[1] 
Frédéric Benhamou.
Heterogeneous constraint solving.
In Hanus and RodríguezArtalejo [54], pages
6276. [ bib  http  .pdf ] 
[2] 
Frédéric Benhamou.
Interval constraint logic programming.
In Podelski [56], pages 121. [ bib  http  .pdf ] 
[3] 
Carmen Gervet and Pascal Van Hentenryck.
Lengthlex ordering for set csps.
In AAAI [63]. [ bib ] 
[4] 
Peter Hawkins, Vitaly Lagoon, and Peter J. Stuckey.
Set bounds and (split) set domain propagation using ROBDDs.
In Webb and Yu [59], pages 706717. [ bib ] 
[5] 
Peter Hawkins and Peter J. Stuckey.
A hybrid bdd and sat finite domain constraint solver.
In Hentenryck [55], pages 103117. [ bib ] 
[6] 
F. Laburthe.
Choco: Implementing a CP kernel.
In TRICS [16], pages 7185. [ bib ] 
[7] 
Vitaly Lagoon and Peter J. Stuckey.
Set domain propagation using ROBDDs.
In Wallace [58], pages 347361. [ bib ] 
[8] 
Andrew Sadler and Carmen Gervet.
Hybrid set domains to strengthen constraint propagation and reduce
symmetries.
In Wallace [58], pages 604618. [ bib ] 
[9] 
Marco Kuhlmann and Guido Tack.
Constraint programming.
online, http://www.ps.unisb.de/courses/cpss05/, CHECK 2005. [ bib ] 
[10] 
Douglas Adams.
The Restaurant at the End of the Universe (Hitch Hiker's Guide
to the Galaxy).
Pan Macmillan, 2001. [ bib ] 
[11] 
Alexander Aiken, Dexter Kozen, Moshe Y. Vardi, and Edward L. Wimmers.
The complexity of set constraints.
In Conference on Computer Science Logic, pages 117, 1993. [ bib  .html ] 
[12] 
Krzysztof R. Apt.
The rough guide to constraint propagation.
In CP '99: Proceedings of the 5th International Conference on
Principles and Practice of Constraint Programming, pages 123.
SpringerVerlag, 1999. [ bib ] 
[13] 
Francisco Azevedo.
Cardinal: a finite sets constraint solver.
Constraints, 12(1):n.n., 2007. [ bib ] 
[14] 
Francisco Azevedo and Pedro Barahona.
Applications of an extended set constraint solver, 2000. [ bib ] 
[15] 
Leo Bachmair, Harald Ganzinger, and Uwe Waldmann.
Set constraints are the monadic class.
In Logic in Computer Science, pages 7583, 1993. [ bib  .html ] 
[16] 
N. Beldiceanu, W. Harvey, M. Henz, F. Laburthe, E. Monfroyand T. Muller,
L. Perron, and C. Schulte.
Trics 2000.
Technical report, School of Computing, National University of
Singapore, September 2000. [ bib ] 
[17] 
Garrett D. Birkhoff.
Lattice theory, volume 25 of American Mathematical Society
: colloquium publication series.
American Mathematical Society, 1984. [ bib ] 
[18] 
Randal E. Bryant.
Symbolic boolean manipulation with ordered binarydecision diagrams.
ACM Comput. Surv., 24(3):293318, 1992. [ bib ] 
[19] 
B. A. Davey and H. A. Priestley.
Introduction to Lattices and Order.
Cambridge University Press, 2002. [ bib ] 
[20] 
Alan M. Frisch and Christopher Jefferson.
Representations of sets and multisets in constraint programming.
In Proceedings of the 4th International Workshop on Modelling
and Reformulating Constraint Satisfaction Problems, pages 102116, 2005. [ bib  http  .pdf ] 
[21] 
Alan M. Frisch, Chris Jefferson, Bernadette MartinezHernandez, and Ian Miguel.
Symmetry in the generation of constraint models.
In Proceedings of the ?th International Symmetry Conference,
2007. [ bib  http  .pdf ] 
[22] 
I.P. Gent and T. Walsh.
Csplib: a benchmark library for constraints.
Technical report, Technical report APES091999, 1999.
Available from http://csplib.cs.strath.ac.uk/. A shorter version
appears in the Proceedings of the 5th International Conference on Principles
and Practices of Constraint Programming (CP99). [ bib ] 
[23] 
Carmen Gervet.
Conjunto: constraint logic programming with finite set domains.
In Maurice Bruynooghe, editor, Logic Programming  Proceedings
of the 1994 International Symposium, pages 339358, Massachusetts Institute
of Technology, 1994. The MIT Press. [ bib  .html  .pdf ] 
[24] 
Carmen Gervet.
Constraints over Structured Domains, chapter 17, pages
603636.
Elsevier Science Publishers, 2006. [ bib ] 
[25] 
Carmen Gervet.
Interval propagation to reason about sets: Definition and
implementation of a practical language.
Constraints, 1(3):191244, 1997. [ bib ] 
[26] 
Carmen Gervet.
Set Intervals in Constraint Logic Programming.
PhD thesis, L'Université de FrancheComté, 1995. [ bib  http ] 
[27] 
Gerhard Gierz, Karl Heinrich Hofmann, Klaus Keimel, Jimmie D. Lawson,
Michael W. Mislove, and Dana S. Scott.
A compendium of continuous lattices.
Springer, Berlin  Heidelberg  New York, 1980. [ bib ] 
[28] 
George A. Gratzer.
General Lattice Theory.
Birkhauser, 1998. [ bib ] 
[29] 
P.J. Hawkins, V. Lagoon, and P.J. Stuckey.
Solving set constraint satisfaction problems using ROBDDs.
J. Artif. Intell. Res. (JAIR), 24:109156, 2005. [ bib ] 
[30] 
Nevin Heintze and Joxan Jaffar.
Set constraints and setbased analysis.
In Principles and Practice of Constraint Programming, pages
281298, 1994. [ bib  .html ] 
[31] 
Michael R. A. Huth and Mark D. Ryan.
Logic in Computer Science: Modelling and Reasoning about
Systems.
Cambridge University Press, Cambridge, England, 2000. [ bib  .html ] 
[32] 
J. E. Beasley.
ORlibrary.
Webpage, 2006. [ bib  .html ] 
[33] 
Marco Kuhlmann and Guido Tack.
Indepthlecture constraint programming.
online, http://www.ps.unisb.de/courses/cpss05/, CHECK 2005. [ bib  http ]

[34] 
Tobias Müller and Martin Müller.
Finite set constraints in Oz.
In François Bry, Burkhard Freitag, and Dietmar Seipel, editors,
13. Workshop Logische Programmierung, pages 104115, Technische
Universität München, 1719 September 1997. [ bib ]

[35] 
Leszek Pacholski and Andreas Podelski.
Set constraints: A pearl in research on constraints.
In Principles and Practice of Constraint Programming, pages
549562, 1997. [ bib  .html ] 
[36] 
JeanFrancois Puget.
Finite set intervals.
In In Proceedings of the Second International Workshop on Set
Constraints, Cambridge, Massachusetts, 1996. [ bib ] 
[37] 
JeanFrancois Puget.
Pecos a high level constraint programming language.
In Singapore International Conference on Intelligent Systems
(SPICIS), September 1992. [ bib ] 
[38] 
Christian Schulte.
Programming Constraint Services.
Doctoral dissertation, Universität des Saarlandes,
NaturwissenschaftlichTechnische Fakultät I, Fachrichtung Informatik,
Saarbrücken, Germany, 2000. [ bib ] 
[39] 
Patrick Pekczynski.
Implementation and Evaluation of Advanced Propagation
Algorithms for Global Constraints.
Fopra thesis (FortgeschrittenenPraktikum, Saarland University ,
Faculty of Natural Sciences and Technology I, Department of Computer Science,
Saarbrücken, Germany, 2006. [ bib  .html ] 
[40] 
Christian Schulte and Mats Carlsson.
Finite Domain Constraint Programming Systems, chapter 14, pages
495526.
Elsevier Science Publishers, 2006. [ bib ] 
[41] 
Christian Schulte and Peter J. Stuckey.
Speeding up constraint propagation.
In Mark Wallace, editor, Tenth International Conference on
Principles and Practice of Constraint Programming, volume 3258 of
Lecture Notes in Computer Science, pages 619633, Toronto, Canada,
September 2004. SpringerVerlag. [ bib  http ] 
[42] 
Christian Schulte and Peter J. Stuckey.
When do bounds and domain propagation lead to the same search space?
Transactions on Programming Languages and Systems,
27(3):388425, May 2005. [ bib  http  .pdf ] 
[43] 
Christian Schulte and Guido Tack.
Views and iterators for generic constraint implementations.
In Mats Carlsson, Francois Fages, Brahim Hnich, and Francesca Rossi,
editors, Recent Advances in Constraints, 2005, volume 3978 of
Lecture Notes in Computer Science, pages 118132. Springer, 2006. [ bib  http  .pdf ] 
[44] 
Helmut Simonis.
Sudoku as a constraint problem.
In Brahim Hnich, Patrick Prosser, and Barbara Smith, editors,
Proc. 4th Int. Works. Modelling and Reformulating Constraint Satisfaction
Problems, pages 1327, 2005. [ bib  http  .pdf ] 
[45] 
Guido Tack, Christian Schulte, and Gert Smolka.
Generating propagators for finite set constraints.
In Fréderic Benhamou, editor, 12th International Conference
on Principles and Practice of Constraint Programming, volume 4204 of
Lecture Notes in Computer Science, pages 575589. Springer, 2006. [ bib  http  .pdf ]

[46] 
A. Tarski.
A lattice theoretical fixpoint theorem and its applications.
Pacific J. of Mathematics, 5:285309, 1955. [ bib ] 
[47] 
The Gecode team.
Generic constraint development environment.
Available from http://www.gecode.org, 2006. [ bib  http ] 
[48] 
The Mozart Consortium.
The Mozart programming system.
http://www.mozartoz.org, 2006. [ bib ] 
[49] 
The Alice team.
The Alice system.
Available from http://www.ps.unisb.de/alice/index.html, 2006. [ bib  .html ] 
[50] 
J LindNielsen.
Buddy  a binary decision diagram package.
Available from http://buddy.sourceforge.net, 1996. [ bib  http ] 
[51] 
Vincent Thornary and Jérôme Gensel.
An hybrid representation for set constraint satisfaction problems.
In Andreas Podelski, editor, Set Constraints and
Constraintbased Program Analysis, October 1998. [ bib  .html ] 
[52] 
M. Wallace, S. Novello, and J. Schimpf.
Eclipse: A platform for constraint logic programming.
Technical report, IC Parc, Imperial College, London, 1997. [ bib ] 
[53] 
Francisco Azevedo, Carmen Gervet, and Enrico Pontelli, editors.
Constraint Programming: Beyond Finite Integer Domains (BeyondFD
2005) Sitges, Spain,, Sitges (Spain), October 2005. [ bib ] 
[54] 
Michael Hanus and Mario RodríguezArtalejo, editors.
Algebraic and Logic Programming, 5th International Conference,
ALP'96, Aachen, Germany, September 2527, 1996, Proceedings, volume 1139 of
Lecture Notes in Computer Science. Springer, 1996. [ bib ] 
[55] 
Pascal Van Hentenryck, editor.
Practical Aspects of Declarative Languages, 8th International
Symposium, PADL 2006, Charleston, SC, USA, January 910, 2006, Proceedings,
volume 3819 of Lecture Notes in Computer Science. Springer, 2006. [ bib ] 
[56] 
Andreas Podelski, editor.
Constraint Programming: Basics and Trends, Châtillon Spring
School, ChâtillonsurSeine, France, May 16  20, 1994, Selected Papers,
volume 910 of Lecture Notes in Computer Science. Springer, 1995. [ bib ] 
[57] 
Francesca Rossi, Peter van Beek, and Toby Walsh, editors.
Handbook of Constraint Programming.
Foundations of Artificial Intelligence. Elsevier Science Publishers,
Amsterdam, The Netherlands, 2006. [ bib ] 
[58] 
Mark Wallace, editor.
Principles and Practice of Constraint Programming  CP 2004,
10th International Conference, CP 2004, Toronto, Canada, September 27 
October 1, 2004, Proceedings, volume 3258 of Lecture Notes in Computer
Science. Springer, 2004. [ bib ] 
[59] 
Geoffrey I. Webb and Xinghuo Yu, editors.
AI 2004: Advances in Artificial Intelligence, 17th Australian
Joint Conference on Artificial Intelligence, Cairns, Australia, December 46,
2004, Proceedings, volume 3339 of Lecture Notes in Computer Science.
Springer, 2004. [ bib ] 
[60] 
Constraint satisfaction problems. [ bib ]

[61] 
Propagators. [ bib ]

[62] 
Mozart, tbd.
Problem Solving with Finite Set Constraints in Oz. A
Tutorial., tbd. [ bib ] 
[63] 
Proceedings, The TwentyFirst National Conference on Artificial
Intelligence and the Eighteenth Innovative Applications of Artificial
Intelligence Conference, July 1620, 2006, Boston, Massachusetts, USA. AAAI
Press, 2006. [ bib ] 
[64] 
ILOG Inc., Mountain View, CA, USA.
ILOG Solver 5.0 reference Manual, 2000. [ bib ] 
[65] 
N. Barnier and P. Brisset.
Solving the kirkman's schoolgirl problem in a few seconds, 2002. [ bib  .html ] 