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Introduction Classification of the talk

In the next 30 minutes...

Main aspects

practical focus

software architectural point of view

data structures and algorithms

research area: constraint programming
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Introduction Constraint Programming

Constraint Programming - A quick reminder

Essential components

x : [1..6] y : {1, 3, 6, 12}

x , y x > y

problem variables

propagators implementing
constraints on the variables
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Introduction Motivation - Sudoku

Constraint Programming - Motivation

O

3 6
1

9 7 8
9 2

8 7 4
3 6

1 2 8 9
4
5 1

variable xij : {1, . . . , 9}

variable x28 : {1}, etc.

alldifferent row ri

alldifferent col ci

alldifferent 3 × 3-block bi
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Introduction Simple Example SetVars and constraints

Finite domain set variables (SetVar)

When to use them ?
reduce number of variables

focus on collection of elements
avoid symmetries

students in tutorial groups
players in a team
workers at a shift
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Introduction Simple Example SetVars and constraints

Constraint Programming - A quick reminder

Essential components
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Introduction Simple Example SetVars and constraints

Constraint Programming - A quick reminder

Essential components

x : {{1}, {3}, {3, 5, 7}} y : {{4}, {3}, {3, 4, 5, 7}}

x ⊆ y |y | = 4

problem variables

propagators implementing
constraints on the variables
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Introduction Motivation - Sudoku

Constraint Programming - Motivation

O

3 6
1

9 7 8
9 2

8 7 4
3 6

1 2 8 9
4
5 1

variable yi : {1, . . . , 92}

variable y1 :
[
{17, 56, 76}..{1, . . . , 92}

]∣∣∣yj
∣∣∣ = 9

row:
∣∣∣yj ∩ ri

∣∣∣ ≤ 1

column:
∣∣∣yj ∩ ci

∣∣∣ ≤ 1

3 × 3-block:
∣∣∣yj ∩ bi

∣∣∣ ≤ 1
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Introduction Framework

Framework

Gecode Constraint Library

generic

constraint

development

environment

Gecode [The06], a C++ library for constraint programming.
Version 1.3.1 available from http://www.gecode.org

Developers

Dr. Christian Schulte (head, KTH, Sweden)

Guido Tack (PS Lab, Saabrücken, Germany)
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Introduction The story so far

Available architecture in Gecode

x : D
D ∈ Dom

Gecode

Gecode set solver

Representation of set variables:
Cardinality set bounds

Propagators for this representation

Automated generator using logical
formulae
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Introduction The story so far

Available architecture in Gecode

Logical
formula

cardinality
set bounds

propagator

x : D
D ∈ Dom

Gecode

Gecode set solver
Representation of set variables:
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Aspects of the thesis Contributions

Contributions

Logical
formula

cardinality
set bounds

propagator

x : D
D ∈ Dom

Gecode
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Aspects of the thesis Contributions

Contributions

Logical
formula

cardinality
set bounds

propagator

x : D
D ∈ Dom

Gecode

Extending the Gecode set solver

Compare different data structure
for Cardinality set bounds with
Gecode data structure
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representation
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Aspects of the thesis Contributions

Central question

Practical implementation
How to represent a set variable in the system

What data structures to use

Size Issue
Assume set variable x : D = P ({1, . . . , 400})

|D | = 2400

Naive enumeration of all values⇒ exponential size O
(
2N
)

impracticable representation
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Aspects of the thesis Domain Approximations

Theoretical model - Domain approximation

Theoretical foundations
introduced by Benhamou[Ben96]

model all available domain representations for constraint variables
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Aspects of the thesis Domain Approximations

Theoretical model - Domain approximation

Idea: Domain Approximation A
representative subset (A ⊆ Dom)

closed under intersection (∀A ,B ∈ A : (A ∩ B) ∈ A)

Elements of A : approximate domains

Required elements

∅ set with no values
Val set with all values
D ∈ Dom, |D | = 1 sets containing a single value
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Aspects of the thesis Domain Approximations

What approximations are there?

Overview of approximations

Set bounds approximation -
S

Cardinality set bounds approximation -
C

Full domain approximation -
F 
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Aspects of the thesis Set bounds

Set bounds approximation

Theoretical foundations
Puget in [Pug92]

First introduced it in constraint programming

Gervet in [Ger95, chp. 4]
Described it in full detail
Conjunto [Ger94] as reference implementation
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Aspects of the thesis Set bounds

Set bounds approximation

Convex set boundsS = {T ∈ Dom | inf(D) ⊆ T ⊆ sup(D)}

E ∈
S smallest convex interval containing D (w.r.t. ⊆)

E =

⋂
d∈D

d..
⋃
d∈D

d


⊆

Example

D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}}

E = [{1}..{1, 3, 5, 6}]⊆
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Aspects of the thesis Set bounds

Set bounds approximation - Pros and Cons

Pros
S
guaranteed linear size
space efficiency:

only two sets bEc, dEe instead of exponentially many

extension property (Gervet[Ger95]):
set variable x : E, E ∈

S
variable assignment α ∈ Var→ Val:
∀v ∈ bEc ⇒ v ∈ α(x)
∀v < dEe ⇒ v < α(x)

Cons
S
bEc represented twice, since bEc ⊆ dEe.

[30.04.2007 18:15] Set Representation 16 / 36



Aspects of the thesis Set bounds

Set bounds approximation - Pros and Cons

Pros
S
guaranteed linear size
space efficiency:

only two sets bEc, dEe instead of exponentially many

extension property (Gervet[Ger95]):
set variable x : E, E ∈

S
variable assignment α ∈ Var→ Val:
∀v ∈ bEc ⇒ v ∈ α(x)
∀v < dEe ⇒ v < α(x)

Cons
S
bEc represented twice, since bEc ⊆ dEe.

[30.04.2007 18:15] Set Representation 16 / 36



Aspects of the thesis Cardinality Set bounds

Cardinality set bounds approximation
C

Hesse-Diagram

{1}

{1,3}{1,5} {1,6}

{1,3,5} {1,3,6}

{1,3,5,6}

2 ≤ |x |

|x | ≤ 3

From Dom to
C

Set variable x : D

D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}, {1, 3, 6}}

Set bounds

E = [{1}..{1, 3, 5, 6}]⊆

Adding cardinality requirements

F = E ∩
{
T ∈
S | 2 ≤ bTc ∧ dTe ≤ 3

}
= D
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Aspects of the thesis Full domain

Full domain approximation
F 

From Dom to
F 

choose Dom itself as approximation of Dom

approximate a domain D ∈ Dom by DF  def
= Dom
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Aspects of the thesis Full domain

Full domain approximation
F - Pros and Cons

Pros
F 
exact representation of the complete domain

stronger propagation

Cons
F 

space efficiency depends on data structure
implementing formula F

worst case exponential size
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Aspects of the thesis ROBDDs as data structure for full domain approximation

Efficient data structure for
F 

Theoretical foundations
Hawkins Lagoon and Stuckey in [HLS04]

First to introduce a full domain approximation

use reduced ordered binary decision diagrams (ROBDDs)
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Aspects of the thesis ROBDDs as data structure for full domain approximation

Reduced Ordered Binary Decision Diagrams (ROBDDS)

Short overview
R educed: no identical nodes

O rdered: respect specified variable order ≺

B inary Decision Diagram:
well-known method of modeling Boolean functions
on Boolean variables

ROBDD
canonical function representation up to reordering

permits efficient implementation of Boolean function operations
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Aspects of the thesis ROBDDs as data structure for full domain approximation

Represent SetVar in full domain approximation

D ∈
F  represented as tuple 〈b ,F〉

1 Boolean vector b = 〈bmin(dDe), . . . , bmax(dDe)〉

2 represent di ∈ D as formula f (di) =
|dDe|∧
j=1

ai ai =

bj if j ∈ di

¬bj else

3 represent D as formula F =
∨
di∈D

f (di)
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Aspects of the thesis ROBDDs as data structure for full domain approximation

Reduced Ordered Binary Decision Diagrams (ROBDDS)

D = {{1, 3}, {1, 5}, {1, 6}, {1, 3, 5}}

create Boolean vector
b = 〈b1, b2, b3, b4, b5, b6〉

resulting formula F
F = ∨

di∈D

f (di)

ROBDD representing all
valuations of formula F

01

b1

b2

b3

b5

b6 b6

b4 b4
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Variable views as interfaces Views as adaptors

Variable Views as interface

Full domaincardinality
set bounds

propagatorpropagator

x : D
D ∈ Dom

Variable Views [ST06]

1 Mapping V : A → B
2 Adaptor for A , VA : Dom → A

map D ∈ Dom to A ∈ A

prescribe internal
representation (data
structures)

3 Propagation interface providing
propagation services

domain lookup

domain update

4 Simulating non-existing variable
approximations
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domain lookup

domain update

4 Simulating non-existing variable
approximations
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Variable views as interfaces Views as adaptors

Using views to connect approximations

Adaptor functionality

x : D = {{1}, {1, 3}, {1, 2, 4}}

Set bounds view VS : Dom →
S

VS(D) = [{1}..{1, 2, 3, 4}]⊆

Cardinality set bounds view VC : Dom →
C

1 add cardinality constraints: 2 ≤ |x | ≤ 3

2
VC(D) = VS(D) ∩

{
T ∈
S | 2 ≤ |bTc| ∧ |dTe| ≤ 3

}
= {{1, 3}, {1, 2, 4}}

Full domain view VF  : Dom →
F 

ΓF (D) = D
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Summary Simulation of non-existing propagators

Weaken propagation

Full domaincardinality
set bounds

propagatorpropagator

x : D
D ∈ Dom

1 F ∈
F  is x-component of

domain tuple
−→
F ,
−→
F .x = F

2 Map F to the respective
cardinality set bounds
G = VC(F)

3 Since G ∈
C ⊂ F  apply

PF  :
F n

→
F n

Propagation result

R = PF 
(
−→
G
)
.x

4 Map result R again to
R ′ = VC(R).
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Summary Simulation of non-existing propagators

Using variable views to weaken propagation

Changing consistency of propagation result

Use a domain-consistent propagator

pF  :
F n

→
F n

obtain bounds
C-consistent propagator

PC :
F n

→
Cn

PC
(
−→
F
)
= VC

(
PF 

(
VC

(
−→
F
)))
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Summary Simulation of non-existing propagators

Contributions

Summary
1 Implemented presented concepts in Gecode

1 ROBDD set component
2 Simulation

C with
F  using view VC

3 Propagation across approximations using PC
4 Also implemented:

1 PS for proper set bounds
2 PL for lexicographic bounds

2 First framework to connect different implementations for set variables
via variable views.

3 prototype for generating set propagators from uniform specification
language [TSS06]

4 Implemented and compared different implementations for
C
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Contributions - Completing the picture

VC VF 

VC
IdF 

PC
IdC

Logical
formula

Full domaincardinality
set bounds

propagatorpropagator

x : D
D ∈ Dom

Gecode
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Summary Simulation of non-existing propagators

Outlook and future work

Generalize results to multisets by introducing
1 approximations
2 views
3 constraints

Comparison of used data structures with different data structures for
example:

1 Bit vectors

Finish automated propagator generation for ROBDD component
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Thanks

Thank you for your attention!
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Questions

Are there any questions?
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