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Abstract

Constraint programming (CP) is a powerful state-of-the-art approach to solve hard combinatorial
problems. To achieve this CP needs to represent constraint variables, their associated domains
and propagators encoding the respective constraints on those variables in a constraint solver.
This thesis presents the application, implementation and empirical evaluation of different repre-
sentations for finite set constraint variables, their respective domains and finite set propagators
on them. The corresponding implementation using the Gecode C++-library [39] is the first to
fully integrate a convex cardinality set bounds representation provided by the Gecode -library
and the ROBDD-based complete domain representation proposed by Hawkins et al.[22] in a
single constraint solver. Presenting the concepts of domain approximation, variable views and
propagator generation and applying them to the computation domain of finite sets this thesis al-
lows a free combination of both variable representations and their respective propagators across
the boundaries of each variable representation.
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1 Introduction

Constraint programming (CP) is a powerful state-of-the-art approach to solve hard combinatorial
problems. To achieve this CP needs to represent constraint variables, their associated domains
and propagators encoding the respective constraints on those variables in a constraint solver.
This thesis presents the application, implementation and empirical evaluation of different repre-
sentations for finite set constraint variables, their respective domains and finite set propagators
on them. The corresponding implementation using the Gecode C++-library [39] is the first to
fully integrate a convex cardinality set bounds representation provided by the Gecode -library
and the ROBDD-based complete domain representation proposed by Hawkins et al.[22] in a
single constraint solver. Presenting the concepts of domain approximation, variable views and
propagator generation and applying them to the computation domain of finite sets this thesis al-
lows a free combination of both variable representations and their respective propagators across
the boundaries of each variable representation.

1.1 From integer to set variables

The essential purpose of constraint programming is the formulation and the solution of specified
problems involving problem variables and constraints on them[4] where the variables take their
values in problem-specific domains. In this context most of those problems arising in different
fields such as combinatorial mathematics, scheduling or operations research require the problem
variables to take finite integers as possible values. Those variables are referred to as finite domain
integer variables or simply integer variables. Nevertheless, Gervet emphasizes in [17] that the
use of integer variables has its limitations if it comes to real-world combinatorial problems
“based on the search for sets or mapping objects”[17].

Finite sets as computation domain In this context Puget considers the computation domain
of finite sets over integers as “very useful” [28], that is a finite set of finite sets of integers. In
contrast to the integer variables ranging over a single set of finite integers, those variables are
referred to as finite domain set variables or set variables.

New possibilities As witnessed by Gervet in [18] and a dedicated workshop on behalf of
“Beyond finite domain programming”[7] this usefulness results in the availability of set con-
straint solvers based on finite sets as computation domain. This in turn leads to the design of

1



2 1 Introduction

new models and solutions to problems from combinatorial mathematics [8], VLSI circuit ver-
ification and warehouse location [5]. Even more so, there are classes of real-world problems,
where the use of set variables instead of integer variables remarkably reduces the total number
of variables in a problem. For instance Puget points out in [29, sect.5] that modeling a schedule
of 3000 crews for an airline with a pool of 2000 people available takes only 3000 set variables
instead of 6 · 106 Boolean variables. Apart from reducing the number of problem variables,
the use of set variables can also help to eliminate symmetries in the problem specification. For
instance Frisch et al. indicate in [13] that the use of set variables removes a structural symmetry
in scheduling problems like the Social Golfer problem.

A new problem However, Puget indicates in [28] that representing set variables in a con-
straint solver is problematic because the domain size of those variables easily becomes expo-
nential. Since the typical design of a constraint programming system involves both, variables
and constraint on them, we have to reassure that the time spent on operations on the data struc-
ture implementing a set variable representation does not cut the above mentioned advantages of
set variables. Consequently Frisch and Jefferson conclude in [12] that the representation of set
variables is a critical aspect in the design of a set constraint solver. This is exactly the point, that
we investigate in the remaining chapters of this thesis.

1.2 Contributions

Based on the theoretical background of finite domain constraint programming over set variables
this thesis aims at the following goals:

Setting the stage We apply Benhamou’s framework of domain approximation to the do-
main of finite set variables such that all representations for finite set variables in literature can
be encoded in this framework. Moreover, we show formally what constraint propagation in
this framework means and how constraint propagation is applied on approximate domains as
elements of the respective domain approximations under consideration. Based on this frame-
work this thesis presents recent approaches in literature to represent finite set variables like the
standard set bounds approximation (Puget[28], Gervet[16]), the set bounds approximation aug-
mented with cardinality information (Gervet, Azevedo [15, 5]) a lexicographic bounds approach
(Sadler and Gervet[30]) as well as a full approximation using ROBDDs (Hawkins et al.[22]) and
encodes them in terms of domain approximations.

Getting practical As this thesis has a practical orientation one main task consists in com-
paring the set bounds domain approximation with cardinality information as presented in the
Gecode -library against a different implementation for the same approximation. Another task
was the implementation of a ROBDD-based solver in Gecode based on the full domain approx-
imation as Hawkins et al. presents in [22]. In this context, this thesis discusses how the concept
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of variable views that Schulte and Tack introduce in [35] can be used to integrate this implemen-
tation into an already existing set solver. As practical instance we choose the Gecode -library[39]
that already provides the set bounds domain approximation augmented with cardinality infor-
mation. Further, we show how variable views allow the implementation of different consistency
techniques presented in [22] with only one domain approximation. Moreover we show how
variable views change the orthogonal implementation of two different set solvers into a single
generic interface that is able to cross domain approximations and consistency levels. Thus this
thesis is the first to integrate two completely different variable representations into one set con-
straint solver providing the possibility of representation comprehensive constraint propagation.
In addition to the abstraction of domain approximations we also apply the concept of a formal
modeling language for set constraints that Tack et al. present in [37] to implement a prototype of
an intensional set constraint representation. This representation not only allows us to translate
constraints into propagators for the cardinality set bounds representation available in Gecode
[39] but also to translate them into propagators for the ROBDD-based representation topping off
the integration of two different set solvers into a single generic interface.

Empirical evaluation Apart from the introduction into the formal framework of domain ap-
proximations and the integration of the ROBDD-based set solver as new domain approximation
into Gecode we also provide a thorough analysis and evaluation of the presented domain approx-
imations, their underlying data structures, the variable views as propagation interface between
the different domain approximations as wells as the propagators themselves working on those
domain representations.

Programming framework The tasks as described in the preceding paragraphs have all been
implemented using Gecode , a C++-based constraint programming library [39] that is jointly
developed at the Royal Technical Institute of Technology in Stockholm (KTH) and the Pro-
gramming System Chair (PS-LAB) at the Saarland University in Saarbrücken.

1.3 Related Work

As a major aspect of this thesis consists in the practical application and implementation of avail-
able frameworks and concepts, this section clarifies what scientific work in the area of finite
domain constraint programming provides the fundamental theoretical background for the con-
tributions of this thesis.

1.3.1 Domain Approximation

An essential point of the introductory paragraph is the size issue of a representation for set
variables, that is the domain of a set variable possibly has exponential size.



4 1 Introduction

Encode available variable representations In this context, a central aspect in this thesis
is the approach of approximating a variable domain using the concept of a domain approxi-
mation as formalized by Benhamou in [9]. Provided this concept of domain approximations
as central framework for our thesis, it allows us to encode the domain approximation used by
most state-of-the-art constraint solvers supporting constraint solving over finite sets like ILOG
[1], ECLiPSe [42], Conjunto [15], Mozart [40] and Gecode [39]. The finite set component of all
these solvers essentially bases on the standard set bounds approximation scheme, that denotes
a domain approximation involving lower and upper bounds on the domain of a set variable as
developed by Puget in [28] and presented in detail in the dissertation of Gervet [16]. Addition-
ally, Benhamou’ s framework of domain approximations also allows us to talk about a “radically
different approach“[18] developed by Lagoon and Stuckey who show in [24] how we can use
reduced ordered binary decision diagrams (ROBDDs) to literally model the complete domain of
a set variable.

Integration through variable views Apart from those two different domain approximations
that represent state-of-the-art cornerstones in the area of set variable representation, we will
furthermore concentrate on the concept of variable views or views as introduced by Schulte and
Tack in [35] which yields our main tool to integrate the ROBDD domain representation into
the Gecode -framework that already comes with an implementation of the above mentioned set
bounds domain representation.

Generating propagators for finite set variables Concluding the central aspects of this
thesis we will also take up the work of Tack et al. in [37] presenting an intensional representation
of finite set constraints Puget aims at in [28]. In this context we discuss how they use this
intensional representation to generate constraints in both domain approximations, the set bounds
approximation and the full domain approximation.

1.4 Outline

The remaining chapters of this thesis are structured according to figure 1.1 providing an overview
from variables to constraints. In chapter 2 we discuss the basic framework for constraint pro-
gramming and recapitulate the theoretical background of domain approximations as introduced
by [9]. Subsequently, chapter 3 presents an overview of the most popular domain approxima-
tions and discusses the implementation of the set bounds domain approximation as well as the
ROBDD-based full domain approximation in the Gecode - framework. Chapter 4 introduces
variable views for constraint propagation across different domain approximations. Chapter 5
deals with the questions how propagators on the presented domain approximations look like and
how they can be generated using a uniform representation. Chapter 6 finally provides an empir-
ical evaluation and discussion of the domain approximations in focus. Chapter 7 concludes the
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thesis and provides a short outlook on future work related to the aspect of set variable represen-
tations in constraint programming.

chapter 2

chapter 3

chapter 4

chapter 5

chapter 2

Variables/Domains

Domain approximation

Data structures
Implementation

Views as propagator interface

Propagators

MSO-formulae as
propagator abstraction

Constraints

Figure 1.1: Constraint solver vertical cut
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2 Constraint Programming - A Framework

T   : I    U  . T    
             [3].

— A

During the course of this chapter we take glance at Constraint Programming (CP) , providing
the theoretical framework of this thesis. Moreover, we give a survey of the relevant definitions
and notations used in the remaining chapters.

Constraint Satisfaction As Apt underlines in his “Rough Guide to Constraint Propagation”[4],
“Constraint programming [..] consists of formulating and solving so-called constraint satisfac-
tion problems”. Obviously, this slogan is twofold and indicates that CP is concerned with a
modeling aspect (formulating) and a solution aspect (solving).

2.1 Modeling

In order to model a given problem as a constraint satisfaction problem (CSP) we have to state
what a CSP consists of. Considering the formal definition of a CSP as provided by Tack et al.
in [37] a CSP informally splits up into two essential components: a set of variables we denote
with X and a set C of requirements on those variables, which are referred to as constraints.

2.1.1 Domains and Variables

According to [23] we assume that the set of variables X is typed and define:

Definition 1 (Universe and variable type). Let x ∈ X be a constraint variable. We call a set
Σ::=� | � the universe of x and the set T ::=Σ | P (Σ) the type of x, where P (Σ) denotes the
power set over the universe Σ. Moreover we want to point out that the universe and hence the
variable type are possibly (countable) infinite sets.

Apart from the variable type T , each variable x ∈ X is also associated with a set D ⊂ T , called
its domain, specifying exactly what possible values the variable x ∈ X can be assigned to.

7



8 2 Constraint Programming - A Framework

CP on finite domains Clearly, this understanding of a variable domain admits possibly infi-
nite domains. Since we are only interested in variables associated with finite domains we restrict
the term of CP for all remaining chapters to CP over finite domains denoted as CP(FD). More-
over, we also assume a finite set Var ⊂ X of typed constraint variables and a finite universe
U ⊂ Σ. From the finiteness of U we immediately obtain a finite set of values Val ⊂ T for those
variables, where Val = U if T = Σ and Val = P (U) if T = P (Σ). Finally we also obtain
a finite set Dom ⊂ P (Val) denoting the power set of possible finite domains. Provided these
restrictions, we are now able to define the first component of a constraint satisfaction problem,
namely the set of constraint variables X , more concisely.

Definition 2 (Finite domain variable). A variable x ∈ Var is called a finite domain variable if it
is associated with a finite domain D ⊂ Val. As D specifies which values x can take we say that
x ranges over D, written x : D or x ∈ D.

Remark 1 (n-ary extension). Extending the notion of a finite domain to the n-ary cartesian
product of n finite domains we write

−→
D

def
= (D1, . . . ,Dn). Analogously, we overload set in-

tersection (∩), set union (∪) as well as the subset relation (⊆) to the n-ary case such that:
−→
D �
−→
E

def
= ∀i ∈ {1, . . . , n} : Di � Ei, where � ∈ {⊆,∩,∪}. Moreover, if x : E denotes a variable

with associated domain E we write
−→
D.x for the x-component of

−→
D such that

−→
D.x = E.

If we instantiate the previously defined variable type of a finite domain variable according to the
grammar specified in definition 1 we obtain the two most popular variable types in CP: integer
variables and set variables.

Definition 3 (Integer variable and set variable). Let x : D ⊂ Val ⊂ T be a finite domain
variable as defined previously. If T = � such that x ranges over integer values we call x an
integer variable. In case that T = P (�) such that x ranges over finite subsets of integers we call
x a set variable.

With this concise definition of the first constituent of a CSP, and given the restricted finite sets
Var and Val, we are now able to define how values v ∈ Val are assigned to variables x ∈ X .

Definition 4 (Assignment). An assignment is a mapping α :∈ Asn = Var→Val from variables
to values according to their respective domain D, that is ∀(x : D) ∈ Var : α(x) = v ∈ D. Thus,
we say that a variable x ∈ Var with corresponding domain D is assigned if and only if |D| = 1,
that is its domain D is a singleton set D = {v}.

Provided this definition, we can now formalize the notion of a constraint as:

Definition 5 (Constraint). A constraint is a set of assignments c ∈ C = P (Asn).

Having defined the notion of a constraint and the notion of finite domain variables we have
defined both components we need to give a formal definition of a CSP according to [37]:
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Definition 6 (Constraint satisfaction problem (CSP)). We define a constraint satisfaction prob-
lem (CSP) as a tuple C = 〈X ,C 〉 of a finite set of finite domain variables X and a set of constraints
C on them.

Let us consider an example for the encoding of a given problem into a constraint satisfaction
problem. Assume that we are given an instance of the popular Sudoku puzzle (see [36] by
Simonis) as depicted in table 2.1.

9 9 9 9 9 3 9 6 9
9 9 9 9 9 9 9 1 9
9 9 7 9 9 9 8 9
9 9 9 9 9 9 2 9 9
9 9 8 9 7 9 4 9 9
9 9 3 9 6 9 9 9 9
9 1 9 9 9 2 8 9 9
9 4 9 9 9 9 9 9 9
9 5 9 1 9 9 9 9 9

Table 2.1: Sudoku of order n = 3 with nine 3 × 3-squares on a 9 × 9-grid

According to the Gecode -implementation of the above instance and the CP-Tutorial for the
Alice language ([38]) we can encode a Sudoku problem of order n as follows: Assume that we
are given sets I =

{
1, . . . , n2

}
and I2 =

{
1, . . . , n4

}
with respect to the order n of the specified

Sudoku problem. At first we choose the set Var =
{
xi : P

(
I2

)
| i ∈ I

}
where each of the n2 set

variables xi represents the set of indices of boxes for number i. Hence, the partial assignment
of the Sudoku grid as shown in table 2.1 represents the set PA ⊂ Asn of variable assignments
α ∈ Asn such that

PA = {α ∈ Asn | {17, 56, 76} ⊂ α(x1), {34, 60} ⊂ α(x2), {6, 48} ⊂ α(x3),

{43, 65} ⊂ α(x4), {22, 74} ⊂ α(x5), {8, 50} ⊂ α(x6),

{21, 41} ⊂ α(x7), {26, 39, 61} ⊂ α(x8), {20, 32, 62} ⊂ α(x9)}

In order to obtain a valid solution to the grid in table 2.1 we specify the set C of constraints as
follows. At first, there are exactly n2 occurrences for each number i ∈ I, that is

card def
= {α ∈ Asn | ∀i ∈ I : |α(xi)| = n2}

. Moreover, a box of the grid can only hold one value that is:

dis j def
= {α ∈ Asn | ∀i, j ∈ I, i , j : α(xi) ∩ α(x j) = ∅}

Additionally, each number may occur at most once per row i ∈ I:

rowi
def
= {α ∈ Asn | ∀k, j ∈ I :

∣∣∣{z ∈ I2 | (i − 1) · n2 + 1 ≤ z ≤ i · n2} ∩ xk
∣∣∣ = 1}
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at most once per column j ∈ I:

col j
def
= {α ∈ Asn | ∀k, i ∈ I :

∣∣∣{z ∈ I2 | z = j + (i − 1) · n2} ∩ xk
∣∣∣ = 1}

and at most once per n × n-block b ∈ I:

blockb
def
=

{
α ∈ Asn | ∀i, j ∈ {1, . . . , 3} ,∀k ∈ I :

∣∣∣∣{z ∈ I2 | z = o + (i − 1) · n2 + j
}
∩ xk

∣∣∣∣ = 1
}

where o = n3 ·
⌊

b−1
n

⌋
+ n · ((b − 1) mod n) denotes the number of blocks in the Sudoku grid

before block b. Using the partial assignment PA and the constraints on the occurrences of the
numbers we just defined, we can now express the set of all constraints as

C = PA ∪ {card, dis j} ∪
n2⋃

k=1

{rowk, colk, blockk}

and can encode the Sudoku problem as a CSP SP = 〈Var,C 〉.

2.2 Solving

In order to solve a CSP like the above Sudoku-instance SP we have to represent the constraint
variables with their associated domain information as well as the constraints in a constraint
solver. However, the domain information coupled with the constraint variables might be of
exponential size if they are set variables. Consider for example the SP = 〈Var,C 〉 problem as
described above. The set variables x : D = P

(
I2

)
∈ Var reason about the power set of I2 that

is, the size of an initial single domain D of such a variable is exponential, since
∣∣∣∣P (

I2
)∣∣∣∣ = 2|I

2| =

2n4
. Additionally, the representability of the problem encoding for a constraint solver decreases

with increasing variable size. Furthermore, it is not tractable to implement the constraints in
C extensionally because of the set of possibly exponentially many combinations of variable-
value-tuples they represent (see Schulte and Carlsson[32, chap 1.1]). Consider for example the
constraint card from the above CSP with order n = 3. Implementing this constraint literally into
the system would imply encoding all α ∈ card where the cardinality of card is computed as
follows:

|card| =
(
n4

n2

)n2

n=3
=

(
81
9

)9

≈
(
2.6 · 1011

)9
> 1080 (2.1)

where |card| denotes the number of possibilities to assign subsets S ⊂ P
(
I2

)
to the n2 problem

variables such that |S | = n2. Obviously, in a CSP modeling a Sudoku of order n = 3 using set
variables as we did above, the number of assignments α ∈ Asn mapping the problem variables
to subsets of P

(
I2

)
already exceeds a lower bound estimation on the number of atoms in the

observable universe.
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Based on the work of Tack et al. in [37] and Benhamou in [9], the remaining part of this
chapter introduces the terms domain approximation and propagators. Hence, the next level of
abstraction on our way from a problem specification via a CSP-encoding C = 〈X ,C 〉 towards
a problem representation tractable for a constraint solver is the abstraction by a constraint sys-
tem S = 〈−−→DA , P〉. Analogously to the CSP-encoding, a constraint system consists of two parts,
namely a (reasonable) variable representation

−−→
DA and the set of propagators P. In this context, P

represents the computational analog to the CSP component C , which denotes the set of all con-
straints on the problem variables. Note that this definition differs from Benhamou’ s definition
in the use of the set of propagators P instead of the set of constraints C as second component.
Consequently we define a domain approximation as stated below:

Definition 7 (Domain approximation). A domain approximation A for Dom is defined as finite
subset A ⊆ Dom such that A is closed under intersection, that is ∀A, B ∈ A : (A ∩ B) ∈ A . The
minimum requirements for A according to Benhamou [9] are

∀v ∈ {∅, Val} ∪ {D ∈ Dom| |D| = 1} : v ∈ A

Thus, a domain approximation has to contain at least the empty set, the universe of a variable
and all singleton domains over this universe since those are the sets a constraint solver requires
to perform constraint propagation. Elements D ∈ A are called approximate domains of A .

Remark 2 (Full approximation). Although Benhamou puts the emphasis on A as a proper ”sub-
set” [9, sect. 2.2, def. 1], the above definition does not exclude the possibility of approximating
the set Dom by the set itself. Hence we can choose A = Dom as a domain approximation for
Dom.

Though the above definition of a domain approximation theoretically enables us to represent
finite domains of variables via an approximation, we still lack a connector between A and Dom
we may use as variable domain representation on the operational level. Here the concept of
variable views as Schulte and Tack define in [35] comes in handy, where a variable view is
used as an abstraction over the underlying data structure of a variable, that is the operational
representation of the variable’s domain. In our setting we can exploit the adaptor functionality
of the described views and similarly define:

Definition 8 (Variable View). Let Dom denote the finite set of possible domains and A , B
domain approximations of Dom as defined previously. A mapping νB : A → B transforming an
approximate domain DA ∈ A into an approximate domain DB ∈ B such that

νB (DA) = min⊆{DB ∈ B | DA ⊆ DB}

is called a variable view. Hence, a view maps an approximate domain DA ∈ A to the smallest
approximate domain DB ∈ B containing DA.
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Clearly, the adaptor functionally of such a view, that is transferring a domain D ∈ Dom into an
approximation A , is obtained by choosing a view νA : Dom → A such that νA (D) ∈ A yields
the desired approximate domain.

Remark 3 (n-ary extension). Since we extended the notion of an approximate domain D ∈ A to
an n-ary cartesian product

−→
D ∈ An of n finite domains we also write

−→ν B

(
−→
D
)

def
= (νB (D1), . . . , νB (Dn))

for the lifted application of a variable view νB mapping each domain in the n-ary product from
a domain approximation A to another approximation B .

2.2.1 Constraint Propagation

As in a propagation based constraint solver a propagator is the operational analog of a constraint
and we just defined a constraint to reason about all variables in Var we define a propagator
similarly as:

Definition 9 (Propagator). Let A be a domain approximation as defined in 7. A propagator is a
function p : An → An which is contracting

∀
−→
D ∈ An : p

(
−→
D
)
⊆
−→
D (2.2)

and monotone

∀
−→
D,
−→
E ∈ An : (

−→
D ⊆
−→
E )⇒ p

(
−→
D
)
⊆ p

(
−→
E
)

(2.3)

Moreover, we call a propagator p sound for a constraint c if and only if

∀α ∈ Asn : c ∩ {α} = p ({α})
and complete if and only if

∀
−→
D ∈ An : c ∩

−→
D = p

(
−→
D
)

Proposition 1 (Fixpoint computation). Applying a propagator p to variable domains
−→
D is equiv-

alent to computing its fixpoint on
−→
D, which we denote as

�
{p}
−→
D.

Proof. We recursively define the application of a propagator p to input domains
−→
D as follows:

pi
(
−→
D
)
=

p
(
pi−1

(
−→
D
))

if i > 0
−→
D else

Let ∀n ∈ � : pn+1
(
−→
D
)
⊆ pn

(
−→
D
)

be the induction hypothesis. For n = 0 the base case trivially
holds because p is contracting. As n+ 2 > n+ 1 the induction hypothesis holds for all m < n+ 2
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and by monotonicity of p we obtain:

pn+1
(
−→
D
)
⊆ pn

(
−→
D
) p monotone

⇒ p
(
pn+1

(
−→
D
))
⊆ p

(
pn

(
−→
D
))

⇔ pn+2
(
−→
D
)
⊆ pn+1

(
−→
D
)

As An is finite we know that there exists m ∈ � such that the m-fold application of p to
−→
D results

in the descending chain

−→
D ⊇ p

(
−→
D
)
⊇ . . . ⊇ pm−1

(
−→
D
)
⊇ pm

(
−→
D
)

(2.4)

Moreover, we deduce from An being finite that this chain is maximal, that is

¬∃k ∈ {k ∈ � | k > m} : pk
(
−→
D
)
⊂ pm

(
−→
D
)

(2.5)

⇔ ∀k ∈ {k ∈ � | k > m} : pm
(
−→
D
)
⊆ pk

(
−→
D
)

(2.6)

Let µ def
= pm

(
−→
D
)
. As from equation (2.2) we know that p(µ) ⊆ µ and as equation (2.6) implies

that µ = pm
(
−→
D
)
⊆ pm+1

(
−→
D
)
= p

(
pm

(
−→
D
))
= p(µ) it follows that p(µ) = µ and hence that µ is a

fixpoint of p. Consider the set

R def
=

{
pn

(
−→
D
)
| n ∈ � ∧ µ ⊆ pn

(
−→
D
)}
⊆ An (2.7)

containing every element of the above maximal chain and which is closed under intersection
(compare remark 1). Hence, µ is the greatest lower bound of R that is contained in R, since

µ = pm
(
−→
D
)
=

m⋂
i=0

pi
(
−→
D
)

(2.8)

Thus, µ is not only a fixpoint of p but also the unique greatest fixpoint of p. Therefore we
conclude that the application of a single propagator p to variable domains

−→
D in this setting

always yields its unique greatest fixpoint µ as a result and we write µ =
�
{p}
−→
D. q.e.d

Propagation results Provided that the iterative application of a propagator p on an approxi-
mate domain

−→
D results in a fixpoint µ def

=
�
{p}
−→
D one of the following statements holds:

• If µ = ∅ it follows that ∃x ∈ Var : p
(
−→
D
)
.x = ∅, that is p has detected failure because one

of the variable domains is inconsistent with the operational semantics of propagator p and
thus inconsistent with the constraint c implemented by p.
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• If in turn µ , ∅, we know that µ is a stable state for the application of p on the input
domains

−→
D.

Typically, in a constraint solver, the set of constraints C comprises more than just a single con-
straint. Consequently, the common case deals with a hole set of propagators P. However, we
show that constraint propagation of the set P behaves analogously like a singleton set p with
only one propagator as presented above.
Let |P| = n and π : {0, . . . , n − 1} → {0, . . . , n − 1} be a permutation on {0, . . . , n − 1} denoting
the order according to which the pi ∈ P are applied. Given some initial variable domains

−→
D and

the usual definition of function composition ( f ◦ g) (D) def
= f (g (d)) we define:

Nπ

(
−→
D
)

def
=

(
n
©
i=1

pπ(i)

) (
−→
D
)

(2.9)

def
= (pπ(1) ◦ (· · · ◦ pπ(n)))

(
−→
D
)

(2.10)

def
= pπ(1)

(
. . .

(
pπ(n)

(
−→
D
)))

(2.11)

as the family of all compositions N of all propagators pi in the set of propagators P.

Proposition 2. A composition Nπ of propagators pi ∈ P is contracting.

Proof by induction. Let |P| = n and (
n
©
i=1

pπ(i)

) (
−→
D
)
⊆
−→
D (2.12)

be the inductive hypothesis. By induction over n the base case for P = {pπ(1)} immediately
follows from pπ(1) being contracting (eq. 2.2). Let P′ =

⋃n
i=2 pπ(i) and P = P′ ∪ {pπ(1)} be such

that N′π
(
−→
D
)

def
=

(
©n

i=2 pπ(i)
) (−→

D
)

and Nπ

(
−→
D
)

def
= (pπ(1)◦N′π)

(
−→
D
)

are the corresponding compositions

for P and P′ respectively. Since |P′| = n−1 < |P| = n, N′π is contracting by (2.12) and we obtain:

Nπ

(
−→
D
)
= (pπ(1) ◦ N′π)

(
−→
D
)

(2.9)
= pπ(1)

((
n
©
i=2

pπ(i)

) (
−→
D
))

(2.13)

N′πcontracting
⊆ pπ(1)

(
−→
D
) pπ(1)contracting

⊆
−→
D (2.14)

⇒ Nπ

(
−→
D
)
⊆
−→
D (2.15)

q.e.d

Proposition 3 (Monotonicity of a composition). A composition Nπ of propagators pi ∈ P is
monotone.
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Proof. Let

∀
−→
D,
−→
E ∈ An : (

−→
D ⊆
−→
E )⇒

(
n
©
i=1

pπ(i)

) (
−→
D
)
⊆

(
n
©
i=1

pπ(i)

) (
−→
E
)

(2.16)

be the inductive hypothesis. By induction over n = |P| the base case for P = {pπ(1)} is again
straightforward by monotonicity of pπ(1). Let P′ =

⋃n
i=2 pπ(i) and P = P′ ∪ {pπ(1)} again be such

that N′π
(
−→
D
)
=

(
©n

i=2 pπ(i)
) (−→

D
)

and Nπ

(
−→
D
)
= (pπ(1)◦N′π)

(
−→
D
)

are the corresponding compositions

for P and P′. Since |P′| < |P|, N′π is monotone by (2.16) and we obtain for all
−→
D,
−→
E ∈ An:

(
−→
D ⊆
−→
E )

N′πmonotone
⇒

−→
D′ = N′π

(
−→
D
)
⊆
−→
E ′ = N′π

(
−→
E
)

(2.17)

pπ(1)monotone
⇒ pπ(1)

(
−→
D′

)
⊆ pπ(1)

(
−→
E ′

)
(2.18)

⇔ (pπ(1) ◦ N′π)
(
−→
D
)
⊆ (pπ(1) ◦ N′π)

(
−→
E
)

(2.19)

⇔ Nπ

(
−→
D
)
⊆ Nπ

(
−→
E
)

(2.20)

q.e.d

By definition 9 and propositions (2-3) it follows:

Corollary 1 (Composition as propagator). A composition Nπ of propagators pi ∈ P is again a
propagator.

Given initial variable domains
−→
D we know by the above corollary and the definition of a propa-

gator (sec. 2.2.1) that there exists a unique greatest fixpoint µ =
�

P
−→
D such that Nm

π

(
−→
D
)
= µ.

Proposition 4 (Mutual fixpoint). Let
−→
D denote initial variable domains. Then the unique great-

est fixpoint µ of a composition Nπ of propagators pi ∈ P applied to
−→
D is mutual fixpoint of all

pi.

Proof.

Nπ(µ) = µ
(2.9)
⇔

(
n
©
i=1

pπ(i)

)
(µ) = µ (2.21)

(2.9)
⇔ ∀pi ∈ P : pπ(i)(µ) = µ⇔ ∀pi ∈ P : pi(µ) = µ (2.22)

Hence, from equation (2.22) it follows that the fixpoint µ of the composition Nπ is not only the
greatest fixpoint of Nπ but also a common fixpoint of all pi ∈ P. q.e.d
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Proposition 5 (Order independence). The fixpoint µ =
�

P
−→
D of a composition Nπ and input

domains
−→
D is independent of the application order π.

Proof. Assume by proposition 1 that µ =
�

P
−→
D is the unique greatest fixpoint of Nπ on

−→
D.

Let further η def
= Mk

τ

(
−→
D
)

denote the unique greatest fixpoint of another composition Mτ and
corresponding permutation τ : {0, . . . , n − 1} → {0, . . . , n − 1} of the propagators in P such that
Mτ only differs from Nπ with respect to the order in which the pi’s are applied. Consequently,
by proposition 4

∀pi ∈ P : pτ(i)(η) = η ⇔ ∀pi ∈ P : pi(η) = η (2.23)

also holds for Mτ. Assuming without loss of generality that µ ⊆ η we can conclude that:

µ ⊆ η
Nπ monotone
⇒ Nπ(µ) ⊆ Nπ(η) (2.24)

(2.21)
⇔ µ ⊆ Nπ(η)

(2.9)
=

(
n
©
i=1

pπ(i)

)
(η)

(2.23)
= η (2.25)

(2.26)

Obviously, η is a fixpoint of Mτ and as a such η ⊂
−→
D. Moreover, η is also a fixpoint of Nπ,

that is η has to be a member of the descending chain resulting from the application of Nπ (see
eq. (2.4)). Hence, η has to be in the set R representing this chain as defined in equation (2.7).
Consequently, we can conclude the proof as follows:

(2.25)
(2.7)
⇔ µ ⊆ η ∈

{
Nt
π

(
−→
D
)
, t ∈ � | µ ⊆ Nt

π

(
−→
D
)}

(2.27)

(2.8)
⇒ µ = η (2.28)

Hence equation 2.28 underlines that every possible composition Nπ of propagators pi ∈ P ap-
plied to variable domains

−→
D has the same unique fixpoint µ =

�
P
−→
D no matter what propagation

order π we choose. q.e.d

Therefore, we generalize the notion of constraint propagation to the computation of the greatest
mutual fixpoint

�
P
−→
D of a set of propagators P which is independent of the propagation order π.

Definition 10 (Constraint Propagation). Given a set of propagators P, a domain approximation
A and initial approximate domains

−→
D we define constraint propagation as the computation of

the greatest mutual fixpoint of all pi ∈ P on
−→
D, namely µ =

�
P
−→
D.

Analogously to definition 9 we finally define soundness and completeness for a set of propaga-
tors P as follows:
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Definition 11 (Soundness). A set of propagators P is called sound for a set of constraints C if
and only if ∀α ∈ Asn :

⋂
c∈C
∩{α} =

�
P

{α}.

Definition 12 (Completeness). A set of propagators P is called complete for a set of constraints
C if and only if ∀

−→
D ∈ An :

⋂
c∈C
∩
−→
D =

�
P

−→
D.

Variable Modification In fact, different propagation orders pi representing the order in which
the propagators pi ∈ P are applied to given approximate domains −→∈A may lead to different
lengths of the propagation chain as depicted in equation (2.4). Hence, a practical implementation
of constraint propagation is not a static order we know in advance, but instead is computed
dynamically by the modifications a propagator pi possibly performs on the current variable
domains. In order to keep track of those domain modifications and to improve the application of
the propagators pi ∈ P Schulte and Stuckey present in [33] the concept of modification events to
determine the propagation order. Modification events for constraint variables essentially differ
in two aspects: On the one hand there are modification events that do not depend on the domain
approximation. The following events arising after execution of a propagator are common for
any non-trivial domain approximation A such that A ⊃ {∅, Val} ∪ {D ∈ Dom| |D| = 1}:

• val(x) stating that the variable x has been assigned

• f ail(x) denoting that the variable domain is inconsistent with the propagator’s operational
semantics

• dom(x) indicating that the domain of x has changed

Obviously, in the trivial case that A =⊃ {∅, Val} ∪ {D ∈ Dom| |D| = 1} the modification events
dom(x) and val(x) coincide as every domain change in the trivial approximation implies that the
domain has become a singleton. On the other hand there are also modification events which only
become available through the current domain approximation. Examples for those events involve
modifications on domain bounds or changes on the cardinality of a variable domain.

2.2.2 Search

As constraint propagation alone is incomplete with respect to solving a constraint system (see
2.1, a constraint solver also needs a search component. However, this search component is
again two-fold. Thereby, the first component consists in branching or distribution (see [31, sec.
2.2]) which, together with constraint propagation, determines the shape of the search-tree that is
created during interleaved application of constraint propagation and search. Given a constraint

system S =
(
−→
D, P

)
such that

−→
D is already a fixpoint of P branching splits S into k smaller

constraint systems S 1 =

(
−→
D1, P

)
, . . . , S k =

(
−→
Dk, P

)
by choosing a variable x : D according to a
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9 8 9 9 9 3 9 6 9
9 3 9 9 9 9 9 1 9
9 9 7 5 9 9 9 8 9
9 9 9 9 9 9 2 9 9
9 9 8 9 7 9 4 9 9
9 9 3 9 6 9 9 9 9
9 1 9 9 9 2 8 9 9
9 4 9 9 9 9 9 2 9
9 5 9 1 9 9 9 4 9

Table 2.2: Sudoku instance after constraint propagation

specified branching strategy such that its corresponding domain
−→
D.x is reduced in size, that is

−→
D.x =

⊎k
j=1
−→
Dk.x. The traversal of a search tree is performed in the second component of the

search part, namely the tree exploration. Here the tree is traversed according to a given search
strategy like for example depth-first-search (DFS) and leads after the exploration of failures to a
first solution, which is represented in table 2.3

1 8 5 9 2 3 7 6 4
2 3 4 6 8 7 5 1 9
6 9 7 5 1 4 3 8 2
4 7 1 3 9 8 2 5 6
9 6 8 2 7 5 4 3 1
5 2 3 4 6 1 9 7 8
3 1 6 7 4 2 8 9 5
7 4 9 8 5 6 1 2 3
8 5 2 1 3 9 6 4 7

Table 2.3: Solution to the Sudoku-instance from 2.1

In this chapter we provided a brief introduction to the topic of constraint programming as ap-
plication area for this thesis. Moreover we set up basic definitions and notations the following
chapters will use. Now, we have seen a brief glimpse on how a given problem specification is
solved using the constraint programming paradigm. It uses the modeling and solution phases
divided into the interleaved processing of iterated inferences on partial domain information and
search. Consequently, we conclude that the representation of constraint variables in a constraint
solver is crucial to the tractability of a problem and to the efficiency concerned with the time
spent in falsifying the problem or finding a solution for it. In this context, tractability corre-
sponds to the question, whether the problem is representable in a constraint solver or not. Even
more, the variable representation is an important factor in constraint programming if we focus
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on constraint variables with larger domains like set variables. Therefore, the remaining chap-
ters of this thesis focus on domain approximations as variable representations and discuss the
questions of what domain approximations there are, how such a domain approximation can be
implemented and finally, how it interacts with propagators working those approximations.
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3 Approximating finite sets

As we have seen in the Sudoku example from chapter 2, the use of set variables for solving
a given problem in CP comes with the possibility of exponential domain sizes depending on
the universe of discourse the set variables range over. As a consequence, a crucial aspect of
constraint solvers supporting constraint programming with finite set variables is the availability
of variable representations that are able to cope with exponentially large finite set domains. Since
the previous chapter introduced the concept of domain approximations as a viable solution to the
variable representation problem for set variables, the first part of this chapter presents a survey
of existing domain approximations for the domain of finite set variables. Subsequently, we will
discuss implementations for two of the presented domain approximations.

3.1 Domain Approximations - A survey

The definition of a domain approximation A (see definition 7) in the previous chapter states that
there are two possible choices for A : Either Dom is approximated by a representative subset,
that is A ⊂ Dom, or we choose Dom itself as an approximation, that is A = Dom. At first we
take a closer look at approximations A forming a proper subset of Dom.

3.1.1 Interval Reasoning

As we will see in this section, the majority of domain approximations for the set variable do-
mains as presented in literature and used in most constraint solvers reasoning about set variables
exploit the same common principle of interval reasoning. Since we restricted our framework
to CP(FD) in section 2.1.1 it follows that the domain of a set variable x : D is an element of
the set Dom, in explicit D ∈ Dom = P (Val) = P (P (U)), where U ⊂ � is the finite universe
of discourse. In this context, the major insight of the above mentioned approximations is to
impose an ordering relation v on the set Val such that ∀D ∈ Dom : ∅ v D v Val, where v is
either a partial or a total order as stated in the following order-theoretical definitions according
to Gratzer[20]:

Definition 13 (Partial and total order). Let S be a set and v S a binary relation on S . Provided
the following properties

21
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P1 transitivity ∀x, y, z ∈ S : (x v y ∧ y v z)⇒ x v z
P2 reflexivity ∀x ∈ S : x v x
P3 antisymmetry ∀x, y ∈ S : (x v y ∧ y v x)⇒ x = y
P4 linearity ∀x, y ∈ S : a v b ∨ b v a

we call v a partial order if it satisfies properties P1, P2 and P3 and we call v a total order if it
satisfies P1, P3 and P4, where totality (P4) already implies reflexivity (P2).
Equipping S with v we call S a partially ordered set if v is a partial order and a totally ordered
set if v is a total order, written 〈S ,v〉.

Hence, by choosing a partial or a total order v on Val, Val becomes either a partially or a totally
ordered set respectively and we are able to define the lower and upper bound of a subset D ⊆ S
according to Davey and Priestley[11] and Gervet in [17, sec. 2.1] as:

Definition 14 (Lower and upper bound). Let 〈S ,v〉 be an ordered set and let D ⊆ S . If ∀d ∈ D :
x v d then we call x a lower bound of D, written x =↑ D. Similarly, if ∀d ∈ D : d v y then we
call y an upper bound of D, written y =↓ D.

The main result from this order-theoretical approach is the following: On the one hand we know
that we can establish at least a partial order on Val and on the other hand we know that due to
finiteness Val has a supremum and an infimum, namely ↑ Val = ∅ and ↓ Val = U. As this
argumentation carries over to the set Dom = P (Val) we also know that Dom is bounded by
↑ Dom = ∅ and ↓ Dom = Val. Consequently, it follows that for every non-empty finite subset
D ∈ Dom we are able to compute its greatest lower bound (infimum) and its least upper bound
(supremum) as presented in [11]:

Definition 15 (Infimum and supremum). Let 〈S ,v〉 be an ordered set and let D ⊆ S . If there
exists y ∈ S , such that y =↑ D and ∀s ∈ S : ((∀t ∈ D : s v t)⇔ s v y) then we call y the greatest
lower bound of D, written y = inf(D) or y = glb(D). Analogously, if x ∈ S , such that x =↓ D
and ∀s ∈ S : ((∀t ∈ D : t v s)⇔ x v s) then we call x the least upper bound of D, written
x = sup(D) or x = lub(D).

Using the above lattice- and order-theoretical definitions, we define an interval over an ordered
set 〈S ,v〉 as follows:

Definition 16 (Interval). Given a partially or totally ordered set 〈S ,v〉 and elements a, b ∈ S ,
we call the set

[a..b]v
def
= {s ∈ S | a v s v b}

interval from a to b. For the sake of simplicity we write [a..b] if it becomes clear from the context
what partially (totally) ordered set we focus on. Given an interval I = [a..b]v we abbreviate
bIc

def
= min(I) = a and dIe

def
= max(I) = b. Reasoning about an ordinary integer interval [a..b]<

we write I = min(I) = a and I = max(I) = b.
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Provided a partial or total order v we know that 〈Dom,v〉 and 〈Val,v〉 are at least partially
ordered sets. Thus, the domain approximations presented in this section fix a partial or total
order v and approximate a domain D ∈ Dom by the interval

[
inf(D).. sup(D)

]
v. More formally,

we define the convexity of a set T according to Hawkins et al.[22, sec. 2.1] as

Definition 17 (Convexity). Let L = 〈S ,v〉 be a partially (totally) ordered set. A subset T ⊆ S is
convex (with respect to v) if ∀t ∈ S : a v t ∧ t v b ⇒ t ∈ T. More precisely, T is convex if and
only if T forms an interval in S (see definition 16).

and notice that given a set variable x : D ∈ Var, the interval I =
[
inf(D).. sup(D)

]
v is ex-

actly the convex hull of D, that is I is the smallest convex subset of 〈Val,v〉 that contains D.
Hence, we can characterize the domain approximations focusing on interval reasoning as convex
approximations. The advantage of this approach is obvious: those approximations only need
to represent the two sets inf(D) and sup(D) in a constraint solver and are able to compute the
whole domain D. In the ensuing paragraphs we will discuss in detail how those convex domain
approximations define the ordering relation v and what approximate domains result from this
ordering.

Set Bounds

The state-of-the-art domain approximation for set variables in CP is the set bounds approxima-
tion

S
, first introduced in CP by Puget in [28] and described in full detail in the dissertation of

Gervet, [16, chp. 4]. In this context Gervet defines the approximation using the subset inclusion
relation (⊆) as partial order over Val, that is the partially ordered set 〈Val,⊆〉. Therefore, the set
bounds approximation

S
 of Dom is defined as:S
 def
=

{
d ∈ Dom | d convex with respect to ⊆

}
(3.1)

Given a set D ∈ Dom the greatest lower bound of D, inf(D), and the least upper bound of D,
sup(D), are computed via set intersection (∩) and set union (∪) respectively. Thus, a domain
D ∈ Dom is represented by its approximated domain E, such that:

E =
[
inf(D).. sup(D)

] def
=

⋂
d∈D

d..
⋃
d∈D

d

 (3.2)

Since by the above equation and by definition 16 we know that ∅ = [∅..∅], Val = [∅..U] and
Val 3 {u} = [{u} .. {u}] for all u ∈ U it consequently follows that

∀v ∈ {∅, Val} ∪ {D ∈ Val| |D| = 1} : v ∈
S

 (3.3)

Hence, by definition 7
S

is a domain approximation. Note however that, due to ⊆ being a
partial order, for a given domain D inf(D) and sup(D) are not necessarily elements of D itself as
it is the case for the sets mentioned in equation (3.3).
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Cardinality Information Most constraint solvers using
S

as domain approximation for set
variables like Conjunto [15], Mozart [40], Gecode [39], ILOG [1], ECLiPSe [42] and Cardinal
[5] use a more fine-grained instance of the above set bounds approximation including some
extra cardinality information as stated in [16]. In this case, a given domain D ∈ Dom of a
set variable x : D is not only represented by an approximate domain E ∈

S
 but is also

equipped with an additional integer interval [l..r] ⊂ � approximating the set of cardinalities
C = {c ∈ {0, . . . , |U|} | ∃d ∈ D : c = |d|}, where [l..r] = [mind∈D{|d|}..maxd∈D{|d|}]. Hence, we
can define the cardinality set bounds approximation

C
 asC

r
l

def
=

S
 ∩ {

s ∈
S

 | |bsc| ≥ l ∧ |dse| ≤ r
}

Thus, the proper set bounds approximation
S

 can be expressed in terms of the cardinality

set bounds approximation as
S

 = C
|U|

0 . The obvious gain from this more fine-grained
representation of the set bounds approximation is the possibility to restrict

C
 to subsets ofS

.

Example 1. Consider a set variable x : D = [∅.. [1..4]] whose elements are restricted to have
at least cardinality 2 and at most cardinality 3, that is 2 ≤ |x| ≤ 3. Then the Hesse diagram
in figure 3.1 gives us a graphical representation of all values in D with respect to cardinality
restrictions, where an edge e(v1, v2) connects to vertices if v1 ⊆ v2:

Lower bound |x| ≥ 2

Upper bound |x| ≤ 3

{}

{1} {2} {3} {4}

{1,2} {1,3} {1,4} {2,3} {2,4} {3,4}

{1,2,3} {1,2,4} {1,3,4} {2,3,4}

{1,2,3,4}

Figure 3.1: Partial order 〈P ({1, . . . , 4}) ,⊆〉 restricted to cardinality [2, 3].
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Main Advantage The reason why the set bounds approximation is predominant in current
constraint solvers is the way it is defined. In contrast to the other convex approximations we
come across in this section the set bounds interval [a..b]⊆ guarantees the following implication.
Consider a set variable x : D. For all variable assignment α ∈ Asn and the set bounds interval
E =

[
inf(D).. sup(D)

]
⊆ we obtain the following implications according to the extension-property

(C1) Gervet identifies in [16, sect.4.2.3 p.45]:

∀v ∈ bEc ⇒ v ∈ α(x) (3.4)

∀v < dEe ⇒ v < α(x) (3.5)

Hence, the set bEc = inf(D) denotes the set of all values definitively belonging to the final
value α(x) assigned to the variable (see [18]). Contrarily, values that do not belong to the set
dEe = sup(D) cannot be part of the value α(x) assigned to the variable. Thus, by representing the
approximate domain D of a set variable x : D, the set bounds approximation

S
 guarantees that

we already obtain a a partial variable assignment for x just by keeping track of the two interval
bounds bEc and dEe.

Lexicographic Bounds

Apart from the set bounds and the cardinality set bounds approximation that rely on a partial
order on the set Val there is another convex domain approximation for set domains, namely the
lexicographic bounds approximation

L
as presented by Sadler and Gervet in [30]. In contrast

to the set bounds approximations
S

and
C

that based on the partial subset inclusion order (⊆)
the lexicographic bounds approximation uses the following lexicographic order � as formalized
in [30, chap. 4]:

Definition 18 (Lexicographic ordering). Let x, y ∈ Dom, x = max(x) and y = max(y). Then

x � y
def
= x = ∅ ∨ x < y ∨ (x = y ∧ (x \ {x}) � (y \ {y}))

Since the lexicographic order � on the set Val is a total order and thus yields a totally ordered
set 〈Val,�〉 we define the

L
similarly to the set bounds definition above asL

 def
=

{
d ∈ Dom | d convex with respect to �

}
(3.6)

Since the lexicographic order � imposes a total order on Val the values of a given domain
D ∈ Dom form a finite chain ordered by �. Hence, the infimum and the supremum for D are
themselves contained in D and consequently denote the minimum and the maximum of the chain
represented by D. Since minimum and maximum of D with respect to � are defined via the lower
and upper bound of D we obtain the following approximate domain E for D:

E =
[
inf(D).. sup(D)

]
= [min(D)..max(D)] def

= [↑ D.. ↓ D] (3.7)
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Drawback Though this lexicographic approximation yields totally ordered approximate do-
mains for the set variable domains the major drawback of this domain approximation consists
in the fact that the implications from equations (3.4) and (3.5) do not hold anymore for

L
.

Consider a set variable x : D, with domain D ∈ Dom and a variable assignment α ∈ Asn for x.
Approximating D by E as defined in (3.6) still bEc � α(x) and α(x) � dEe hold, but in contrast
to the set bounds approximation not all the values in the set bEc necessarily belong to the set
α(x) assigned to the variable. Compared to the set bounds approximation

S
, a further draw-

back of this approximation is a loss of cardinality information. Assume that we approximate a
domain D ∈ Dom with a set bounds interval F = [a..b]⊆ and a lexicographic bounds interval
E = [a..b]�. Whilst for F it follows that ∀v ∈ F : |bFc| ≤ |v| ≤ |dFe| the lexicographic interval
E may contain sets that are even smaller than bEc. However we have to underline that

L
was

originally designed to be used as a hybrid domain together with a set bounds interval and these
drawbacks only appear if we only consider

L
as domain approximation without further set

bounds or cardinality information.

Cardinality Information As an approach to obtain a lexicographic domain approximation
that is able to cope with cardinality information without the support of an additional set bounds
interval Gervet and Hentenryck formalize in [19] a domain approximation that is convex with
respect to a length-lex ordering� they define as follows:

Definition 19 (Length-lex ordering). Let x, y ∈ Dom, x = min(x) and y = min(y). Then

x � y⇔ x = ∅ ∨ |x| < |y| ∨
(
|x| = |y| ∧

(
x < y ∨ x = y ∧ x \ x � y \ y

))
Like the lexicographic order �, the length-lex order also imposes a total order on the set Val.
Hence we define the length-lexicographic bounds approximation

LL
asLL

 def
=

{
d ∈ Dom | d convex with respect to �

}
(3.8)

Although the length-lex order (�) is a more fine-grained approach to the lexicographic order,
that is

LL
 ⊆ L

 and although it avoids the loss of cardinality information by including the
cardinality of the compared sets into the order, it still does not satisfy the implications for the set
bounds approximations (compare equations (3.4-3.5)).

3.1.2 Characteristic function encoding

Apart from these convex approximations A ∈
{S

 , C
 , L

 , LL
} where the domain ap-

proximation A is chosen such that A ⊂ Dom we also consider the full approximation
F

which
we obtain by choosing

F
 = Dom. Since from theorem 1 in [30, chap. 4] it follows thatS

 ⊆ L
 there is the following relation between the convex approximations and the full

domain approximation: C
 ⊆ S

 ⊆ LL
 ⊆ L

 ⊆ F
 (3.9)
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From the previous section we know that convex approximations are able to represent domains
D ∈ Dom by smaller approximate domains DA , namely convex intervals I = [a..b]v with respect
to a partial or total order v and consequently only need to keep track of the interval bounds bIc
and dIe in a constraint solver. Contrarily, the full domain approximation has to represent the
complete variable domain D ∈ Dom of a set variable x : D in a constraint solver. Hence, if a
set variable’s domain D ∈ Dom has exponential size, so does the approximate domain F = D
and consequently, a representation of

F
 in a constraint solver has to keep track of possibly

exponentially many values v ∈ F. Therefore
F

 exploits the fact, that we can represent a set
D by its characteristic function χD as Hawkins et al. underline in [22, sect. 1] and Gervet states
in [17], such that

χD : U → �, χD(v) =

1 if v ∈ D
0 else

Moreover, since D ∈ Dom we also can encode all values v ∈ D by their respective characteristic
functions χv. Comparing the convex domain approximations as presented in section 3.1.1 and
the full domain approximation as presented in section 3.1.2 we conclude that, provided a set
variable x : D with respective domain D ∈ Dom with approximate domain E, the only deter-
mining factor for the efficiency of the convex approximations consists in the representation of
the bounds bEc and dEe, whereas the efficiency of the full domain approximation comes with
an efficient representation of the characteristic function χD of D. For instance, we will see an
implementation based on reduced ordered binary decision diagrams in section 3.2.3.

Conclusion In this section we presented a survey of domain approximations based on ei-
ther a convex or on a complete bounds reasoning. Moreover we noticed, that not all domain
approximations are consistent in the strong sense, that they meet Gervet’s extension-properties
stated in equations (3.4) and (3.5). However, introducing a convex and a complete domain ap-
proximation is exactly what adds different consistency notions to the constraint solver, namely,
set bounds(A)-consistency and the notion of domain consistency. Analogously to Schulte and
Stuckey in [34, sect. 2.2-2.3] we define these notions as follows:

Definition 20 (Bounds(A)-consistency). Let x : D ∈ Var be a set variable, A a domain approx-
imation, 〈A ,v〉 a partially or totally ordered set and E ∈ A an approximate domain for D. If for
a given constraint c the equation

∀α ∈ c : α ∈ E def
=

[
inf(D).. sup(D)

]
v =

⋂
α∈c

α(x)..
⋃
α∈c

α(x)


holds, such that inf(D) is the intersection of all possible assignments α(x) for x and sup(D) is
the union of all possible assignments α(x) for x, we say that E is bounds(A)-consistent, written
bcA (E). Let

−→
D ∈ An denote a tuple of initial approximate domains for a propagator p : An →

An. If the equation

∀x ∈ Var : bcA

(
p
(
−→
D
)
.x
)
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holds, we say that p is bounds(A)-consistent, written bcA (p).

Remark 4 (Strength of bounds(A)-consistency). Note however, that approximate domains D ∈S
 or D ∈

C
 have a higher degree of consistency than approximate domains from other con-

vex approximations presented above, because
S

 and
C

 are per definition the only convex
domain approximations satisfying Gervet’s extension-properties.

Definition 21 (Domain consistency). Let x : D ∈ Var be a set variable. We say that D is
domain-consistent for a constraint c, written dc (D) if

D =
⋃
α∈c

α(x) ∩ D

that is D is the least set containing all values for x that are consistent with c. Let
−→
D ∈ An be

initial domains for a given propagator p : An → An. If the equation

∀x ∈ Var : dc
(
p(
−→
D).x

)
holds, we say that p is domain-consistent, written dc (p).

Remark 5 (Domain consistency). Obviously, the only domain-consistent approximation we dis-
cussed is the approximation

F
. Hence, we conclude that only propagators p :

F
 → F


can be domain-consistent.

3.2 Implementing domain approximations

Over the course of the next two sections we discuss the implementation of the cardinality set
bounds approximation

C
 as provided in the Gecode -library [39] and the implementation for

the full domain approximation
F

as proposed by Hawkins et al. in [22, 21] and Lagoon and
Stuckey in [24] using the Gecode -framework. In section 2.2.1 we defined propagators as func-
tions from tuples of approximate domains to tuples of approximate domains. These tuples are
in turn composed of variable views as explained in section 7. Moreover, these views depend
on propagation services as coined by Schulte and Carlsson in [32], where the term of propaga-
tion services implies update and lookup operations on the underlying domain representation as
well as the detection of inconsistent domains. As the operational semantics of propagators are
based on the current domain information, domain lookup especially comprises iterating over a
set variable’s domain as formalized by Schulte and Tack in [35, sect. 5], that is access the very
elements of a domain. As a consequence the efficiency of a propagator operating on set variables
and hence the efficiency of the related constraint solver clearly depend on the time needed to per-
form domain update and domain lookup operations. Taking a closer look on these operations a
set variable domain has to provide, the subsequent paragraphs discuss the representation of the
different approximate domains as implemented in the Gecode constraint library.
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3.2.1 Cardinality set bounds representation
C


According to section 3.1.1 the major issue concerning the implementation of the cardinality
subset bounds domain approximation

C
is the representation of the lower and upper set bounds

bIc and dIe of the interval I = [a..b] approximating the domain D of a set variable x : D ∈ Var.
As Gervet points out in [18] there are numerous ways of implementing those bounds either using
sorted lists representing the values of those bounds or arrays of integer variables v : D restricted
to Boolean domains D ⊆ � or bitmaps encoding the respective characteristic functions of the
sets bIc and dIe.

Single set representation The Gecode -library we are using as practical framework repre-
sents a finite set T ⊂ U ⊂ � using so-called range sequences as defined by Schulte and Carlsson
in [32, sect.2.2] and by Schulte and Tack in [35] as follows:

Definition 22 (Range sequence). Given a finite set T ⊂ U ⊂ �, a range sequence is the shortest
sequence s = {[n1..m1] , . . . , [nk..mk]} such that T =

⋃k
i=1 [ni..mi].

Clearly, the definition of a range sequence implies that a range sequence s for a given finite set
T ⊂ U is a partition of T into disjoint maximal intervals si ∈ s. The underlying data structure
for a range sequence in Gecode consists in a doubly-linked list, where a list item corresponds
to a maximal interval si ∈ s. Considering a range sequence s of length |s| = n, each item
sk ∈ s, k ∈ {1, . . . , n − 1} maintains a pointer to the preceding item sk−1 (prev) and a pointer to
its succeeding item sk+1(next). The list items s0 and sn maintain a pointer to their immediate
successor or predecessor respectively and are marked by a first (s0) and a last pointer (sn)
such that the interval bounds of s0, s0 and s0, as well as the interval bounds of sn, sn and sn, can
be accessed in constant time O (1).
Additionally, the list maintains a counter size summing up the cardinalities of all its items,
such that the set size |s| = n can also be queried in constant time O (1). Keeping in mind the
doubly-linked list representation of a range sequence s we also refer to s as range-list and write
RL (T ) for the range-list r = RL (T ) representing the set T .

Example 2 (A simple range-list). Consider the set T = {−10,−4,−3, 1, 4, 7, 14, 19}. The corre-
sponding range sequence s = RL (T ) for the set T is s = {[−10.. − 4], [−3..1], [4..7], [14..19]}.
The respective range-list constructed from s is depicted in figure 3.2.

Interval representation Provided the range-list representation of a single finite set T de-
scribed in the previous paragraph the data structure for the approximate cardinality set bounds
domain E ∈

C
 of a set variable x : E is consequently assembled by a tuple

S V(x) = 〈glb, lub, C = [l..r]〉

where glb and lub are two range lists denoting the greatest lower bound bEc and dEe respec-
tively and an additional integer interval C = [l..r] restricting the cardinality of the domain such
that C = l ≤ |bEc| and |dEe| ≤ C = r.
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[−10..− 4] [−3..1] [4..7] [14..19]

next

prev

next

prev

next

prev

Figure 3.2: range-list representing {−10,−4,−3, 1, 4, 7, 14, 19}

Example 3. Consider a set variable x : E [{4, 5}..{1, 2, 4, 5, 7, 8, 9}]. The corresponding set
variable representation S V(x) = 〈{[4..5]}, {[1..2] , [4..5] , [7..9]}, [2, 6]〉 is shown in figure 3.4.

Lub [1..2] [4..5] [7..9]

next

prev

next

prev

Glb
[4..5]

Figure 3.3: Representing set variable x : E = [{4, 5}..{1, 2, 4, 5, 7, 8, 9}]

In the following paragraphs we discuss the propagation services that the representation S V(x)
of a set variable x : E with corresponding approximate domain E ∈

C
 is supposed to provide.

Domain lookup Concerning domain lookup operations on S V(x), that is accessing informa-
tion provided by the underlying data structure, we can obviously query the size of the bounds
|bEc|,|dEe| as well as their smallest and largest elements in constant time O (1). Moreover,
the computation for the size of the set difference

∣∣∣∣∆ def
= bEc \ dEe

∣∣∣∣, accessing cardinality restric-

tions for the set variable C, C as well as checking whether the variable x is assigned are also
constant time operations, where testing for x being assigned is performed by testing whether
|E| = 1 which is exactly the case if bEc and dEe coincide, that is if |bEc| = |dEe| holds since
bEc ⊆ dEe.However, testing whether a value v ∈ � definitively belongs to the domain of x
(v ∈ bEc, compare (3.4)) or is definitively excluded from the variables domain (x < dEe, com-
pare (3.5)) clearly depend on the size of the bounds, that isO (|bEc|) for the former andO (|dEe|)
for the latter case. Finally, the iterator operations needed to iterate over bEc and dEe as presented
in the range-iterator architecture introduced in [35], namely testing whether we have already it-
erated the whole list (referred to as done) and following one item in the range-list to its successor
(referred to as incr) are performed in O (1).
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Domain update Reconsidering the process from the model of a constraint problem to its
solution as sketched in chapter 2 domain update operations on S V(x) are the result of domain
modifications either caused by constraint propagation or by branching. More explicitly, domain
update operations are performed by basic constraints as highlighted by Schulte in [31, chap.
2.1], where we denote the approximate domain resulting from updating E =

[
glb..lub

]
as F =[

glb′..lub′
]
. Assuming a finite set G ∈ U we focus on G ⊆ x and x ⊆ G as basic set constraints.

According to Gervet [16, chap.4.2.4] we compute G ⊆ x as bE′c def
= bEc ∪G and x ⊆ G as dE′e def

=

dEe∩G. These updates are in turn computed using the range iterator architecture as proposed by
Schulte and Tack in [35]. Obviously, the worst case for these updates occurs in case |RL (G)| > 1.
In this case, the update of glb = RL (bEc) is essentially achieved by setting glb′ to glb′ =
RL (bEc) ∪ RL (G) where the time needed to perform this update is O (|RL (bEc)| + |RL (G)|) if
bEc ‖ G, that is bEc and G are disjoint. Updating lub to lub′, such that lub′ = RL (dEe) ∩ RL (G)
is performed in at most O (|RL (dEe)| + |RL (G)|), where the worst case can for example occur
if we have that dEe ‖ G and additionally either min(E) ≤ min(G) ∧ max(G) ≤ max(E) or
min(G) ≤ min(E) ∧ max(E) ≤ max(G). However, we note that in case |RL (G)| = 1 the time
needed to update glb already shrinks to O (|RL (bEc)|). Similarly the worst case complexity for
the update of lub decreases to O (|RL (dEe)|).

Caveat Though the just mentioned worst case complexity is not affected the chosen represen-
tation of two separate bounds glb = RL (bEc) and lub = RL (dEe) where bEc ⊆ dEe leads to
the following caveat concerning domain update operations: in addition to the update operations
G ⊂ x and x ⊂ G we always have to assert that the updated bounds bE′c and dE′e still satisfy
the partial order that bE′c ⊆ dEe or bEc ⊆ dE′e, that is whether values to be included in bEc are
allowed by dEe and that values to be excluded from dEe are not required by bEc. In terms of
complexity, each update operation requires additional time o (|RL (bEc)| + |RL (dEe)|) which can
immediately decrease to o (|RL (dEe)|) in case that either |RL (bEc)| = 1 or |RL (bEc′)| = 1.

3.2.2 Disjoint bounds

An implementation avoiding the subset test issue mentioned in section 3.2.1 can be found in the
set variable implementation of Cardinal [6] which, given an approximate domain E ∈

C
 as

state above, represents S V(x) using the sets bEc and ∆ def
= dEe \ bEc instead of representing bEc

and dEe as explained in the previous section. For the remainder of this section we refer to this
representation as disjoint bounds representation abbreviated as DB representation in contrast
to the included bounds representation abbreviated as IB representation, where IB refers to the
representation we discussed above involving bEc and dEe. However, from [6] it does not become
clear, whether the underlying data structure for the representation of the set bounds builds upon
sorted value lists, some bitmaps or bit vectors or even something similar to the range-list data
structure as introduced in the previous section. Another alternative presented by Gervet and
Hentenryck in [19] exploits the finiteness of the universe in discourse, U ⊂ �, and represents
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Operations IB representation DB representation
Domain lookup

best case worst case best case worst case
|bEc|,|dEe|,|dEe \ bEc| O (1) O (1)
min(bEc),max(bEc) O (1) O (1)
min(dEe),max(dEe) O (1) O (1) O (|dEe|)
l ≤ |x|,|x| ≤ r O (1) O (1)
|bEc| = |dEe|? O (1) O (1)
v ∈ bEc O (1) O (|bEc|) O (1) O (|dEe|)
v ∈ dEe O (1) O (|dEe|) O (1) O (|dEe|)
RL(bEc).incr() O (1) O (1) O (|dEe|)
RL(dEe).incr() O (1) O (1) O (|dEe|)

Domain update
best case worst case best case worst case

bFc def
= bEc ∪G O (1) O (|bEc| + |RL(G)| + |dEe|) O (1) O (|dEe|)

dFe def
= dEe ∩G O (1) O (|dEe| + |RL(G)| + |dEe|) O (1) O (|dEe|)

Table 3.1: Comparison complexities domain lookup and update for IB and DB

the set variable domain using bEc and R def
= dEe = U \ dEe. We refer to this latter approach as the

complement bounds representation which we abbreviate as CB representation. Since one task of
this thesis was to investigate whether the IB approach 3.2.1 used in Gecode can be optimized by
changing the variable representation we discuss in this section the differences between IB and
DB , which has been implemented in Gecode and compared to the current IB representation. In
contrast to the IB representation (see 3.2.1) we now represent the approximate domain E ∈

C


of a set variable x : E by a tuple

S V(x) = 〈cdb, C = [l..r]〉

where cdb is a single range-list denoting the disjunctive union bEc ] ∆, where ∆ def
= dEe \ bEc,

that is the lower interval bound bEc is only represented once and the union of bEc and ∆ again
yields the upper interval bound dEe = bEc ∪ ∆. Additionally, the implementation of cdb uses a
range-lists, where each interval contains an additional flag inglb, denoting, whether the range
[ni..mi] in the list belongs to the lower bound bEc or to the upper bound dEe. Obviously, the
change of the representation comes along with a relaxation of the range sequence definition (see
definition 22) as a range-list or a range sequence is not necessarily of minimal size if it encodes
both, the lower and the upper interval bound as clarified in the following example:

Example 4. Consider the set variable x : E [{4, 5}..{1, 2, 3, 4, 5, 6, 7, 8, 9}]. The corresponding
set variable representation using the DB representation is S V(x) = 〈{[1..3] , [4..5] , [6..9]}, [2, 6]〉
is shown in figure 3.4.
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CDR [1..3] [4..5] [6..9]

next

prev

next

prev

Figure 3.4: Representing set variable x : E = [{4, 5}..{1, 2, 3, 4, 5, 6, 7, 8, 9}]. The gray-colored
item denotes bEc and the non-colored items denote dEe

Domain lookup Taking a glance at the domain lookup operations on S V(x), that is accessing
information provided by the underlying data structure, we still can query the size of the bounds∣∣∣glb

∣∣∣,|lub| def
=

∣∣∣glb
∣∣∣+ |∆| in constant timeO (1). As we fixed the lookup algorithms to start with the

first item in the list cdr querying for the smallest and largest elements of dEe is still a constant
time operation. Finding the smallest and largest element of the lower bound, bEc, however has
a worst case of O (|RL (dEe)| − 1). As for the computation of the size of the set difference |∆|
this is a straightforward constant time operation as S V(x) keeps track of |bEc| and |∆|. Moreover,
accessing cardinality restrictions for the set variable C, C as well as checking whether the variable
x is assigned are still constant time operations, where testing for x being assigned is performed
by testing whether |∆| = 0 which is exactly the case if bEc and dEe coincide. However, testing
whether a value v ∈ � definitively belongs to the domain of x (v ∈ glb, compare (3.4)) or is
definitively excluded from the variables domain (x < lub, compare (3.5)) clearly depend on the
size of the bounds, that isO (|cdb|) for the former and also for the latter case. Finally, the iterator
operations needed to iterate over lub, namely testing whether have already iterated the whole list
(referred to as done) and following one item in the range-list to its successor (referred to as
incr) are performed in O (1). Iterating over glb however the test whether iteration has finished
as well as the increment operation for the iterator are in O (|cdb|).

Domain update Analogously to section 3.2.1 we denote the approximate domain resulting
from updating E =

[
glb..∆

]
as F =

[
glb′..∆′

]
and we focus on the same basic constraints.

Obviously, the worst case for these updates occurs in case |RL (G)| > 1. In this case, the update
of glb = RL (bEc) is essentially achieved by setting glb′ to glb′ = RL (bEc) ∪ RL (G) where
the time needed to perform this update is O (|RL (dEe)| + |RL (G)|), where every value to be
included in the lower bound has to be an element of ∆. Updating lub to lub′, such that lub′ =
RL (dEe) ∩ RL (G) is computed in at most O (|RL (dEe)| + |RL (G)|). But as recently noticed, we
can check in constant time O (1), whether G ⊂ bEc or not and if so only need to compute the
intersection with intervals contained in dEe, where iteration skips items in bEc in constant time.
Thus, we obtain a worst case complexity ofO (|RL (∆)|) = O (|RL (dEe)|). However, we note that
in case |RL (G)| = 1 the time needed to update glb already shrinks to O (|RL (dEe)|). Similarly
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the worst case complexity for the update of lub decreases to O (|RL (dEe)|).

Caveat The change from IB to DB representation comes along with a loss of constant time
operations among the provided domain lookup operations as we can see in table 3.1. Moreover,
we spend clearly more time on domain iteration than in the IB case. This will become clear from
the evaluation of those two implementations in section 6.4.

3.2.3 Full domain representation
F


The main principle behind the full domain approximation

F
 consists in the equivalence of a

domain D and its characteristic function χD as underlined in section 3.1.2. In the remainder of
this section we discuss the approach formulated by Lagoon and Stuckey in [24] to use reduced
and ordered binary decision diagrams as abstract representation of a set variable domain. Hence,
we first of all make a digression to the area of binary decision diagrams.

Binary Decision Diagrams

Recapitulating the notion of a binary decision diagram we provide a definition as presented by
Bryant in [10]:

Definition 23 (Binary Decision Diagram (BDD)). A binary decision diagram (BDD) represents
a Boolean function by a directed acyclic graph

−→
G := 〈V, E ⊆ V × V〉 with one vertex r ∈ V

called root that has only two outgoing edges such that all vertices v ∈ S ⊂ V \ {r} that have
no outgoing edge are labeled with 0 (⊥) or 1(>) and all vertices v ∈ V \ S are labeled with a
Boolean variable xv having exactly two outgoing edges e1 = (v, t) and e2 = (v, f ) labeled with 1
and 0 respectively. We will refer to the latter vertices as internal vertices, written v = (xv, t, f ).
Note that for the remainder of this section edges labeled with 1 are depicted using solid edges
and edges labeled with 0 are represented by dashed edges.

A path p from the root node r to a vertex v ∈ S determines a variable assignment for the
Boolean variables along the path, such that the function value for the assignment on the path p
is represented in the node v. Furthermore, we call a BDD b is reduced according to Hawkins
et al.[22, chap 2.4] if there are no identical nodes. Let BV denote the set of Boolean variables
the nodes v ∈ VS use as label set. Then a BDD b is ordered with respect to a given variable
order �⊆ BV × BV if ∀v1, v2 ∈ BV : (∃e = (v1, v2)) ⇔ v1 � v2. Given a reduced and ordered
binary decision diagram b Bryant[10] and Hawkins et al.[22] state that b is a canonical function
representation up to reordering of BV .

Single set representation In order to represent a finite set T ⊂ U ⊂ �, |T | = n using
the ROBDD-based approach by Hawkins et al., T is associated with a vector v of Boolean
variables. Each Boolean variable vi,i ∈ {l = min(T ) − min(T ), . . . , r = max(T ) − min(T )}
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represents an element of the set T such that we obtain a Boolean variable vi for every value
v ∈ [min(T )..max(T )]. Following Hawkins et al. the caracteristic function of the set models
yields an assignment for the Boolean variables such that

(
χT (v) = 1⇔ v ∈ D⇔ xv−min(T ) = 1

)
∧(

χT (v) = 0⇔ v < D⇔ xv−min(T ) = 0
)
. Thus we can represent the set T by the following Boolean

formula Γ[22, chap. 3.1]:

Γ
def
=

n−1∧
i=0

=

xv−min(T ) if v ∈ T
¬xv−min(T ) else

Example 5 (A single set). Consider the set T = {1, 3, 5}. The corresponding Boolean vector
b = 〈v0, . . . , v4〉 together with the characteristic function χT yields the formula Γ = v0 ∧ ¬v1 ∧

v2 ∧ ¬v3 ∧ v4 which is represented by the ROBDD in figure 3.5.

0 1

0

1

2

3

4

Figure 3.5: ROBDD for set {1,3,5}

Domain representation Apparently an approximate domain E ∈
F

 of a set variable x : E
denotes the set of all sets e ∈ Val = P (U) the variable x can take. As stated in [22, sect. 3.1]
E is consequently captured as disjunction of the corresponding formulae for all e ∈ E. Thus, we
obtain the following data structure for a set variable x:

S V(x) = 〈v def
= 〈v0, . . . , vmax(dEe)−min(dEe)〉, domain〉

where v denotes the vector of Boolean variables for all elements e ∈ [min(dEe)..max(dEe)] and
domain represents a ROBDD over the Boolean variables contained in v reflecting the current
domain of the variable x.



36 3 Approximating finite sets

Modeling Advantage The major gain from the ROBDD presentation as developed by Hawkins
et al. in [22] is the fact, that the ROBDD representation is able to encode any Boolean function.
As we are not only able to model the domains of set variables as functions over Boolean for-
mulae using the respective characteristic functions of the domains but also to model constraints
themselves as Boolean formulae, constraints can be encoded as ROBDDs. Consequently, the
complexity of domain lookup and domain update operations are uniquely determined by the
complexity of ROBDD operations as every operation can be expressed in terms of a conjunc-
tion of logical formulae. As highlighted in [22, chap. 2.5] for two ROBDDs R1 and R2, the
worst case complexity for an operation R1 � R2, such that � ∈ {∧,∨,⇔} are O (|R1| · |R2|), where
|Ri| denotes the number of vertices in the ROBDD Ri. Negating an ROBDD R has linear worst
case complexity O (|R|) in the size of the ROBDD and existential quantification ∃v.R has even a
quadratic worst case complexity O

(∣∣∣R2
∣∣∣). However, the test whether R1 and R2 are equivalent,

that is R1 ⇔ R2, can be done in O (1).

Order Issue Obviously, the above listed complexities all depend on the size of a single
ROBDD or of two ROBBDs. However, as Bryant puts it in [10], the “form and size of the
[R]OBDD representing a function depends on the variable ordering”(sic) which was the re-
quirement for an ROBDD to be ordered (compare sec. 3.2.3). The same fact is underlined by
Stuckey et. al. in [22]. First they assume that we are given a set of set variables V = {v1, . . . , vm}

with associated vectors of Boolean variables 〈vi,1, . . . , vi,N〉, where i ∈ {1, . . . ,m} and N def
= |U|.

Then they fix the variable order (≺) for as

v1,1 ≺ v1,m ≺ v1,2 ≺ · · · ≺ v1,N ≺ · · · ≺ vm,N

. This order guarantees a linear representation for the ROBDDS resulting from the propagation
of certain constraints [24] hence classify as primitive except constraints restricting the cardinality
of the set variable x which is also directly encoded into domain in terms of an ROBDD.

Domain lookup Concerning domain lookup operations on S V(x) for a set variable x : E, that
is accessing information provided by the underlying data structure, we can query the size of the
bounds |bEc|,|dEe| as well as their smallest and largest elements in time proportional to the size of
the ROBDD domain, O (|domain|). Similarly, the computation for the size of the set difference∣∣∣∣∆ def
= lub \ glb

∣∣∣∣, accessing cardinality restrictions for the set variable C, C as well as checking
whether the variable x is assigned depend also on the size of the represented ROBDD domain
operations, where testing for x being assigned is performed by testing whether there is only one
path p in the ROBDD domain, such that all Boolean variables from the associated vector b are
contained on p. However, testing whether a value v ∈ � definitively belongs to the domain of x
(domain ∧ ¬v ⇔ ⊥) or is definitively excluded from the variables domain (domain ∧ v ⇔ ⊥)
clearly depend on the size of the represented ROBDD domain, O (|domain|).



4 Cross-domain propagation using variable
views

I     ,     ,       
              .

— A

Based on Benhamou’s work in [9] chapter 2 introduced a formal model of domain approxi-
mations as appropriate representations for domains of finite domain variables in a constraint
solver. Applying this framework, we furthermore surveyed existing set variable representations
as suggested in literature (see chap. 3) and the theories behind them. Recalling the possible
implementations for the cardinality set bounds approximation

C
 and the full domain approx-

imation
F

 we sketched in the previous section (compare sec. 3.2) this chapter discusses how
the propagation services offered by the implemented domain approximations are made available
for the propagators requiring them through the concept of variable views as introduced in [35],
which we simply refer to as views.

4.1 Abstraction through encapsulation

As the figure 4.1 clarifies, the notion of a view in our framework is twofold. Assume that we
are encoding a problem into a CSP whose specification involves some set variable x : D, that
is D ∈ Dom. On the one hand we use a view VDom→A as an adaptor (see def. 8) to map
the domain D to an approximate domain VDom→A(D) = E ∈ A, where E is encapsulated in
the domain implementation ImpA in the constraint solver. Hence, a view VDom→A is used as
mapping prescribing the internal representation of a set variable’s domain. Apart from mapping a
domain to its internal representation we further exploit the adaptor functionality of a view VA→B

in order to forward the propagation services from the implementation ImpA to a propagator
pB : Bn → Bn by providing an interface F = VA→B(E) to pB. According to [35, sect.3] the
simplest example for views is the identity-view Vid

def
= VA→A obtained by instantiating the view

B in the above figure 4.1 to A forwarding propagation services from a domain E = VDom→A(D)
to a propagator pA reasoning over the same domain approximation A through the propagation
interface F = VA→A(E). Recapitulating the definition of a domain approximation as presented
in chapter 3.1 we conclude that, provided domain approximations A, B ⊆ Dom, we obtain the
appropriate view ΓB : A → B mapping a domain D ∈ A to an approximate domain E ∈ B by

37
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D ∈ Dom

VDom→A

ImpA

VA→B

Prop. interface for B

Propagator p : Bn
→ Bn

Figure 4.1: Views as propagation interface

choosing B as follows:

B =
S

 ΓS
(D) def

=

⋂
d∈D

d..
⋃
d∈D

d


⊆

(4.1)

B =
C

r
l ΓC

r
l
(D) def
= ΓS

(D) ∩
{
s ∈

S
 | l ≤ |bsc| ∧ |dse| ≤ r

}
(4.2)

B =
L

 ΓL
(D) def

= [↑ D.. ↓ D]� (4.3)

B =
LL

 ΓLL
(D) def

= [↑ D.. ↓ D]� (4.4)

B =
F

 ΓF
(D) def

= D (4.5)

where the view ΓS
 in equation (4.1) is exactly the convex closure operator as defined in [16,

Def. 38]. Concluding, this paragraph indicates how variable views are used as propagation in-
terface, abstracting the set variable domains to approximate domains as presented in chapter 3.
Thus the presence of views in the architecture of a constraint solver not only enables us to change
the underlying implementation of a domain representation without altering the propagation al-
gorithm, but also compensates missing propagators p : Bn → Bn for a domain approximation B
by adapting the propagation interface from VB→B to VB→A to fit another propagator p : An → An
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p8

:C

9

;

p8

:F

9

;

Imp8

:C

9

;

Imp8

:F

9

;

x : D, D ∈ Dom

Vid Vid

Γ8

:C

9

;

Γ8

:F

9

;

Γ8

:C

9

;

β8

:C

9

;

Figure 4.2: Integrating
C

 and
F

 in a constraint solver with views

serving as replacement. Hence, “variable views [clearly] yield a higher level of propagator ab-
straction” as Schulte and Tack state in [35].

4.2 One interface to integrate them all

Consequently the main advantage emerging from variable views consists in the possibilty of
integrating different levels of consistency, that is different domain approximations, into one
constraint solver. Consider the finite set component of the Gecode library following the basic
scheme as shown on the left-hand side of figure 4.2, where we fix a standard domain repre-
sentation, namely

C
, as set variable representation (see section 3.2) and define propagators

p :
C

n
→

C
n

working on this approximation through identity views Vid ∈
C

 → C
.

Consequently, the Gecode component for finite set variables is bounds(
C

) − consistent in the
strong sense (compare section 3.1.2). If we focus on the other hand on the finite set component
of the constraint solver based on the full domain approximation using ROBDDs as proposed
by Hawkins et al. in [22] the right-hand side of figure 4.2 explains that we can basically
model the ROBDD-based finite set component of their constraint solver using the full domain
approximation

F
 as representation, where identity views Vid ∈

F
 → F

 provide the
propagation services for propagators p :

F
n
→

F
n

working on this representation. Hence,
the ROBDD-approach yields a domain-consistent representation of set variables in our setting.
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Obviously, an implementation of both approaches in a single constraint solver would simply
coexist without any further integration into the system. However, using the Gecode framework
for our implementation enables us to use the above discussed views forming one of the integral
architectural components of the Gecode library.

4.2.1 Crossing borders of consistency

As a consequence we are able to apply the view ΓC
 to an approximate domain F ∈

F
 of a

set variable x encoded in ImpF
 and obtain a bounds(

C
)-consistent interface G = ΓC

(F)

allowing bounds(
C

)-consistent propagators to operate on the domain consistent representation
ImpF

 through G as shown in 4.2. As Hawkins et al. propose in [22, sect. 6.2] for the ROBDD
implementation of F we can use ΓC

 to compute the cardinality set bounds of F as follows:

Since F is represented as a ROBDD domain=
−→
G := 〈V, E ⊆ V × V〉 with associated boolean

vector b = 〈b0, . . . , bb−a〉 ranging over P ([a..b]), dFe ⊆ [a..b] values ei belonging to bFc are
identified as internal vertices vi ∈ V , i ∈ {0, . . . , (b − a)} such that: vi = (bi, t,⊥), that is the
corresponding boolean variable bi for the value ei is true in every assignment represented by
domain and hence is contained in bFc. Analogously, the values ei belonging to dFe def

= [a..b]\dFe
are identified as internal vertices vi ∈ V such that: vi = (bi,⊥, f ), that is bi is false in every
assignment and hence ei < dFe. Using the initial domain information [a..b], we finally obtain
the least upper bound of F as dFe = [a..b] \ dFe. Hawkins et al. stress in [22, sect. 6.2]
that those internal vertices required to compute the set bounds can be identified in O (domain),
what we achieve by iteration over the ROBDD. Assume that we have identified k ≤ |domain|
vertices determining the set bounds of the variable x. Computing the conjunction of those k
variables we obtain ΓS

(F) in time O (k), since we insert the identified variables in descending
ROBDD order (see 3.2.3). Still we need the cardinality information from the domain to finally
arrive at ΓC

(F). We obtain the lacking cardinality information, that is the interval C = [l, r]
such that l ≤ |F| ≤ r, using the bdd_count_cardinality algorithm of Hawkins et al. as
stated in [22, sect. 6.4]. Given the representation of F as tuple 〈b, domain〉 the time needed
to extract the cardinality information is denoted as O (|b| · |domain|). Since k, the number of
extracted variables determining bFc and dFe, is bounded from above by O (domain) the overall
time complexity to compute ΓC

(F) is:

O (|domain| + |b| · |domain|) = O ((|b| + 1) · |domain|) (4.6)

Note that a variable view not only forwards propagation services from the approximate domain
F to a propagator p :

C
n
→

C
n

but also effects the inverse direction by updating F ac-
cording to the modifications p performs on the propagation interface ΓC

(F). Hence the above
complexity from equation (4.6) not only denotes the worst case complexity for the creation of
the propagation interface but also the worst case complexity for every domain modification that
occurs on F through this interface during constraint propagation.
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4.2.2 Weaken consistency of propagation

The very same view ΓC
 that we used in the previous paragraph to wrap a bounds(

C
)-

consistent interface around an approximate domain F ∈
F

 can not only be used to interface
domain approximations, but also to turn a domain consistent propagator p :

F
n
→

F
n

into
a bounds(

C
)-consistent propagator βC

 :
F

n
→

C
n

. We achieve this as follows: let

F be the x-component of the tuple
−→
F denoting the initial domains for the propagator p. With-

out changing the implementation ImpF
 we can impose a cardinality set bounds view ΓC

 as
shown in the preceding paragraph. Doing so for all variables x ∈ Var we obtain initial domains
−→
F ′ as intermediate result, such that

−→
F ′.x = G def

= ΓC
(F) is a cardinality set bounds represen-

tation of
−→
F . Even more so, it follows from (3.9) that G ∈

C
 ⇒ G ∈

F
. Hence, we

can apply the domain consistent propagator p to
−→
F ′ and get a propagation result

−→
G . Assum-

ing that all domains are consistent with p we receive a propagation result
−→
R = p

(
−→
F
)
, which

is domain consistent. Instead of updating the variable domains we first apply the view ΓC


again to R. As ΓC
 filters exactly the cardinality set bounds information from R, we obtain

a bounds(
C

)-consistent propagation result
−→
R ′ = ΓC

(
−→
R ). Thus, given initial approximate

domains
−→
F ∈

F
n

and a domain-consistent propagator p :
F

n
→

F
n

we can build a
bounds(

C
)-consistent propagator βC

 :
F

n
→

C
n

by:

βC
(
−→
F ) def

= ΓC
 (

p
(
ΓC

 (
−→
F
)))

(4.7)

Apart from this bounds(
C

)-consistent propagator βC
 Hawkins et al. also propose a set

bounds-consistent propagator βS
 such that

βS
(
−→
F ) def

= ΓS
 (

p
(
ΓS

 (
−→
F
)))

(4.8)

and a bounds(
L

)-propagator βL
,

βL
(
−→
F ) def

= ΓL
 (

p
(
ΓL

 (
−→
F
)))

(4.9)

which we can encode using the views ΓS
 and ΓL

 as described in section 4.1. Since we

do not need to compute the cardinality bounds of the domains in
−→
F for the bounds(

S
)-

consistent propagator βS
 in equation (4.8), the desired propagation interface G = ΓS

(F) for
one variable domain F can be obtained in O (|domain|). Computing the lexicographic bounds
E =

[
inf(D).. sup(D)

]
� of a set variable x : D represented as S V(x) = 〈domain, 〈v0, . . . , vb−a〉〉

implies computing the conjunction of the two ground sets inf(D) and sup(D) where both of
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them can be encoded as a ROBDD of size N = b − a + 1. In order to obtain the corre-
sponding ROBDDS R(inf(D)) and R(sup(D)) we use the algorithms bdd_lex_lower_bound
and bdd_lex_upper_bound presented in [22, sec.6.5] whose complexity is Θ(b − a + 1).

Completing the picture As sketched in the preceding sections, variable views enable us to
use propagators p : An → An on domain approximations B different from A . Additionally
they allow us to weaken the consistency of a propagator by restricting input and output domains
to a propagation interface satisfying a consistency that is weaker than the propagator theoreti-
cally yields. Provided these two aspects and through the support of variable views in Gecode
, we finally obtain a constraint solver for finite set variables that not only offers two different
implementations for the underlying variable domain, but also integrates them in the system by
allowing propagation across domain approximations, yielding a framework in which we can
freely choose whether we want to apply bounds(

C
)-consistency or domain-consistency to

the variable domains. Thus, in order to complete the integration of both representations, we
introduce these views. However, the view transforming a range-list cardinality set bounds ap-
proximate domain into a cardinality set bounds ROBDD domain such that a domain-consistent
ROBDD-propagator could be applied, is not yet implemented.
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During the course of the last chapter we focused on the variable part of a constraint solver by
turning our attention to different domain approximations in literature along with their definition
(see chapter 3) and how they serve as abstract representation for variables in a constraint solver.
We showed how constraint propagation is performed by executing propagators as constraint
implementations on tuples of approximate domains (see chapter 2.2.1) representing the vari-
ables the constraints are defined on. Subsequently chapter 4 highlighted how to utilize variable
views as integrating interface to different domain approximations like

C
 and

F
 in a sin-

gle constraint solver forming a cross-approximation platform where propagators with different
consistency-levels can operate on. Now, we have a look at propagators.

5.1 The propagator side of life

Concerning the propagator-side of a constraint solver we not only learned in section 2.2.1 what
constraint propagation consists of but, we also know by now how basic set constraints are di-
rectly expressed in terms of domain lookup operations on the data structure implementing a set
variable’s approximate domain (compare sect. 3.2). This chapter builds on the research of Tack
et al. who present in [37] how non-basic set constraints can be further abstracted using existen-
tial monadic second-order logic (∃MSO) “as a declarative specification language for finite set
constraints”[37].

5.1.1 General description language - An intensional representation

As the previous paragraph highlights, the preceding chapters showed how we abstract a set vari-
able x : D in a constraint solver through its associated domain information D ∈ Dom, and how
we use a domain approximation A to represent D by an approximate domain (see definition
7) E ∈ A in the constraint solver. Moreover chapter 2 points out an important aspect of the
presented framework, namely that finite set constraints on finite set variables are defined exten-
sionally (see definition 5). Due to this issue of representability (see equation (2.1)) a constraint
solver uses propagators to implement an intensional representation of constraints. Following
Tack et al. we discuss in the remainder of this chapter how we obtain this intensional rep-
resentation using a fragment of ∃MSO as specification language [37], and how we apply this
specification language in order to generate bounds(

C
)- and domain-consistent propagators

from it. Since a constraint c ∈ C is defined in terms of a set of feasible assignments, we know
from section 3.1.2 that we can represent c intensionally by its characteristic Boolean function
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χc. This is exactly the point where the approach of Tack et al. comes in to express χc via an
∃MSO-formula φ as “compact representation”[37], where we define φ according to the ∃MSO-
fragment specified in the grammar taken from section 3.1 of [37] augmented with existential
first-order quantification as mentioned in [37, sect.6]:

S ::= ∃x.〈S〉 | 〈F〉

F ::= ∀v.〈B〉 | ∃v.〈B〉 | 〈F〉 ∧ 〈F〉

B ::= 〈B〉 ∧ 〈B〉 | 〈B〉 ∨ 〈B〉 | ¬〈B〉 | v ∈ x ∈ Var | ⊥

Table 5.1: Syntax of a fragment of ∃MSO

In fact, a closer look at the grammar in table 5.1 clarifies that any finite set constraint c that we
can represent using a formula φc ∈ ∃MSO is a non-basic set constraint which is decomposed
into basic element constraint v ∈ x : D as Schulte points out [31, chap. 2.1]. Hence, this
specification language indeed captures the characteristic function χc of the constraint yielding
an intensional representation for c suitable as modeling language and denotational semantics for
a sound propagator pc a constraint solver uses to represent c intensionally.

Example 6. Consider for example the constraint c ≡ x ∩ y = z on set variables x, y, z ∈ Var
constraining z to equal the intersection of x and y. Hence an extensional definition of c is
c = {α ∈ Asn | α(x) ∩ α(y) = α(z)}. Using ∃MSO as described in 5.1 we can define c in terms
the ∃MSO-formula φc = ∀v.v ∈ x ∧ y ∈ y⇔ v ∈ z

Limits of expressiveness Though using the presented ∃MSO-fragment as proposed by Tack
et al. we are able to express any set constraint c by constructing the corresponding ∃MSO-
formula φc there are still constraints that cannot be expressed in this framework. For instance
we cannot express constraints like c ≡ |x ∩ y| = l involving some integer l ∈ � as cardinality
restriction on a non-basic constraint x ∩ y. Instead we have to express c as a conjunction of
c′ ≡ x ∩ y = z and d′ ≡ |z| = l by using a variable z ∈ Var which [22] refer to as intermediate
variable. Then in turn we can abstract c′ by its corresponding ∃MSO-formula φc′ as shown in
example 6 and immediately apply the basic cardinality constraint d′ on z as depicted in ??.

5.2 Propagators on
C


Let x : D be a set variable whose domain is represented by an approximate domain E =
[bDc .. dDe]⊆ ∈

C
 using cardinality set bounds domain approximation

C
. From section

3.1.1 we know that given a ground set G ⊆ U a propagator p reasoning on set bounds can only
perform two basic domain lookup operations, namely stating that G takes part in any assignment
α for x or stating that any assignment α for x must be contained in G. Hence we obtain the two
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basic lookup operations of G ⊆ x and x ⊆ G. Obviously, if we want to transform a ∃MSO-
formula φc representing a constraint c over set variables y ∈ Var, y : Dy into a bounds(

C
)-

consistent propagator pC
 operating on the tuple of approximate domains

−→
E = ΓC

 (
−→
Dy

)
we

must transform φc into a set of domain lookup operations specifying for any variable y what
values v ∈ G any of its assignments contain and what values v ∈ H its assignments are allowed
to contain at all, that is every set variable y ∈ Var has to be updated such that the updated domain

F of y is determined as p
(
−→
Dy

)
.x = F. Thus, we obtain:

∀y ∈ Var :
(⌊

Dy
⌋
∪G ⊆ y ⊆

⌈
Dy

⌉
∩ H

)
Therefore, as Tack et al. state in [37, sect.5.2], a translation from the ∃MSO-formula φc of a
constraint c to a propagator p :

C
n
→

C
n

has not only to consider each variable x : Var the
constraint c ranges over separately but has also to provide two ground sets Gx and Lx such that
Gx ⊆ x ⊆ Lx.

5.2.1 From ∃MSO to
C


In fact Tack et al. define the sets Gx and Lx needed to perform inferences on the convex ap-
proximate domains of a given set variable x ∈ Var in terms of evaluated range expressions [37,
sect.4.2] where range expressions are defined as follows:

Definition 24 (Range expression and evaluation). An expression R which is constructed accord-
ing to the following grammar

R ::= x ∈ Var | 〈R〉 ∪ 〈R〉 | 〈R〉 ∩ 〈R〉 | 〈R〉 | ∅

Table 5.2: Grammar for range expressions on set variables

is called a range expression. A range expression R is evaluated using functions rglb and rlub such
that

rglb(∅) = rlub(∅) = ∅
rglb(R) = rlub(R) rlub(R) = rglb(R)
rglb(x) = bxc rlub(x) = dxe
rglb(R1 � R2) = rlub(R1 � R2) = rlub(R1) � rglb(R2), � ∈ {∪,∩}

Table 5.3: Evaluation of range expressions using rglb and rlub

Since a propagator needs to perform bounds inferences on each variable x ∈ Var Tack et al.
further define projectors [37, sect.4.2] using the range expressions as defined above to perform
exactly this task of modifying an approximate domain E = ΓC

(D) ∈
C

 of a variable x : D
by updating the interval bounds of E as specified by the range expressions Gx and Lx.
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Definition 25 (Projectors). We call a propagator p :
C

n
→

C
n

such that

∀
−→
E ∈

C
n

: ∀y ∈ Var : p
(
−→
E
)
.y =


−→
E .y if y , x

p
(
−→
E
)
.x else

a projection propagator or projector for x, written px. If we are given two range expressions
Gx and Lx as shown in definition 24, such that px is defined in terms of Gx and Lx, namely

px ≡ (Gx ⊆ x ⊆ Lx), then the projection result px

(
−→
E
)
.x is defined as

px

(
−→
E
)
.x

def
= F

def
=

[
rglb(Gx) ∪ bxc ..rlub(Lx) ∩ dxe

]
⊆

Since we restricted ourselves to finite domain constraint programming over finite sets we know
that our universe of discourse U is a finite one and consequently it follows, that every constraint c
we can model by the ∃MSO-fragment in table 5.2 is a relational constraint, that is c states either
a relation only between variables, between variables and the universe or between an element
v ∈ U and a single set variable if it comes to the basic membership constraint (v ∈ x′). The
major gain from this insight is the following fact: in the cardinality set bounds approximationC

 the only relations the ∃MSO-grammar uses are subset(⊆), equality(=), disequality(,) and
disjointness(‖). In fact, any of these relations can be expressed using the subset relation:

A = B def
= A ⊆ B ∧ B ⊆ A

A , B def
= ¬(A = B) = ¬(A ⊆ B) ∨ ¬(B ⊆ A)

A ‖ B def
= ¬(A ⊆ B) ∧ ¬(B ⊆ A)

Evidently this is the major insight Tack et al. use to translate an ∃MSO-formula φc for a con-
straint c into a bounds(

C
)-consistent propagator pc, because this guarantees us that we can

transform any ∃MSO-formula into the form

ρ
def
= ∧x∀v : (ψ1x → v ∈ x) ∧ (v ∈ x→ ψ2x)

as provided in [37, sect.5.2]. Thus, being able to express a formula φc as formula ρc we can
express any conjunct of the form (ψ1x → v ∈ x) ∧ (v ∈ x → ψ2x) using range expressions
Gx and Lx as (Gx ⊆ x) ∧ (x ⊆ Lx) directly corresponding to the input a single projector needs
to propagate on the domain of the set variable x (see definition 25). Repeating this process
for all conjuncts of the formula ρc we thus achieve propagation on all set variables x ∈ Var
occurring in the ∃MSO-formula φc. Consequently we obtain a propagator pc for a constraint c
by constructing the projector set of all projectors px for all set variables x ∈ Var that occur in the
∃MSO-formula φc. This procedure exactly describes the two steps in which Tack et al. translate
an ∃MSO-formula φc into the corresponding propagator pc, namely transforming the formula
φc into a formula ρc only using implication (⇒) as Boolean connector, and creating the set of
projectors for all conjuncts of ρc (see [37, sect.5]). Moreover, they also prove that those created
propagators are complete as we will see in 6.7.
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5.3 Propagators on
F


In contrast to bounds(

C
)-consistent propagators, domain-consistent propagators p :

F
n
→F

n
follow a different principle in order to update the domains of the variables they reason

about. From chapter 3.2.3 we know that an approximate domain D ∈
F

 is represented via
a tuple of a Boolean vector v and a Boolean function f represented by a ROBDD encoding all
feasible assignments for v. If a propagator pc modifies such a domain it exploits the fact, that the
constraint c it implements can be expressed via a Boolean formula itself. Consequently, updating
a domain D can be expressed by forming the Boolean conjunction of all variable domains Dy,
y ∈ Var the constraint reasons about and the Boolean expression β(c) of the constraint ε =∧

x∈Var ∧β(c). However, in case that c is a non-basic constraint, that is it reasons about more
than one single variable β(c), the resulting Boolean expression, also reasons about more than
one variable. Thus forming only the conjunction ε would lead to an updated domain E of D
which not only contains information about its corresponding variable x ∈ Var, x : D, but also
contains information about all other variables y ∈ Var, y , x appearing in the constraint c.

5.3.1 From ∃MSO to
F

: ROBDD-based projectors

In order to avoid this overflow of information a domain-consistent propagator p follows the
above mentioned principle of projection by projecting the result ε back to the variable x in
focus, such that only the domain information the constraint c imposes on x is propagated to the
variable domain. Let F be a Boolean formula with existentially quantified Boolean variables
x1, . . . xn in it. Then Hawkins et al. define the shorthand ∃V F def

= ∃x1 . . .∃xnF and ∃V F def
= ∃V′F

such that V ′ def
= V \ vars(F). Assume that the domain D of the variable x is the x-component of

the initial tuple of variable domains
−→
D. Given this shorthand as defined in [22, sect.2.5] Hawkins

et al. now define the updated variable domain E of x as propagation result p
(
−→
D
)
.x of p on the

variable x : D such that

p
(
−→
D
)
.x def
=


∃b(x)

β(c) ∧
∧

xi∈Var

Di

 ifx ∈ vars(c)

D else

(5.1)

where b(x) denotes all Boolean variables in the Boolean vector b of the respective variable x. The
point, where the ∃MSO-fragment presented in table 5.1 comes in is exactly the construction of
the Boolean expression β(c) representing a constraint c. From section 5.2 we know that except
basic cardinality constraints we can model any set constraint c using ∃MSO as a formula φc.
Moreover, since the universe of discourse U is finite, we can replace the universal quantifier
∀v in an ∃MSO-formula by the finite conjunction over all values in the universe

∧
v∈U as Tack

et al. point out in [37, sect.7]. Consider for example the constraint c ≡ x ∪ y = z. Encoding
c in ∃MSO we obtain an ∃MSO-formula φc = ∀v.(v ∈ x ∨ v ∈ y) ⇔ v ∈ z. Replacing the
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universal quantifier by a conjunction over all values v ∈ U we obtain the Boolean formula
β(c) =

∧
v∈U xv ∨ yv ⇔ zv. Exchanging the conjunction over all values v in the universe U

by a conjunction over all components of the Boolean vector b = 〈v0, . . . , vN−1〉 ∧ N = |U| − 1
representing the universe we obtain precisely the Boolean formulas which are used to encode the
set variables x ∈ Var and the constraints c over them as represented in the domain approximationF

, namely β(c) =
∧N−1

i=0 xi ∨ yi ⇔ zi.

5.3.2 Conclusion

During the course of this chapter we have seen that a non-basic constraint, that is a constraint
modifying more than one variable, is decomposed into basic constraints that directly correspond
to domain update operations as provided by the underlying data-structures for approximate do-
mains highlighted in section 3.2. Moreover we have seen that Tack et al. present in [37] a
concept to use these decompositions in order to abstract constraints using logic formulas ex-
pressed in a fragment of ∃MSOas depicted in table 5.1. This concept neatly fits into our picture
of abstracting the domains of set variables via approximate domains and to access them via views
since it enables us to abstract bounds(

C
)- and domain-consistent propagators on these views

into a single constraint modeling language using ∃MSO-formulas. Hence we can complete the
integration of a ROBDD-based constraint solver into Gecode , since we now are not only able to
generate the desired variable view on the respective approximate domains crossing consistency
levels but also to generate both, the bounds(

C
)- as well as the domain-consistent propagator

from a single ∃MSO-formula. Finally, we obtained a general set constraint solver, which is not
only able to abstract in its variable component over the respective variable domains but also
in the propagator component by allowing the choice between different propagation algorithms
implementing different levels of consistency for the modeling of a CSP.



6 Evaluation

S ,  ,  . B   . O   
    . M   .

— A

The preceding chapters 2 to 5 presented a framework that eases comparison of different repre-
sentations for set variables including representation of variable domains as well as representation
of the propagators operating on those variables. In this chapter we aim at providing a thorough
analysis and evaluation of the implementation of this framework using the Gecode -library. As it
comes to benchmark criteria for the evaluation we mainly focus on the different representations
by time and space consumption in terms of runtime and memory usage.

6.1 Aspects of evaluation

The empirical evaluation presented in this chapter will concentrate on the following aspects:

Two implementations for the same domain approximation - IB versus DB First of
all we focus on the comparison of two different implementations for the cardinality set bounds
domain approximation

C
 as discussed in section 3.2.2, namely the standard IB representation

where the lower set bound is included in the upper set bound which is the standard Gecode
-implementation and the DB representation as presented in 3.2.2 which builds on disjoint set
bounds.

Different domain approximations -
C

versus
F

 Apart from testing different imple-
mentations for the same domain approximation

C
 we also glance at the question, whether the

newly ROBDD implementation of the
F

 domain approximation can compete with standardC
 domain approximation that already comes with Gecode . In this context we pay peculiar

attention to runtime behavior and size of the resulting search tree for the respective benchmark.

Capabilities of variable views - same consistency with different views For this bench-
mark, we test whether it pays off to use views in order to mimic the

C
domain approximation

using the
F

domain approximation plus the
C

-view ΓC
 as propagation interface. An-

other aspect of variable views this evaluation will look at is the result of using variable views to
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weaken the consistency of a domain-consistent ROBDD-propagator to achieve set bounds(
S

),
cardinality set bounds(

C
) or even lexicographic bounds(

L
) consistency.

6.2 Set of Benchmarks

For the sake of comparability we choose a standard set of benchmarks for this evaluation which is
commonly agreed on in literature: the Steiner problem as used in [22, 30, 5, 26, 2], the Hamming
problem as studied in [30, 2] and the Social Golfer problem as stated in [5, 2]. All of the
problems used for the evaluation in this section are provided as examples in the Gecode -library
[39]. Subsequently, this sections provides specifications for the above mentioned benchmarking
problems as well as CSP-encodings used in the evaluation presented in the next section.

6.2.1 Social Golfer Problem

The social golfer problem is problem number prob010 in csplib: a problem library for con-
straints [14] which provides the following problem specification:

Specification The coordinator of a local golf club has come to you with the following prob-
lem. In her club, there are 32 social golfers, each of whom play golf once a week, and always
in groups of 4. She would like you to come up with a schedule of play for these golfers, to
last as many weeks as possible, such that no golfer plays in the same group as any other golfer
on more than one occasion. Possible variants of the above problem include: finding a 10-week
schedule with “maximum socialisation”; that is, as few repeated pairs as possible (this has the
same solutions as the original problem if it is possible to have no repeated pairs), and finding
a schedule of minimum length such that each golfer plays with every other golfer at least once
(“full socialisation”). The problem can easily be generalized to that of scheduling m groups of n
golfers over p weeks, such that no golfer plays in the same group as any other golfer twice (i.e.
maximum socialisation is achieved).

A CSP Model An instance golf-(w, g, s) of the social golfer problem specifies that we have
to setup a schedule for p def

= g · s players over w weeks such that s players are in each of the
g groups scheduled for one week. For the purpose of evaluation we will compare to different
models for this instances that we differentiate by golf-(w, g, s)-n denoting the naive model with
less constraints and by golf-(w, g, s)-s for the smart model using additional symmetry breaking
and redundant constraints as stated below. Obviously, the set Var of problem variables contains
m def
= g · w set variables xi j : Di j = [∅..P], where P def

= {0, . . . , p − 1} where each set variable xi j

denotes the group j ∈ G def
= {0, . . . , g− 1} in week i ∈ W def

= {0, . . . ,w− 1}. Concerning the sect of
constraints C we can obviously model the problem using the following constraints c ∈ C : The
most straightforward constraint for this model consists in restricting a set variable denoting a
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group to contain exactly s players as required by the problem description:

∀i ∈ W∀ j ∈ G : cardgroupi j ≡
∣∣∣xi j

∣∣∣ = s (6.1)

Since every player plays per week, the groups of one week form a disjoint partition of the set P,
that is

∀i ∈ W : parti ≡
⊎
j∈G

xi j = P (6.2)

As the schedule is supposed to achieve a maximum degree of socialisation, no two golfers shall
play in the same goup more than once, what is expressed by the equation:

∀i, k ∈ W∀ j, l ∈ G, i , k, j , l : binatmost(i j,kl) ≡ ∃z : xi j ∩ xkl = z ∧ |z| ≤ 1 (6.3)

Let

Card =
⋃
i∈W

⋃
j∈G

cardgroupi j (6.4)

Part =
⋃
i∈W

parti (6.5)

BinAtMostOne =
⋃

i,k∈W,i,k

⋃
j,l∈G, j,l

binatmost(i j,kl) (6.6)

then we can already formulate the naive model for the social golfer problem as

GPN = 〈VarGPN ,CGPN
def
= Card ∪ Part ∪ BinAtMostOne〉

Smart Model For the smart model we additionally introduce the following constraints: For
each week i ∈ W we introduce a set of boolean variables Bik, such that b j ∈ Bik denotes the fact,
that player k belongs in week i to the group j. Using this notation we impose the constraint that
in each week i ∈ W, one player k ∈ P plays in only one group j ∈ G:

∀i ∈ W∀k ∈ P : OnlyOneik ≡

(∀ j ∈ G : {k} ⊂ xi j ⇔ b j
)
∧

g−1∑
j=0

b j = 1

 (6.7)

A redundant global atmostOne constraint as discussed in 5.3.2 and an additional symmetry
breaking constraint to order the groups in each week by introducing integer variables ym : P
such that

∀i ∈ W∀ j ∈ {0, . . . , g − 2} : S ymGroupWeeki j ≡ y j = min(xi j) ∧ y j+1 = min(xi( j+1))(6.8)

∧ y j < y j+1
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Finally we introduce intermediate set variables zi : P (P) and intermediate integer variables
yi : P to obtain a quasi-lexicographic ordering on the first groups in each week by stating:

∀i ∈ {0, . . . ,w − 2} : S ymFstGroupi ≡ zi = xi0 \ {0} ∧ zi+1 = x(i+1)0 \ {0} (6.9)

∧ yi = min(zi) ∧ yi+1 = min(zi+1) ∧ yi < yi+1

Let

OnlyOne def
=

⋃
i∈W

⋃
k∈P

OnlyOneik (6.10)

S ymGroupWeek def
=

⋃
i∈W

⋃
j∈{0,...,g−2}

S ymGroupWeeki j (6.11)

S ymFstGroup def
=

⋃
i∈W

S ymFstGroupi (6.12)

then we obtain the smart model for the social golfers problem as

GPS = 〈VarGPN ,CGPS
def
= CGPN ∪ OnlyOne ∪ {atmostOne} (6.13)

∪ S ymGroupWeek ∪ S ymFstGroup〉

Branching As for the branching strategy (see section 2.2.2) we first choose the set variable
xi j : Di j such that v def

= min(Di j) is the smallest minimum of all variables and add proceed to the
left branch of the search tree by additionally imposing the constraint v ∈ xi j on xi j.

Example 7 (Golf instance). A feasible schedule for the instance golf-(2, 4, 3) of the social
golfers problem is provided in table 6.1.

groups︷                                              ︸︸                                              ︷
0 1 2 3

weeks
{

0 {0,1,2} {3,4,5} {6,7,8} {9,10,11}
1 {0,3,6} {1,4,9} {2,7,10} {5,8,11}

Table 6.1: Schedule for problem instance golf-(2, 4, 3)

6.2.2 General Steiner System

Since the CSP-library only comprises the ternary steiner problem, an instance of the general
steiener problem we will use the following specification for the general steiner problem as pre-
sented by Hawkins et al. in [22].
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Specification The general steiner problem consists in the problem of computing so-called
Steiner systems steiner-(t, k, n), where Steiner system is a set S with cardinality |S | = n and a
collection T of m =

(
n
t

)/(
k
t

)
subsets called “blocks” of S such that all subsets b ∈ T have cardinal-

ity |b| = k and such that t elements of S are contained in exactly one subset b ∈ T . Instantiating
this general Steiner system to steiner-(2, 3, n) we obtain the ternary Steiner instance of this
problem which is specified as problem number prob044 in [14]. As Azevedo points out any
instance of a ternary Steiner problem steiner-(2, 3, n) can be expressed as an instance of the
balanced incomplete block design problem (prob028 in [14]) such that steiner-(2, 3, n) =
bibd-(n, m = n · (n − 1)/6, (n − 1)/2, 3, 1) .

A CSP Model For an instance steiner-(t, k, n) of the general steiner problem we obtain the
set S as S def

= {1, . . . , n} and define the set I of indices to be I def
= {0, . . . , n − 2}. Furthermore, we

can choose the set Var of problem variables such that ∀xi ∈ Var : xi : [∅..P (S )]. The evaluation
in the following chapters will compare different models for this instances that differ in the kind of
symmetry breaking constraints. With steiner-(t, k, n)-n we denote the naive model with less
elaborate symmetry breaking and with steiner-(t, k, n)-s we denote the smart model using
a more elaborate symmetry breaking than the naive model. The set C of constraints for an
instance of the general steiner system looks as follows: The most straightforward constraint for
this model consists in restricting a set variable xi representing a block b in the collection T to
contain exactly k elements of S using the equation

∀i ∈ {0, . . . , n − 1} : Cardi ≡ |xi| = k (6.14)

Restricting the set variables xi such that they intersect in at most one element s ∈ S is expressed
by the following constraint

∀i, j ∈ I, i , j : BinAtMostOnei j ≡ ∃z : xi ∩ x j = z ∧ |z| ≤ 1 (6.15)

In order to eliminate symmetries the naive model introduces
(
n
2

)
sets Yi j and Zi j of k integer

variables yi jk ∈ Yi j and zi jk ∈ Zi j each such that yi jk : [1..n] and zi jk : [1..n]. In the naive model
we eliminate possibility of permuting the block alignment using the following constraint:

∀i, j ∈ I, i , j : S ymBreaki j ≡ ∀s ∈ {0, . . . , k − 1} : {yi js} ⊆ xi ∧ {zi js} ⊆ x j (6.16)

∧
[
∀r, s ∈ {0, . . . , k − 2}, r , s : zi jr < zi js ∧ yi jr < yi js

]
∧

k−1∑
s=0

(n + 1)i · zi js −

k−1∑
s=0

(n + 1)i · yi js

 < 0
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Defining the sets

Card ≡
⋃
i∈I

Cardi (6.17)

BinAtMostOne ≡
⋃

i, j∈I,i, j

BinAtMostOnei j (6.18)

S ymBreak ≡
⋃

i, j∈I,i, j

S ymBreaki j (6.19)

we are able to specify the naive CSP model for the general steiner system as

GSPN def
= 〈VarGSPN ,CGSPN

def
= Card ∪ BinAtMostOne ∪ S ymBreak〉

For the smart version of the general steiner CSP model we modify the symmetry breaking con-
straint such that

∀i, j ∈ I, i , j : S ymBreakMi j ≡ matchi j (6.20)

∧
[
∀r, s ∈ {0, . . . , k − 2}, r , s : zi jr < zi js ∧ yi jr < yi js

]
∧

k−1∑
s=0

ni · zi js −

k−1∑
s=0

ni · yi js

 = −1

where matchi j is a global constraint on two set variables xi, x j and the introduced integer sets
Yi j and Zi j such that

matchi j ≡
[
Yi j = xi ∧ Zi j = x j (6.21)

∧ ∀r, s ∈ {0, . . . , k − 2}, r , s : zi jr < zi js ∧ yi jr < yi js
]

Redefining the set of symmetry breaking constraints S ymBreak to the set of all symmetry break-
ing constraints using the matchi constraint we obtain

S ymBreak ≡
⋃

i, j∈I,i, j

S ymBreakMi j (6.22)

we thus obtain the following CSP encoding for the smart model of the general steiner system

GSPS def
= 〈VarGSPS ,CGSPS

def
= Card ∪ BinAtMostOne ∪ S ymBreak〉

Example 8 (Steiner). A feasible collection of
(
9
2

)/(
3
2

)
= 12 blocks for the general steiner instance

steiner-(2, 3, 9) is given in table 6.2.

6.2.3 Hamming Distance

As there is no further specification of the Hamming problem in the CSP-library [14] we stick to
the definition of the Hamming problem as given in [30] that is provided below
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12 blocks



{1,2,3}
{1,4,5}
{1,6,7}
{1,8,9}
{2,4,6}
{2,5,8}
{2,7,9}
{3,4,9}
{3,5,7}
{3,6,8}
{4,7,8}
{5,6,9}

Table 6.2: Steiner instance steiner-(2, 3, 9)

Specification (Binary error correcting codes). A binary error correcting code is a collec-
tion of n bit-strings, that is vectors of zeros and ones of length b, called codewords, with the
property that the distance between any two codewords is at least some number d. The distance
between two codewords is defined to be the number of positions in which the two bit-strings
vary. This distance function is called the Hamming distance. We will abbreviate an instance of
the above specification with hamming-(n, b, d). The evaluation in the next chapter focuses on a
hamming-(32, 20, 3) instance of the hamming distance problem.

A CSP Model Let B def
= {1, . . . , b}. Then we can specify the set of problem variables Var

as n set variables xi : [∅..P (B)] such that the bit-vector for the codeword ci represents the
characteristic function of xi, that is v ∈ xi if the v-th bit is set in ci. According to Sadler and
Gervet we compute the distance between two codewords ci and c j as the cardinality of the
symmetric difference of the set variables xi and x j representing the codewords[30, sect.6].

Definition 26 (Symmetric difference). Let A, B ⊂ U be two finite sets. Then we define the
symmetric difference A ⊕ B as A ⊕ B

def
= (A ∪ B) \ (A ∩ B) = (A ∩ B) ∪ (B ∩ A).

Using the above definition we can encode the distance constraint between two codewords as

∀i, j ∈ {0, . . . , 31}, i , j : HamDisti j ≡
∣∣∣xi ∩ x j

∣∣∣ + ∣∣∣x j ∩ xi
∣∣∣ ≥ d (6.23)

Additionally we restrict the cardinality of the xi to be at least one and at most b, that is :

∀i ∈ {0, . . . , 31} : Cardi ≡ 1 ≤ |xi| ≤ b (6.24)

If we define the set of HamDist of binary HamDisti j constraint as

HamDist ≡
⋃

i, j∈{0,...,31},i, j

HamDisti j (6.25)
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and the set Card of all cardinality constraints as

Card ≡
⋃

i∈{0,...,31}

Cardi (6.26)

we obtain a CSP encoding HD for the hamming distance problem as follows

HD def
= 〈VarHD ,CHD

def
= Card ∪ HamDist〉

Example 9 (Hamming Instance). A solution to the problem instance hamming-(6, 20, 3) for the
Hamming Distance problem is provided in the table 6.3.

[1..20]
[1..17]
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 18, 19}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 20}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20}
{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 19}

(a) set representation

〈11111111111111111111〉
〈11111111111111111000〉
〈11111111111111100110〉
〈11111111111111100001〉
〈11111111111111010101〉
〈11111111111111010010〉

(b) corresponding bit vectors

Table 6.3: Feasible solution for the instance hamming-(6, 20, 3) of the Hamming Distance prob-
lem

6.3 Benchmark platform

All experiments use Gecode , a C++-based generic constraint programming library [39]The ver-
sion used in this paper corresponds to Gecode 1.3.0 extended with the following implementa-
tions: an alternative disjoint bounds implementation for the

C
domain approximation already

contained in the Gecode library, a ROBDD-implementation interfacing the BuDDyBDD library
[25] and the respective implementations of variable views as mentioned in chapter 4. Gecode
has been compiled with gnu gcc 4.1.0. All examples have been run on a Laptop with a 2 GHz
Pentium M CPU and 1024 MB main memory running Gentoo Linux. If not stated otherwise
the runtimes as indicated in the evaluation tables are the average of 20 runs with a coefficient of
deviation less than 2% for all benchmarks.

6.4 Different implementations for cardinality set bounds
C


A major task and contribution of this thesis is the comparison between different implementa-
tions for the cardinality set bounds domain approximation

C
using the Gecode framework.
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One of those implementations is the including bounds representation IB already shipped with
the Gecode -library. Recapitulating section 3.2.1 the IB representation essentially bases on the
approximation of a set variable domain D via the bounds bDc and dDe, such that bDc ⊆ dDe, and
contains additional cardinality information to achieve

C
domain approximation. In this section

we compare this representation with the disjoint bounds representation DB we looked at in sec-
tion 3.2.2. Contrarily to the IB representation, the DB implementation bases its approximation
of D on the two sets bDc and ∆ def

= dDe \ bDc.

IB - [bDc .. dDe] DB - [bDc ..∆]
problem absolute (diff in %)
instance time (ms) mem (KB) time mem

steiner-(2, 3, 7)-n 0.7425 91 +0.1838 +0.2088
steiner-(2, 3, 7)-s 0.4435 58 +0.1353 +0.2759
steiner-(2, 3, 9)-n 81.1500 591 +0.1935 +0.2284
steiner-(2, 3, 9)-s 45.5000 349 +0.1626 +0.2865
average —– 18447 +0.1688 +0.2499
hamming-(32, 20, 3) 963.1000 8879 +0.3947 +0.1064
golf-(9, 8, 4)-n 184.0000 10794 +0.2826 -0.0072
golf-(9, 8, 4)-s 446.2000 1750 +0.2418 ±0.0000
golf-(7, 5, 3)-s 1138.2000 25 +0.2703 +0.1697
golf-(2, 4, 3)-n 25.7350 159 +0.2427 +0.0400
golf-(2, 4, 3)-s 39.4600 86 +0.2619 +0.1047
average —– +0.2900 +0.0856
average (all) +0.2459 +0.1586

Table 6.4: Comparison: including bounds (IB ) vs. disjoint bounds(DB )

6.4.1 Intuition and results

Intuitively, exchanging the IB representation by the DB representation should result in an in-
crease of performance with respect to time and memory consumption since the DB representa-
tion does not represent the lower set bound bDc twice as it is the case with the IB representation.
A comparison between the two implementations based on instances of the Hamming Distance
problem(6.2.3), the General Steiner System problem (6.2.2) as well as the Social Golfer prob-
lem is summarized in table 6.4. Considering the column “DB -[bDc ..∆]” referring to the disjoint
bounds representation DB an entry of the form +0.1838 highlights that the time or memory con-
sumption of the DB implementation is 0.1838 percent larger relative to the performance of the
IB representation. Strikingly, table 6.4 underlines that the average runtime performance of the
DB representation is approximately 0.2459 ≈ 0.3% worse than the respective runtime of the IB
representation. In addition to the inferior runtime of the DB representation table 6.4 shows also
that the memory consumption of the DB representation is 0.1586 ≈ 0.2% worse than the IB
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representation.

Evaluation of variable modification Obviously now the question arises why these results do
not affirm the intuition that the DB representation consumes less time and less memory than the
IB representation. As the Gecode architecture bases the computation of the propagation order
on variable modification and the respective modification events it allows us to keep track of
the modification events occurring during execution of a benchmark. This way we can observer
more precisely what domain lookup and update operations on the underlying range-list data
structure are performed. Since section 2.2.1 shows that the modification events depend on the
used domain approximation we base the evaluation on the modification events depending onC

. Recalling that a set variable x : D approximated with
C

 is represented as S V(x) =
〈bDc , dDe , C = [l..r]〉 this results in the following modification events for the modified domain
S V(x) = 〈bEc , dEe , C = [v..w]〉:

val(x) bEc = dEe
glb(x) bEc ⊂ bDc
lub(x) dEe ⊂ dDe
bb(x) glb(x) ∧ lub(x)
dom(x) [bEc .. dEe] ⊂ [bDc .. dDe]

(a) modified domain

none(x) no modification
cglb(x) card(x) ∧ glb(x)
club(x) card(x) ∧ lub(x)
cbb(x) card(x) ∧ bb(x)
card(x) l < v ∨ w < r ∧ ¬dom(x)

(b) modified cardinality

Table 6.5: Modification events for
C


Clearly, the DB representation cannot perform better in case we do not modify the range-list
representation of the set bounds interval directly. Hence we can safely exclude the cases from
evaluation where the original domain D is already a singleton set(|D| = 1), where we only
modify the cardinality of the representation (card(x)) or where we perform a domain update
operation (D � S ) with an empty ground set S = ∅. After discarding those cases where no per-
formance improvement is possible table 6.6 indicates that for all benchmarks except the instance
steiner-(2, 3, 9)-n the remaining number of cases where a domain modification (dom(x)) could
occur still sums up to 20% on average of all detected modification events. However, the lines
none(x) referring to the cases in which no domain modification occurs make up from 60% in
steiner-(2, 3, 9)-n up to 90% of the interesting cases in golf-(7, 5, 3)-s. As we have seen in
chapter 3.2.2 detecting that no modification occurred (none(x)) takes with DB at least as much
time as with IB , but is even worse in most cases because of the higher constants the DB repre-
sentation has to pay for. The major pain for the use of DB consist in the fact that the subset test
on the IB representation is only performed in case of modification (dom(x)). But since exactly
those cases where the DB representation could outperform the IB representation at all do not
make up more than 3% in any of the benchmarks there is no way for the DB representation to
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steiner-(2, 3, 9)
smart naive

in % in %
detected 476871 100.00 725850 100.00
remaining 116855 24.50 69835 9.62
f ail(x) 197 0.04 629 0.09
none(x) 104383 21.89 44305 6.10
val(x) 3283 0.69 8352 1.15
lub(x) 8292 1.74 14788 2.04
glb(x) 700 0.15 1761 0.24
dom(x) 12275 2.57 24901 3.43

(a) Events for steiner-(2, 3, 9)

hamming-(32, 20, 3)
in %

detected 8104029 100.00
remaining 1651962 20.38
f ail(x) 68 0.00
none(x) 1437204 17.73
val(x) 46511 0.57
lub(x) 60663 0.75
glb(x) 16368 0.20
club(x) 54326 0.67
cglb(x) 36822 0.45
dom(x) 214690 2.65

(b) Events for hamming-(32, 20, 3)

golf-(9, 8, 4)-n golf-(7, 5, 3)-s
in % in %

detected 2753601 100.00 9068638 100.00
remaining 564729 20.51 2500241 27.57
f ail(x) 32 0.00 545 0.01
none(x) 497017 18.05 2255813 24.87
val(x) 1877 0.07 26166 0.29
lub(x) 65447 2.38 209445 2.31
glb(x) 356 0.01 5298 0.06
club(x) —- —- 1158 0.01
cglb(x) —- —- 1816 0.02
dom(x) 67680 2.46 243883 2.69

(c) Events for golf instances

Table 6.6: Profiling modifcation events for
C


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yield a better performance neither with respect to time nor with respect to memory.

6.5 Cardinality set bounds
C

versus full domain
approximation

F


The aim of this chapter is to provide an empirical comparison of the cardinality set bounds
representation

C
against the full domain approximation based on the ROBDD-approach as

presented in section 3.2.3. In order to compare the range-list based
C

implementation against
the ROBDD based

F
implementation we first of all focus on problem instances for the Gen-

eral Steiner System (see 6.2.2) Since this section compares orthogonal domain representations,
namely range-list based

C
representation in Gecode and the ROBDD based

F
approximation

of [22], we have a look at the following table 6.7.

problem
C

Gecode
F

ROBDD
time(ms)

steiner-(2, 3, 7)-s 0.4535 9.205
steiner-(3, 4, 8)-s 5.0790 91.016
steiner-(2, 3, 9)-s 45.8850 92.850
steiner-(2, 4, 13)-s 3.3150 271.866
steiner-(2, 3, 15)-s 26.5100 4550.000
steiner-(2, 4, 16)-s —– 2200.000
steiner-(2, 5, 21)-s 16.2400 13410.000

Table 6.7: Comparison of the orthogonal domain approximations
C

and
F


Obviously, the

C
approach outperforms the ROBDD based

F
domain approximation in al-

most every problem instance of the General Steiner problem by at least a factor 2 in the instance
steiner-(2, 3, 9)-s and at most by an immense factor of approximately 825 in case of instance
steiner-(2, 5, 21)-s. Although this table suggests that the

C
representation as available in

Gecode is still the representation of choice with respect to runtime one gains the possibility
to solve instances with the

F
representation that cannot be solved by the

C
representation

within one hour as it is the case for the problem instance steiner-(2, 4, 16)-s.

6.6 Using Views

As proposed in chapter 4 this section provides a summary of the discussed views for cross-
domain propagation and weakening of propagator consistency.
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Weaking propagator consistency At first we take a glance at the views described in section
4.2.1, which allow to turn a domain-consistent propagator for the

F
representation into a

bounds(A) consistent propagator such that A ∈ {
S

 , C
 , L

}. An overview of the different
views using the General Steiner problem is provided in table 6.8.

problem
F

 ΓS
 (F

) ΓC
 (F

) ΓL
 (F

)
instance ROBDD ROBDD ROBDD ROBDD

time ms
steiner-(2, 3, 7)-s 9.205 11.030 28.505 23.456
steiner-(3, 4, 8)-s 91.016 72.930 251.950 138.110
steiner-(2, 3, 9)-s 92.850 590.200 2975.300 —–
steiner-(2, 4, 13)-s 271.866 301.450 4967.000 —–
steiner-(2, 3, 15)-s 4550.000 1653.000 26985.000 —–
steiner-(2, 4, 16)-s 2200.000 —- —- —–
steiner-(2, 5, 21)-s 13410.000 3541.500 —- —–

Table 6.8: Comparison of different views for changing propagator consistency

From the small problem instances, steiner-(2, 3, 7)-s and steiner-(3, 4, 8)-s, we learn that
full-domain consistency is obviously the best choice since it for the original identity view onF

there is no such overhead as computing the set bounds in the
S

case. Neither does it need
to extract the additional cardinality

C
 or lexicographic bounds

L
. Only the set bounds viewS

 is a factor 0.2 faster on the second steiner instance. The set bounds consistent view
S

 also
outperforms the domain-consistent view on larger problem instances as steiner-(2, 3, 15)-by
a factor of almost 0.7. Even more so the steiner-(2, 5, 21)-case where it outperforms theF

approximation by approximately a factor of 0.8. Strikingly, the cardinality view
C

is
even slower than the bounds consistency

S
what is due to the computation of the cardinality

bounds for every domain lookup and every domain modification concerning the cardinality of
the set variable. The same holds for the lexicographic bounds

L
which is even slower than the

cardinality view.

Crossing approximation boundaries In this paragraph we compare the Gecode cardinality
set bounds domain approximation with a domain D ∈

F
 that is mapped to

C
via a ΓC


view as presented in chapter 4.2.1.
As table 6.9 shows mimicking the

C
domain approximation with an underlying domain im-

plementation based on ROBDDs is costly. Like in the above case of using views to weaken
domain-consistent propagation the computation of the cardinality bounds from the ROBDD in-
formation has to be performed for every mapping back and forth between

C
and

F
and even

more so for every domain lookup operation and domain modification involving cardinality.
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problem Gecode ΓC
 (F

)
ROBDD

time ms
steiner-(2, 3, 7)-s 0.4535 94.5
steiner-(3, 4, 8)-s 5.0790 1168.5
steiner-(2, 3, 9)-s 45.8850 18580.0
steiner-(2, 4, 1)-3 s 3.3150 5610.3

Table 6.9: Comparison of the Gecode
C

approximation and a mimicked
C


6.7 Comparison Gecode projectors vs. ROBDD projectors

In this section we evaluate the propagator generation for finite set constraints in the Gecode and
compare them to the generated projectors for the ROBDD

F
domain approximation. Similarly

to the preceding sections this comparison also bases on the General Steiner problem. However,
we modify the model from section 6.2.2 and omit the symmetry breaking constraints, which
impose an order on the blocks of the collection of subsets in the solution. Thus we obtain the
following results as shown in table 6.10.
To highlight the important result we also added runtime and number of fails for the

C
domain

approximation in Gecode and the
C

domain approximation using ROBDDs and weakened do-
main propagation. The most obvious result is the difference in number of detected fails for the
problem instance steiner-(2, 3, 9). Though its poor performance as witnessed by the preced-
ing sections, the use of ΓC

 F
 to perform bounds(

C
) consistent propagation on a domain

D ∈
F

 has the tremendous advantage of completeness. Although in the ternary Gecode
intersection constraint x ∩ y = z also includes cardinality propagation, this is not domain-
consistent for the cardinality information. Hence, the Gecode

C
representation has less fails

in the steiner-(2, 3, 9) instance than the corresponding bounds(
C

) consistent projector for
Gecode but is incomplete with respect to propagation of cardinality information since it produces
more fails than ΓC

 (F
). Moreover this example shows, that set bounds consistent generated

projectors in Gecode are indeed complete as proven by Tack et al. in [37] since it has the same
number of fails as the corresponding bounds-consistent ROBDD propagator.



6.7 Comparison Gecode projectors vs. ROBDD projectors 63

Gecode ΓC
 (F

)
projector ROBDD projector

problem time(ms) fails time(ms) fails
steiner-(2, 3, 7) 8.35 6 130.50 6
steiner-(3, 4, 8) 64.80 60 2460 60
steiner-(2, 3, 9) 2036.50 4521 167170 4521
steiner-(2, 4, 13) 38.05 19 —- —-

(a) Comparing projectors for
S


Gecode

C
 ΓC

 (F
)

problem time(ms) fails time(ms) fails
steiner-(2, 3, 7) 0.4535 6 196 6
steiner-(3, 4, 8) 5.0790 60 4140 35
steiner-(2, 3, 9) 45.8850 4505 101740 3103
steiner-(2, 4, 13) 3.3150 19 —- —-

(b) Comparing normal
C


Table 6.10: Comparison of the Gecode

C
approximation and a mimicked

C

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7 Conclusion

In the final chapter of this thesis we conclude the preceding chapters and present some ideas on
future work.

7.1 Main contributions

In the course of this thesis we presented an application of Benhamou’s work on domain ap-
proximations to finite domain set variables. We showed, how this framework captures common
variable representations available in literature and how it defines constraint propagation.

Survey We took a closer a look on how set variable representations define domain approxima-
tions by providing a survey on the set bounds domain approximation (

S
), the cardinality set

bounds domain approximation (
C

), the lexicographic bounds consistency (
L

), the length-
lexicographic bounds domain approximation (

LL
) and the full domain approximation (

F
).

7.1.1 Implementing domain approximations

Apart from encoding existing variable representations in terms of a domain approximation we
also discussed how two of them, namely

C
 and

F
, can be implemented. Concerning theC

 domain approximation we took a glimpse on a possible implementation with the help of
the

C
 domain approximation as defined in Gecode . As for the

F
 domain approximation

this thesis shows how Lagoon and Stuckey define and implement a set variable representation
using ROBDDs.

Exchanging implementations Due to the open design and architecture of the Gecode -
library we were able to implement a disjoint bounds representation as

C
 implementation in

Gecode , which we compared with the including bounds representation in chapter 6.

Integrating Implementations On the other hand, this thesis provided the formal framework
for our implementation of the ROBDD-based set variable representation by Lagoon and Stuckey
in Gecode . Taking up the concept of views and iterators (Schulte and Tack[35]) , which forms an
integral component of the Gecode architecture, we were able to integrate Lagoon and Stuckey’s
full domain approximation into the cardinality set bounds consistent set constraint solver in
Gecode .

65
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Generating propagators Moreover this thesis also proposes a way to automatically generate
finite set constraints for both domain approximations (

C
 and

F
) from a uniform specifica-

tion language as proposed by Tack et al.. A prototype of the automatic propagator generation
has been implemented in Gecode and empirically evaluated in section 6.7.

Summing up Thus, this thesis is the first to integrate different set variable representations
into a single constraint solver such that variable representations and finite set constraints on
those variables can be combined freely using the variable view concept. Hence, we can not only
implement the ROBDD approach with its benefits of different consistencies for one propagator
but also plug them into Gecode ’s set constraint solver to combine the ROBDD representation
with already available set constraints.

7.2 Future Work

Though the integration of different representations into a single framework is a major contribu-
tion, still the implementation can be improved as the poor performance of some of the imple-
mented views in section 6.6 indicates.

Bottlenecks As we are not close in touch with Hawkins et al. we implemented most of the
proposed ROBDD representation Hawkins et al. literally as shown in their paper. However, we
focus especially on improving our algorithms concerning cardinality reasoning of the ROBDDs
since these “bottlenecks” are very time consuming as highlighted in chapter 6. This is already
work in progress but not yet implemented in the presented framework.

Change of implementation Unfortunately, the DB representation did not kept what was
promised by the intuition behind what we summarized in section 6.4. Since it turned out that
the range-list representation in Gecode as presented in section 3 cannot be improved further by
only changing the represented sets (see section 6.4) it would be worth investigating, whether
changing the underlying data structure form range-lists to bit-vectors or similar data structures
would do the trick.

Further constraints Since not all the constraints for ROBDDs as presented in [22] have been
implemented during this thesis, this could also be worth having a look at.

Multisets Finally, it would be interesting whether the presented framework of this thesis could
also cope with multisets by generalizing the obtained results for normal sets.
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