T )vw = (if v = w then T21 else T20).

Proof By mutual induction on T . �

Even easier to check is that the derived notation introduces only closed terms:

Proposition 5.2.7 ↑T v, ∀T and .=T are closed.

Proof By mutual induction on T . �

5.2.3 ∀∀∀I: A Sufficient Criterion for Completeness of MT

Now we can formulate a necessary and sufficient criterion for the deductive completeness
of MT:

Proposition 5.2.8 MT is complete if and only if for all types T there exist variables f
and x such that: MT ` ∀T f → fx = 1.

Proof
• “⇒”: Assume MT is complete. It suffices to check that T2 � ∀T f → fx = 1, which

can easily be done by using Proposition 5.1.1 and 5.2.6.
• “⇐”: Assume that ∀T f → fx = 1 is derivable for every T , and that, for some s and

t, T2 � s = t. To show: MT ` s = t. By Corollary 4.2.3 we can assume w.l.o.g. that
s and t are basic. By Proposition 5.2.4 it then suffices to show that MT ` s ≡ t = 1.
Let ~x be the set Vs ∪ Vt. Since T2 � s ≡ t = 1, by Proposition 5.2.6 it also holds:
T2 � ∀~x.s ≡ t = 1. By Proposition 5.2.7, ∀~x.s ≡ t = 1 is closed. Hence, by Proposi-
tion 5.1.4, MT ` ∀~x.s ≡ t = 1. The claim follows by our assumption and MP. �

The criterion expresses the principle of universal instantiation, which is well known
from predicate logic. If a predicate is true universally, then also every particular applica-
tion of this predicate will evaluate to truth. Therefore in the following, the criterion will
often be referred to by the abbreviation ∀I. More precisely, the definition of ∀I together
with a few additional theorems is given in Figure 5.4.
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MT, s
.=T t = 1 ` s = t EqT

x
.=T y → fx→ fy = 1 RepT∨

v∈T2T

x
.=T (↑v) = 1 EnumT

∀T f → fx = 1 ∀IT

Figure 5.4: MT: Derived Rules and Theorems

The derived rule of inference Eq states that equality of two terms s and t according
to the internal relation defined by BExt can be deductively turned into external equality
of s and t. In the formulation of Eq, s and t are assumed to be type-licensed by ΣT2 ;
they may contain parameters which are not in ΣT2 . Rep states that if two terms are
related by internal equality, you can substitute one by the other in every context that
does not change the bindings of the occurring variables. Finally, Enum states that in T2
every value can be expressed by some closed term.

To prove completeness of MT it now suffices to show that ∀I is indeed a theorem
of MT. Since the other theorems from Figure 5.4 turn out to be useful for the proof
of ∀I, they will be proven simultaneously.

5.2.4 Proof of ∀∀∀I

By a simple inspection of the definition of reification at type B one can see that reification
agrees with the interpretation of 0 and 1 by T2. That is, the values T20 and T21 are
reified to the initial constants 0 and 1, respectively:

Proposition 5.2.9 (ReiB) If c ∈ {0, 1}, then ↑B(T2c) = c.

Next we show that reflexivity of internal equality is deductively entailed by MT:

Proposition 5.2.10 MT ` t
.=T t = 1

Proof By induction on T . �

The following proposition states two important properties of reification. First, reifi-
cation is a congruence, in the sense that the syntactic application of two reified values v
and w of appropriate types is deductively equivalent to the reification of the value vw.
Second, every pair of distinct values is reified to terms which are provably non-convertible
(their convertibility would contradict Proposition 5.2.10).

Proposition 5.2.11
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1. If T = T1T2, then MT ` (↑T v)(↑T1
w) = ↑T2

.vw.
2. If v, w ∈ T2T are distinct, then MT ` (↑T v) .=T (↑T w) = 0.

Proof By mutual induction on T .

Case T = B. The first claim holds vacuously. For the second claim it suffices to check
that both 0 ≡ 1 = 0 and 1 ≡ 0 = 0 are tautologous.

Case T = T1T2 where T2 = ~TB.

1. Then

(↑T1
~TBv)(↑T1

w) = (λx~x.
∨

u~u∈T2(T1
~T )

vu~u=T21

x
.=T1 (↑T1

u) ∧ ~x
.=~T (↑~T~u))(↑T1

w)

= λ~x.
∨

u~u∈T2(T1
~T )

vu~u=T21

(↑T1
w) .=T1 (↑T1

u) ∧ ~x
.=~T (↑~T~u) β

By Proposition 5.2.10 and the second inductive hypothesis respectively, we know:
• MT ` (↑T1

w) .=T1 (↑T1
w) = 1

• MT ` (↑T1
w) .=T1 (↑T1

u) = 0 if u 6= w

And therefore

λ~x.
∨

u~u∈T2(T1
~T )

vu~u=T21

(↑T1
w) .=T1 (↑T1

u) ∧ ~x
.=~T (↑~T~u)

= λ~x.
∨

~w∈T2
~T

vw ~w=T21

~x
.=~T (↑~T ~w)

= ↑~TB.vw

2. Let v, w ∈ T2T be distinct. Then there exist a value u ∈ T2T1 such that vu,wu
are distinct. Thus

MT ` MT, (↑.v~u) .=T2 (↑.w~u) = 0 IH(2)
` MT, (↑v)(↑~u) .=T2 (↑w)(↑~u) = 0 (1)
` ∀T1(λx.(↑v)x .=T2 (↑w)x) = 0
à (↑v) .=T (↑w) = 0 BExt �

Now we are ready to prove the first of our key propositions on the way to ∀I, which
is Enum:

Proposition 5.2.12 (EnumT ) MT `
∨

v∈T2T

x
.= (↑v) = 1
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Proof By induction on T .

Case T = B. The claim follows by BCA and Proposition 5.2.10.

Case T = T1T2.∨
v∈T2T

x
.= (↑v) =

∨
v∈T2T

∀T1y.xy
.= (↑v)y BExt

=
∨

v∈T2T

∧
w∈T2T1

x(↑w) .= (↑v)(↑w) ∀Enum

=
∨

v∈T2T1→T2T2

∧
w∈T2T1

x(↑w) .= (↑.vw) Prop. 5.2.11(1)

=
∧

w∈T2T1

∨
u∈T2T2

x(↑w) .= (↑u) Prop. 5.2.5

=
∧

w∈T2T1

1 IH

= 1 �

For the following, it is convenient to re-state Rep in a slightly different form:

Proposition 5.2.13 MT,RepT ` x
.=T y ∧ fx = x

.=T y ∧ fy

Proof It suffices to convert both sides of the equation to x
.=T y ∧ fx ∧ fy, which can

be done by using MT, or equivalently BA, and RepT . �

Finally we come to the proof of the remaining theorems from Figure 5.4, including ∀I.
This concludes our completeness proof for PTT axiomatized by MT.

Proposition 5.2.14
1. EqT

2. MT ` RepT

3. MT ` ∀IT

Proof We proceed in three steps:
1. We show (1) =⇒ (2). Assume (1). By the deduction theorem and stability of deduc-

tion under substitution it suffices to show, for fresh parameters a, b : B and c : BB:
MT, a

.= b = 1, ca = 1 ` cb = 1. By (1) we have MT, a
.= b = 1, ca = 1 ` a = b.

Therefore MT, a
.= b = 1, ca = 1 ` cb = ca = 1.

2. We show (2) =⇒ (3). Assume (2) and let v ∈ T2T . Then:

x
.= (↑v) = x

.= (↑v) ∧ ((
∧

w∈T2T

f(↑w))→ f(↑v))

= x
.= (↑v) ∧ (∀f → f(↑v)) ∀Enum

= x
.= (↑v) ∧ (∀f → fx) Prop. 5.2.13
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By the above we then have

∀f → fx = (
∨

v∈T2T

x
.= (↑v)) ∧ (∀f → fx) Prop. 5.2.12

=
∨

v∈T2T

x
.= (↑v) ∧ (∀f → fx)

=
∨

v∈T2T

x
.= (↑v)

= 1 Prop. 5.2.12

3. We show (1) by induction on T . By the above, the inductive hypothesis can always
be weakened to an appropriate instance of (2) or (3).

Case T = B. By BExt, MT ` s
.=B t = s ≡ t. Hence, the claim follows by

Proposition 5.2.4.

Case T = T1T2.

MT, s
.=T t = 1 à MT,∀T1(λx.sx

.=T2 tx) = 1 BExt
` MT, sx

.=T2 tx = 1 IH(3),MP
` sx = tx IH(1)
à s = t Cor. 4.2.3 �

5.3 Decidability of PTT

Since T2 is the only model of PTT and all domains of T2 are finite, it is obvious that
validity of equations in PTT is decidable by means of an exhaustive case analysis on the
level of semantics. What we are going to show now is that a decision procedure for PTT
can also be based entirely on equational deduction from MT.

Our main idea here is convert an arbitrary equation e into a closed basic formula
which is convertible to 1 if e is provable, and to 0 otherwise.

Proposition 5.3.1 Let s and t be terms, and let ~x contain Vs ∪ Vt. Then:
T2 � s = t ⇐⇒ MT ` ∀~x.s

.= t = 1.

Proof Let s, t and ~x be as required. Then:

T2 � s = t
⇐⇒ T2 � ∀~x.s

.= t = 1 Prop. 5.2.6
⇐⇒ MT ` ∀~x.s

.= t = 1 Prop. 5.1.1, 5.2.7, 5.1.4 �

Note that the above proof does not depend on the general completeness result, but
only on completeness for closed basic equations.

Proposition 5.3.2 Let s and t be terms, and let ~x contain Vs ∪ Vt. Then:
T2 6� s = t ⇐⇒ MT ` ∀~x.s

.= t = 0.
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Proof
• “⇐”: By soundness (Proposition 5.1.1 and 5.2.6).
• “⇒”: Let s, t and ~x be as required. Assume, for contradiction, T2 6� s = t and

MT 6` ∀~x.s
.= t = 0. Then:

MT ` ∀~x.s
.= t = 1 Prop. 5.2.7, 5.1.3

⇐⇒ T2 � s = t Prop. 5.3.1
=⇒ contradiction �

Now a decision procedure for PTT can be defined as follows. Given an equation
s = t, it enumerates proofs from MT until it encounters either a proof of ∀~x.s

.= t = 0 or
a proof of ∀~x.s

.= t = 1. Since by the above, exactly one of the statements is provable,
the procedure terminates returning the appropriate result.

Complexity of PTT has been a subject of study for several decades and, due to results
by Meyer [32] and Vorobyov [50], we know that the theory is not efficiently decidable.
In fact, PTT is the most nonelementary theory currently known [50].

5.4 Definitional Extensions

When working with MT we often have to deal with huge terms, which are only manage-
able by using notational abbreviations. Sometimes, instead of using derived notation, it
is more convenient to abbreviate large terms by defining new constants and introducing
axioms capturing their intended deductive and semantic properties. For instance, let us
have a look at a system MT′, which differs from MT in the fact that .=T , ∀T and ↑T v (for
every v ∈ T2T ) are not considered derived notation, but parameters whose semantics is
defined by the equations in Figure 5.3 and MT. Of course, we would like to show that
such a system is still deductively complete. To do so, we introduce an approach which
allows us to prove completeness of systems like MT′ by reduction to the respective the-
ories without the additional constants. A key role in our approach plays the concept of
a definitional extension. Intuitively, a set of axioms B is called a definitional extension
of another set A if B differs from A only in the fact that it defines additional constants
that denote values already expressible in A.

Given a set A of equations, the signature of A (notation ΣA) is the smallest signature
which contains all the parameters occurring in A.

A set of equations B is a definitional extension of a set A if ΣA ∩ Sor = ΣB ∩ Sor
and B −A is deductively equivalent to some set D such that all equations e ∈ D are of
the form c = t where
1. c 6∈ ΣA,
2. c 6∈ P(D − {c = t}),
3. t ∈ Ter(ΣA) is closed.
The set D is called the definitional part of B.

Given A, B and D as above, we define ↓def as the following substitution:

↓def = λu ∈ Nam.if u ∈ dom D then Du else u
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It is important to convince ourselves that applications of ↓def to terms yield deduc-
tively equivalent terms: B ` t = ↓deft. This can be seen as a consequence of the following
more general theorem:

Proposition 5.4.1 If, for all u ∈ N t, A ` u = θu, then A ` t = θt.

Proof By induction on |t|. �

Proposition 5.4.2 Let B be a definitional extension of A. Then:
1. Every model A of A can be extended to a model of B.
2. Every model B of B is a model of A.

Proof The second claim is obvious, so we only show the first claim. Let A be a model of
A, and I ⊇ A an interpretation. We have to construct a model B of B which extends A
to parameters c ∈ ΣB − ΣA. Consider the deductively and hence semantically equivalent
re-formulation of B as A ∪D where D is the definitional part of B. For every equation
(c = t) ∈ D, define Bc = Ît. Note that since t is closed, Ît does not depend on the choice
of I, so B is uniquely determined by A and D. Since every interpretation I ′ ⊇ B also
extends A, by coherence Î ′c = Bc = Ît = Î ′t, i.e. B is a model of D and hence also a
model of B. �

Proposition 5.4.3 Let B be a definitional extension of A, and let e be licensed by ΣA.
Then: A � e ⇐⇒ B � e.

Proof We show “⇐”; the reverse direction is proven analogously but simpler. Let
B be a definitional extension of A. It suffices to show that for every model A and
every interpretation I ⊇ A there exists a model B and an interpretation I ′ ⊇ B such
that for every term t ∈ Ter(ΣA): Ît = Î ′t. So, let A be a model of A and I ⊇ A an
interpretation. By Proposition 5.4.2, we can extend A to a model B of B. Let I ′′ ⊇ B
arbitrary, and let I ′ = λu ∈ Nam.if u licensed by ΣA then Iu else I ′′u. Clearly, I ′ is an
extension of B. By coherence, Ît = Î ′t holds for all terms t licensed by ΣA. �

Lemma 5.4.4 For every context k, term t and substitution θ such that dom θ ⊆ Par
and

⋃
c∈Par V(θc) = ∅ (independently of Σ): θ(k[t]) = (θk)[θt].

Proof Let k, t and θ be as required. We proceed by induction on |k|.

Case k = •. Then: θ(•[t]) = θt = •[θt] = (θ•)[θt].

Case k = k′s. By the inductive hypothesis:
θ((k′s)[t]) = θ(k′[t]s) = (θ(k′[t]))(θs) = (θk′)[θt](θs) = (θ(k′s))[θt].

Case k = sk′ proceeds analogously to the preceding case.
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Case k = λx.k′. Then:

θ((λx.k′)[t]) = θ(λx.k′[t])
= λx.θ(k′[t])
= λx.(θk′)[θt] IH
= (λx.θk′)[θt]
= (θ(λx.k′))[θt] �

Theorem 5 Let B be a definitional extension of A. Then A is deductively complete if
and only if B is deductively complete.

Proof Let B be a definitional extension of A.
• “⇒”: Assume A is complete and let B � s = t, for some s, t ∈ Ter(ΣB). Then:

B � ↓defs = ↓deft Prop. 5.4.1, soundness (Prop. 2.1.4)
⇐⇒ A � ↓defs = ↓deft Prop. 5.4.3
=⇒ A ` ↓defs = ↓deft assumption (completeness of A)
=⇒ B ` ↓defs = ↓deft
⇐⇒ B ` s = t Prop. 5.4.1

• “⇐”: Assume B is complete and let A � s = t, for some s, t ∈ Ter(ΣA). By Proposi-
tion 5.4.3, B � s = t. By completeness of B, B ` s = t. Consider the corresponding
conversion proof t0 = . . . = tn (n ∈ N, t0 = s, tn = t) from the axioms A ∪D where
D is the definitional part of B. Since ↓defs = s and ↓deft = t, it suffices to show that
↓deft0 = ↓deft1 = . . . = ↓deftn is a conversion proof from A, i.e. for all i ∈ {1, . . . , n}:
A ` ↓defti−1 = ↓defti. Let, for some k, s′, t′ and θ with dom θ ⊆ Var , ti−1 = k[θs′]
and ti = k[θt′].

Case (s′ = t′) ∈ D. Then ↓defti−1 = ↓defti, and we are done.

Case (s′ = t′) ∈ A or (t′ = s′) ∈ A. By Lemma 5.4.4, ↓defti−1 = (↓defk)[↓def(θs′)]
and ↓defti = (↓defk)[↓def(θt′)]. Since substitutions are closed under composition,
A ` ↓defti−1 = ↓defti.

Case s′ = t′ is an instance of β or η and θ is the identity substitution. We proceed
analogously to the preceding case. �

It easily can be verified that MT′ is a definitional extension of MT. Therefore:

Corollary 5.4.5 MT′ is deductively complete.

5.5 Alternative Axiomatizations

Now that we have proven MT deductively complete, we want to consider two more
possibilities to axiomatize PTT and show their completeness by reduction to MT.
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Name PT

Extends MT

Constant $T : TTB internal equality

Variables x, y : T
f : TB

Axioms x $ x = 1 Ref
x $ y → fx→ fy = 1 Rep

Figure 5.5: PT as Extension of MT

5.5.1 PT

First we want to consider an axiomatization of PTT which is relatively close to Henkin’s
original formulation. Just like Henkin, we introduce an internal equality constant for
every type and specify its semantics by appropriate axioms, given in Figure 5.5. Unlike
Henkin, we do not consider internal equality as the only primitive constant. Instead PT
is assumed to extend MT.

Soundness of PT with respect to T2 is obvious and easily provable. Now to the reverse
direction. It is not hard to show that the internal equality relation as defined by PT is
symmetric:

Proposition 5.5.1 PT ` x $ y = y $ x

Proof By Proposition 5.2.4, stability of deduction under substitution and the deduc-
tion theorem, it suffices to show that, for every type T and fresh parameters a, b : T ,
PT, a $ b = 1 ` (λx.x $ a)b = 1, which follows by Rep, Ref and MP. �

The following proposition is more interesting. In conjunction with Ref, it states that
internal equality is deductively equivalent to external equality:

Proposition 5.5.2 For all terms s and t, not necessarily licensed by ΣPT:
PT, s $ t = 1 ` s = t.

Proof Let a, b : ~TB be fresh constants. By Corollary 4.2.3 and Proposition 5.2.4 it
suffices to show:
1. PT, s $ t = 1 ` s~x→ t~x = 1
2. PT, s $ t = 1 ` t~x→ s~x = 1
The first subclaim follows by Rep and MP. The second one additionally needs Proposi-
tion 5.5.1. �
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PT differs from MT only in the fact that it defines one additional constant, namely $.
Thus, an appealing way of proving completeness of PT seems to be showing it a def-
initional extension of MT. In order to do so, we define the following set of axioms:
MT$ = MT ∪ {($T ) = ( .=T )}T∈Ty(ΣMT). Unlike PT, MT$ is obviously a definitional ex-
tension of MT. Hence, it now suffices to show: PT à MT$. By completeness of MT, we
immediately get that both Ref and Rep are theorems of MT$, and therefore: MT$ ` PT.
So, to prove the deductive equivalence it suffices to show that PT ` ($T ) = ( .=T ), for
all types T .

For the base type, the proof is easy:

Proposition 5.5.3 PT ` ($B) = ( .=B)

Proof By Corollary 4.2.3, Proposition 5.2.4, stability of deduction under substitution
and the deduction theorem, it suffices to show that, for fresh parameters a, b : B:
PT, a $B b à PT, a

.=B b. By BExtB and Proposition 5.2.4 this is equivalent to showing
PT, a $B b à PT, a = b, which follows by Ref and Proposition 5.5.2. �

Before we proceed to functional types, it is helpful to prove that $ is extensional:

Proposition 5.5.4 PT ` ∀T1x.fx $T2 gx = f $T1T2 g

Proof By Proposition 5.2.4 it suffices to show: PT ` f $ g ≡ ∀x.fx $ gx = 1. This
can be done in two steps:
• “→”: By stability of deduction under substitution and the deduction theorem, it is

sufficient to show, for fresh parameters a, b : T1T2: PT,∀T1x.ax $T2 bx ` a $T1T2 b.
This claim is an easy consequence of Proposition 5.2.14(3), MP and Corollary 4.2.3.

• “←”: Follows similarly to the first step by stability of deduction under substitution,
the deduction theorem, Proposition 5.5.2 and Ref. �

Proposition 5.5.5 PT ` ($T ) = ( .=T )

Proof By induction on T .

Case T = B follows by Proposition 5.5.3.

Case T = T1T2. We show:

f $T1T2 g = ∀T1x.fx $T2 gx Prop. 5.5.4
= ∀T1x.fx

.=T2 gx IH
= f

.=T1T2 g BExt

The claim follows by Corollary 4.2.3. �

By Theorem 5 we obtain:

Corollary 5.5.6 PT is deductively complete.
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Name QT

Variables x : B
y : T
f : BB

Rules
s $ t = 1

s = t
Eq

Axioms 0→ x = 1 I0
1→ x = x I1

f0→ f1→ fx = 1 BCA
y $ y = 1 Ref

Figure 5.6: QT: Equational Type Theory (Constants as in PT)

5.5.2 QT

In our last formulation of PTT we treat the internal equality constant $ in a special
way by embedding it into a rule of inference. Compared to PT, this allows us to omit
two axioms: Rep and Comm.

As usual, we can easily check that QT is sound with respect to T2. Alternatively,
soundness of QT can be reduced to soundness of PT by showing: PT ` QT. Since
ΣQT = ΣPT, to prove completeness of QT it suffices to show the reverse direction:
QT ` PT. So, let us this time prove both soundness and completeness of QT by showing:
QT à PT. More precisely, we are going to show that:
1. The axioms Rep and Comm of PT are derivable in QT.
2. The rule of inference Eq of QT is derivable in PT.

Proposition 5.5.7 (Replacement) QT ` x $ y → fx→ fy = 1

Proof Proceeds analogously to the first step of the proof of Proposition 5.2.14. �

Proposition 5.5.8 (Commutativity) QT ` (x→ y)→ y = (y → x)→ x

Proof By repeated application of I0, I1 and Ref we obtain

QT ` ((a→ b)→ b) $ ((b→ a)→ a) = 1

for every combination of a, b ∈ {0, 1}. By BCA and MP we conclude:

QT ` ((x→ y)→ y) $ ((y → x)→ x) = 1

The claim follows by Eq. �
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Luckily, the derivability of Eq from PT was already shown when we discussed PT
(see Proposition 5.5.2). Hence we conclude:

Proposition 5.5.9 QT à PT

Proof The claim follows by Propositions 5.5.2, 5.5.7 and 5.5.8. �

Corollary 5.5.10 QT is deductively complete.

5.6 Consequences and Connections with General Semantics

We have discussed several axiomatizations of PTT. Among these, MT plays a special
role. In contrast to Henkin’s original axiomatization of PTT, which has infinitely many
axioms, indexed by pairs of types, MT is finite. It contains only four axioms which
describe only three domains, namely those of type B, BB and BBB. We conclude:

Proposition 5.6.1 PTT has a finite axiomatization in S which is deductively complete,
i.e. there exists a set A of equations such that, for every equation e: T2 � e =⇒ A ` e.

Although so far we have only considered standard semantics of PTT, completeness
of MT with respect to T2 has noteworthy consequences for the general semantics of the
formalism. The most interesting observation is probably that MT has no non-standard
models in Henkin’s [24] sense:

Proposition 5.6.2 Every model of MT which has Boolean extensionality is standard
at Ty(ΣT2), up to isomorphism.

Proof We are aware of two ways to prove this claim. One possibility to show the
claim is by a simple cardinality argument, exploiting functional extensionality of S,
Proposition 5.2.6(1) and 5.2.11(2). The main idea is to show that functional domains
corresponding to types licensed by Ty(ΣT2) must be isomorphic to standard domains
in every general model of MT because every two distinct elements of such a standard
domain can be represented by two closed, non-convertible terms.

Another possibility is to consider general models of PTT as particular models of
full HOL in which the Boolean and the individual domains coincide. Since, by our
cardinality assumption for the Boolean domain, every such model is finite, we can adapt
the proof by Andrews [5], who shows that every finite general model of HOL which
has Boolean extensionality is standard. The fact that Andrews relies on the description
operator is not a problem, since our system allows us to define the operator as a closed
term (Henkin’s [25] original formulation of PTT contains a suitable definition of the
description operator).

When we began our discussion of PTT we saw that, up to isomorphism, T2 is the
unique non-trivial standard model of MT (over ΣT2 ; see Proposition 5.1.2). Now we can
strengthen this statement:
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Corollary 5.6.3 Up to isomorphism, T2 is the unique general model of MT over ΣT2

which has Boolean extensionality.

We have not investigated whether MT has non-standard models which interpret the
Boolean type by larger sets (but see Section 5.7).

If one compares PT to Henkin’s axiomatization of PTT, one may notice that Henkin’s
axioms contain a distinguished axiom schema describing functional extensionality of the
internal equality relation, while PT does not. In fact, it is not hard to derive from
PT various formulations of extensionality, in particular the one used by Henkin. The
semantic reason for this is that in T2, the axiom of replacement entails extensionality
of $. It states that if two values v, v′ ∈ T2(~TB) are in the relation denoted by $,
then every function w ∈ T2((~TB)B) yields the same value when applied to v and to v′.
Since T2 is standard, possible values for w include the functions λv ∈ T2(~TB).v ~w for all
~w ∈ T2 ~T . Thus v and v′ are in the internal equality relation only if they are extensionally
equal. So, as a consequence of Corollary 5.6.3 and Henkin’s [24] completeness theorem,
extensionality of $ has to be derivable from PT.

Since for fragments of HOL over richer signatures than that of PTT general and
standard models no longer coincide, in these more general cases it is no longer possible
to axiomatize equality without axioms of extensionality. This can be seen as a conse-
quence of a result by Andrews [3], who observed that internal equality in general models
which have both Boolean and functional extensionality nevertheless does not necessarily
correspond to identity.

The argument presented in Section 5.2 proves deductive completeness of MT,
T2 � e =⇒ MT ` e, only for equations e which are licensed by ΣT2 . Otherwise, Propo-
sition 5.2.8 is no longer applicable. However using Proposition 5.6.2, the completeness
result can be strengthened:

Theorem 6 If e is type-licensed by ΣT2, then: T2 � e =⇒ MT ` e.

Proof Let e be type-licensed by ΣT2 and T2 � e. By Proposition 5.6.2 all general
models of MT which have Boolean extensionality agree with T2 on the interpretation
of terms and types licensed by ΣT2 . Since e only involves values from T2, we have:
T2 � e ⇐⇒ for all general models H � MT with Boolean extensionality: H � e. By
Henkin’s [24] completeness result, e is provable in the full HOL. Since e also holds in
models H in which the Boolean and the individual domains coincide, e has a proof which
does not contain any terms that are not type-licensed by ΣT2 . Now it is easily provable
that every instance of Henkin’s [24] axioms or rules of inference for HOL which is licensed
by ΣT2 is can be derived in S from MT, which completes the argument. �

Corollary 5.6.4 (Standard Soundness and Completeness) If e is type-licensed by
ΣT2, then: A � e for all standard models A of MT ⇐⇒ MT ` e.

Corollary 5.6.5 (General Soundness and Completeness) If e is type-licensed by
ΣT2, then: H � e for all general models H of MT ⇐⇒ MT ` e.
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An interesting consequence of Corollary 5.6.3 is standard (strong) compactness of
PTT, which can be formulated as follows:

Proposition 5.6.6 (Compactness) An extension A of MT type-licensed by ΣT2 is
satisfiable at B if and only if every finite subset of A is satisfiable at B.

Proof Let A be an extension of MT type-licensed by ΣT2 , and let every finite subset
of A be satisfiable at B. Then, in particular, every finite subset of A which extends MT is
satisfiable at B. Let B be an arbitrary subset of A extending MT, and let B be a model
of B. By Corollary 5.6.3 we know that B is, up to isomorphism, an extension of T2.
Therefore, the equation 0 = 1 is not valid in B and hence, by soundness, is not provable
from B. Since every proof from A is finite, i.e. can be seen as a proof from a finite subset
B of A extending MT, by the above reasoning 0 = 1 is not provable from A. Hence,
Henkin’s [24] model existence theorem guarantees that A has a general model H′ which
has Boolean extensionality. By Corollary 5.6.3 we can construct a standard extension
A of T2 which agrees with H′ on all parameters that are type-licensed by ΣT2 . By
denotational coherence A is a model of A. The converse is immediate. �

The above compactness property is called strong because it makes a statement about
satisfiability with respect to standard models. An analogous statement with respect to
general models is called weak compactness. Full HOL has been shown weakly com-
pact by Henkin [24], but at the same time is known to violate strong compactness (see
Andrews [5] for a proof).

5.7 Further Work

An essential result obtained in the preceding section is that all standard models of MT
have Boolean extensionality (see proof of Proposition 5.1.2). Moreover, we observed
that MT has no non-standard models with Boolean extensionality (Proposition 5.6.2).
It remains open whether there exist non-standard models of MT that have no Boolean
extensionality. Intuitively, functions violating the axiom BCA of MT do not seem rep-
resentable by λ-terms licensed by ΣMT, which supports the conjecture that such non-
standard models indeed exist. A construction based on appropriate logical relation
frames (see [3, 11]) is likely to yield models with the required properties, but has not yet
been attempted.

Dropping the axiom Comm from MT has no semantic consequences as long as we
consider models of PTT with Boolean extensionality. So, constructing and analyzing
models of MT and MT− {Comm} that do not have Boolean extensionality seems es-
sential for proving the independence of Comm.

68



Bibliography

[1] Andrews, P. B. A reduction of the axioms for the theory of propositional types.
Fundamenta Mathematicae 52 (1963), 345–350.

[2] Andrews, P. B. A transfinite type theory with type variables. Journal of Symbolic
Logic 33, 1 (March 1965), 112–113.

[3] Andrews, P. B. General models and extensionality. Journal of Symbolic Logic 37
(1972), 395–397.

[4] Andrews, P. B. General models, descriptions and choice in type theory. Journal
of Symbolic Logic 37 (1972), 385–394.

[5] Andrews, P. B. An Introduction to Mathematical Logic and Type Theory: To
Truth Through Proof, second ed., vol. 27 of Applied Logic Series. Kluwer Academic
Publishers, 2002.

[6] Baader, F., and Nipkow, T. Term Rewriting and All That. Cambridge Univer-
sity Press, 1998.

[7] Barendregt, H. P. The Lambda Calculus: Its Syntax and Semantics, 2nd re-
vised ed., vol. 103 of Studies in Logic and the Foundations of Mathematics. North-
Holland, 1984.

[8] Barendregt, H. P. Lambda calculi with types. In Handbook of Logic in Computer
Science, S. Abramsky, D. M. Gabbay, and T. S. E. Maibaum, Eds., vol. 2. Oxford
University Press, 1992.

[9] Benzmüller, C., Brown, C. E., and Kohlhase, M. Higher-order semantics
and extensionality. Journal of Symbolic Logic 69, 4 (December 2004), 1027–1088.

[10] Birkhoff, G. On the structure of abstract algebras. Proceedings of the Cambridge
Philosophical Society 31 (1935), 433–454.

[11] Brown, C. E. Set Comprehension in Church’s Type Theory. PhD thesis, Depart-
ment of Mathematical Sciences, Carnegie Mellon University, 2004.

[12] Burris, S., and Sankappanavar, H. P. A Course in Universal Algebra. Grad-
uate Texts in Mathematics. Springer-Verlag, 1981.

[13] Church, A. A formulation of the simple theory of types. Journal of Symbolic
Logic 5, 1 (1940), 56–68.

69



[14] Davey, B. A., and Priestley, H. A. Introduction to Lattices and Order, sec-
ond ed. Cambridge University Press, 2002.

[15] Fitting, M. First-Order Logic and Automated Theorem Proving, second ed. Grad-
uate Texts in Computer Science. Springer-Verlag, 1996.

[16] Friedman, H. Equality between functionals. In Proceedings of the Logic Col-
loquium 72-73 (1975), R. Parikh, Ed., vol. 453 of Lecture Notes in Mathematics,
Springer-Verlag, pp. 22–37.

[17] Gandy, R. O. An early proof of normalization by A. M. Turing. In To H. B. Curry:
Essays on Combinatory Logic, Lambda Calculus and Formalism, J. R. Hindley and
J. P. Seldin, Eds. Academic Press, 1980, pp. 453–455.

[18] Girard, J.-Y. Interprétation fonctionelle et élimination des coupures dans
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Notation

·, 21
+, 21
0, 1, 21, 33, 50
A, 9
Ao, 21
As, 21
A, 33
A,B, 19
BA, 53
B,C, 13
BCA, 21, 33, 50, 65
BExt, 54
B, 21, 33, 50
Comm, 33, 50
Cong, 15
D, 35
D, 41
D, 23
Enum, 56
Eq, 56, 65
F, 51
F , 47
FOL, 33
H, 24
I, 18, 23
I, 24
I, 33
I0, I1, 21, 33, 50, 65
Iδ, 43
Î, 19, 24
Iθ, 19
Iu

v , 19
M, 38
Mo, 21
Ms, 21
MP, 32, 52
MT, 50

MT′, 60
MT$, 64
N, 21
N , 13
NT, 21
Nam, 12
NamT , 14
NInd , 21
Noo, 21
Nos, 21
Nso, 21
Nss, 21
P, 12
PT, 63
Par , 12
ParT , 14
QT, 65
Ref , 15
Ref, 63, 65
Rei, 54
Rep, 17
Rep, 56, 63
S, 12
S, 13
SN , 15
Sor , 13
Sub, 16
Sym, 15
T , 13
T, 25
T , 26
T, 51
T2, 51
Ter , 12
Ter(Σ), 14
TerT , 14
Trans, 15
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Ty , 13
Ty(Σ), 14
V, 12
Var , 12
VarT , 14
Σ, 14
ΣA, 60
ΣA, 19
β, 15
βη, 41
•, 16
δ, 35
δ∗, 36
↓def , 60
=, 14
$, 63
∼=, 50
.=, 21, 54
≡, 53
η, 15
∀, 21, 33, 54
∀1, 21, 33
∀Enum, 54
∀I, 21, 33, 55, 56
∧, 53
↔∗, 18
↔n, 18
∨, 33, 50, 53
¬, 53
ρ, 15
τ , 35
τ , 13
θ, 13
θI , 25, 38
→, 21, 33, 50
↑, 54
�, 19, 24
`, 15
à, 15
ξ, 15
a, b, c, 12
e, 14
f, g, 12
h, 50

k, 17
|k|, 17
o, 21
s, 21
s, t, 12
t : T , 14
|t|, 13
[t], 15
u, 12
[u := t], 13
v, w, 18
x, y, z, 12
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Index

assignment, 39
axiom, 15

compactness, 68
completeness, 19
constant, 19
context, 16

instance, 17
well typed, 17

conversion proof, 18
size, 18

convertible, 15

deduction theorem, 52
deductively equivalent, 15
definitional extension, 60
definitional part, 60
denotable values, 41
domain

general, 23
standard, 18
trivial, 45

entailment
deductive, 15
semantic, 19

equality
external, 34
internal, 49

equation, 14
licensed by, 14

evaluation
general, 24
standard, 19

extensionality
Boolean, 44
functional, 34

faithful, 40

hole, 16

interpretation
denotable, 41
general, 23
standard, 18

isomorphic, 50
isomorphism, 50

λ-theory, 15

model
general, 24
minimal, 19
of, 19
standard, 19
term, 26

modus ponens, 32, 52

name, 12
occurring, 13

parameter, 12
algebraic, 14
occurring, 12

reification, 54

satisfiable
wrt. general semantics, 30
wrt. standard semantics, 45

satisfy
wrt. general semantics, 24
wrt. standard semantics, 19

semantic consequence, 19
signature, 14

of, 19
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sort, 13
soundness, 19
structure

applicative, 23
applicative term, 25
countable general, 30
general, 24
standard, 19
standard term, 35
trivial applicative, 30
trivial general, 30
trivial standard, 45

substitution, 13
corresponding, 25, 38
domain of, 13
stable, 13

subterm, 13
proper, 13

term, 12
algebraic, 14
atomic, 13
basic, 14
closed, 12
combinatory, 12
licensed by, 14
plain, 32
size, 13
type-licensed by, 14
well typed, 14

theorem, 15
theory, 15

complete, 19
type, 13

base, 13
functional, 13
licensed by, 14

typing, 13

validity, 19
value, 18
variable, 12

occurring, 12

witness, 40
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